Implementation of pion form factor in event generators

Andrea Gurgone

The Evaluation of the Leading Hadronic Contribution to the Muon g-2MITP Topical Workshop – 05 June 2024

Andrea Gurgone

- From experimentalists: A pion form factor parametrisation $F_{\pi}(q^2)$ from data (Achim's talk)
 - \hookrightarrow At LO the only formal requirement is $F_{\pi}(0) = 1$
- From theorists: A method to insert $F_{\pi}(q^2)$ in loop diagrams
 - Factorised sQED (*Pau's talk*)
 - G. Rodrigo, H. Czyz, J. H. Kuhn, M. Szopa, Radiative return at NLO and the measurement of the hadronic cross-section in electron-positron annihilation, Eur.Phys.J.C 24 (2002) 71-82
 - Dispersive method (Peter's and Francesco's talk)
 - \hookrightarrow G. Colangelo, M. Hoferichter, J. Monnard, J. Ruiz de Elvira, *Radiative corrections to the forward–backward asymmetry in* $e^+e^- \rightarrow \pi^+\pi^-$, JHEP 08 (2022) 295
 - GVMD model (*Fedor's talk*)
 - \hookrightarrow F. Ignatov, R. N. Lee, Charge asymmetry in $e^+e^- \rightarrow \pi^+\pi^-$ process, PLB 833 (2022) 137283
- We need $F_{\pi}(q^2)$ not just $|F_{\pi}(q^2)|$ beyond factorised sQED

Formal requirements

- Factorised sQED: Any $F_{\pi}(q^2)$ as long as $F_{\pi}(0) = 1$, only $|F_{\pi}|$ needed
- Dispersive method: Any $F_{\pi}(q^2)$ that respects the dispersive sum rule

$$F_{\pi}(q^2) = 1 - rac{q^2}{\pi} \int_{4m_{\pi}^2}^{\infty} rac{{
m d}s'}{s'} rac{{
m Im} F_{\pi}(s')}{s'-q^2} \quad \longrightarrow \quad rac{1}{\pi} \int_{4m_{\pi}^2}^{\infty} rac{{
m d}s'}{s'} {
m Im} F_{\pi}(s') = 1$$

• GVMD model: $F_{\pi}(q^2)$ must be written as a sum of BW functions

$$F_{\pi}(q^2) = \sum_{\nu=0}^N c_
u rac{\Lambda_
u^2}{\Lambda_
u^2 - q^2} \quad ext{with} \quad \sum_{
u=0}^N c_
u = 1$$

Writing $F_{\pi}(q^2)$ in a propagator-like form allows to solve the loop integrals with $F_{\pi}(q^2)$ in each sQED vertex with standard techniques

Pion form factor for Strong2020 comparisons (1)

- We need to fix a common F_{π} parametrisation to compare generators w/o differences induced by different F_{π}
- Agreement on a sum of Gounaris-Sakurai (GS) functions BW^{GS}, very common in experiments
 - \hookrightarrow G. J. Gounaris, J. J. Sakurai, Finite width corrections to the vector meson dominance prediction for $\rho \rightarrow e^+e^-$, Phys. Rev. Lett. 21 (1968) 244-247

$$F_{\pi}(q^{2}) = \frac{\mathsf{BW}_{\rho}^{\mathsf{GS}}(q^{2}) \left[1 + (q^{2}/m_{\omega}^{2}) c_{\omega} \, \mathsf{BW}_{\omega}(q^{2}) + (q^{2}/m_{\phi}^{2}) c_{\phi} \, \mathsf{BW}_{\phi}(q^{2}) \right]}{1 + c_{\rho'} + c_{\rho''} + c_{\rho'''}} \\ + \frac{c_{\rho'} \, \mathsf{BW}_{\rho'}^{\mathsf{GS}}(q^{2}) + c_{\rho''} \, \mathsf{BW}_{\rho''}^{\mathsf{GS}}(q^{2}) + c_{\rho'''} \, \mathsf{BW}_{\rho'''}^{\mathsf{GS}}(q^{2})}{1 + c_{\rho'} + c_{\rho'''} + c_{\rho'''}}$$

$$\mathsf{BW}_{v}^{\mathsf{GS}}(q^{2}) = \frac{m_{v}^{2} + d(m_{v}) \, m_{v} \, \Gamma_{v}}{m_{v}^{2} - q^{2} + f(q^{2}, m_{v}, \Gamma_{v}) - i \, m_{v} \, \Gamma(q^{2}, m_{v}, \Gamma_{v})} \qquad v = \rho, \rho', \rho'', \rho'''$$

$$\mathsf{BW}_{\mathsf{v}}(q^2) = rac{m_{\mathsf{v}}^2}{m_{\mathsf{v}}^2 - q^2 - im_{\mathsf{v}} \mathsf{\Gamma}_{\mathsf{v}}} \qquad \mathsf{v} = \omega, \phi$$

A huge thanks to Fedor!

Pion form factor for Strong2020 comparisons (2)

	ρ	ho'	$ ho^{\prime\prime}$	$ ho^{\prime\prime\prime}$	ω	ϕ
m_v (MeV)	774.56	1485.9	1866.8	2264.5	782.48	1019.47
Γ_v (MeV)	148.32	373.60	303.34	113.27	8.55	4.25
$ c_v $	-	0.14104	0.0614	0.0047	0.00158	0.00045
φ_{v} (rad)	-	3.7797	1.429	0.921	0.075	2.888

- "We do not claim that this expression for $F_{\pi}(q^2)$ is a proper combination of all experimental data. It is simply a fixed parameterisation inspired by real data and mainly serves the purpose of allowing generator comparisons without impact from pion form factor variations."
- Data from BaBar, BES III, CMD-2, DM-2, KLOE, SND, but not CMD-3
- The quality of the fit was sacrificed to ensure the dispersive sum rule (accuracy $\sim 10^{-5})$
- Use it for the GVMD is not straightforward, MCGPJ approach for IFI: $|F_{\pi}(s)|^2 \left(F_{\pi}(q_1^2)F_{\pi}(q_2^2) - F_{\pi}(s)\right) / F_{\pi}(s) \longrightarrow |F_{\pi}^{GS}(s)|^2 \left(F_{\pi}^{BW}(q_1^2)F_{\pi}^{BW}(q_2^2) - F_{\pi}^{BW}(s)\right) / F_{\pi}^{BW}(s)$

Uncertainty from different approaches

