Dispersion relations and radiative corrections for the two-pion channel

Peter Stoffer

Physik-Institut, University of Zurich, and Paul Scherrer Institut

in collaboration with G. Colangelo and M. Hoferichter,

JHEP 02 (2019) 006; arXiv:2308.04217 [hep-ph]

with G. Colangelo, M. Hoferichter, and B. Kubis,

JHEP 10 (2022) 032

with J. Lüdtke and M. Procura,

JHEP 04 (2023) 125

and with N. Geralis, E. Kaziukenas, J.-N. Toelstede, and T. Leplumey

work in progress

MUonE Workshop, MITP Mainz, Germany, June 5, 2024

1 Introduction

- 2 Dispersive analysis of pion VFF
- 3 Zeros in the form factor
- 4 Structure-dependent radiative corrections

5 Summary

Overview

1 Introduction

- 2 Dispersive analysis of pion VFF
- 3 Zeros in the form factor
- 4 Structure-dependent radiative corrections

5 Summary

Two-pion contribution to HVP

- $\pi\pi$ contribution amounts to more than 70% of HVP contribution
- dominant source of HVP uncertainty
- can be expressed in terms of pion vector form factor ⇒ constraints from analyticity and unitarity

A multitude of puzzles in HVP

- tension between BMWc lattice-QCD and dispersive evaluations based on older e^+e^- cross sections
- discrepancy between CMD-3 and all previous e⁺e⁻ experiments
- ongoing scrutiny of both lattice and dispersive evaluations
- role of radiative corrections?

Introduction

- 2 Dispersive analysis of pion VFF
- 3 Zeros in the form factor
- 4 Structure-dependent radiative corrections

5 Summary

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- **1** $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- $\Im \pi\pi$ scattering— $\pi\pi$ scattering

analyticity \Rightarrow dispersion relation for HVP contribution

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1 $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- **2** pion VFF— $\pi\pi$ scattering

 $\Im \pi\pi$ scattering— $\pi\pi$ scattering

$$\cdots \qquad = \cdots \qquad = \cdots \qquad = F_{\pi}^{V}(s) = |F_{\pi}^{V}(s)|e^{i\delta_{1}^{1}(s) + \dots}$$

analyticity \Rightarrow dispersion relation for pion VFF

Unitarity and analyticity

implications of unitarity (two-pion intermediate states):

- 1) $\pi\pi$ contribution to HVP—pion vector form factor (VFF)
- 2 pion VFF— $\pi\pi$ scattering
- **3** $\pi\pi$ scattering— $\pi\pi$ scattering

analyticity, crossing, PW expansion \Rightarrow Roy equations

Dispersive representation of pion VFF

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

$$F_{\pi}^{V}(s) = \Omega_{1}^{1}(s) \times G_{\omega}(s) \times G_{\mathrm{in}}^{N}(s)$$

 Omnès function with elastic ππ-scattering *P*-wave phase shift δ¹₁(s) as input:

$$\Omega^{1}_{1}(s) = \exp\left\{\frac{s}{\pi}\int_{4M_{\pi}^{2}}^{\infty}ds'\frac{\delta^{1}_{1}(s')}{s'(s'-s)}\right\}$$

Dispersive representation of pion VFF

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

$$F_{\pi}^{V}(s) = \Omega_{1}^{1}(s) \times G_{\omega}(s) \times G_{\mathrm{in}}^{N}(s)$$

 isospin-breaking 3π intermediate state: negligible apart from ω resonance (ρ-ω interference effect)

$$\begin{split} G_{\omega}(s) &= 1 + \frac{s}{\pi} \int_{9M_{\pi}^2}^{\infty} ds' \frac{\mathrm{Im}g_{\omega}(s')}{s'(s'-s)} \left(\frac{1 - \frac{9M_{\pi}^2}{s'}}{1 - \frac{9M_{\pi}^2}{M_{\omega}^2}} \right)^4, \\ g_{\omega}(s) &= 1 + \epsilon_{\omega} \frac{s}{(M_{\omega} - \frac{i}{2}\Gamma_{\omega})^2 - s} \end{split}$$

Dispersive representation of pion VFF

→ Colangelo, Hoferichter, Stoffer, JHEP 02 (2019) 006

- heavier intermediate states: 4π (mainly $\pi^0\omega$), $\bar{K}K$, ...
- described in terms of a conformal polynomial with cut starting at $\pi^0 \omega$ threshold

$$G_{\rm in}^N(s) = 1 + \sum_{k=1}^N c_k(z^k(s) - z^k(0))$$

- correct P-wave threshold behavior imposed
- potentially leads to zeros of the form factor

Result for $a_{\mu}^{\mathrm{HVP},\pi\pi}$ below 1 GeV

 \rightarrow Colangelo, Hoferichter, Stoffer, JHEP **02** (2019) 006 and 2308.04217 [hep-ph] Colangelo, Hoferichter, Kubis, Stoffer, JHEP **10** (2022) 032

CMD-3 vs. all the rest

→ Colangelo, Hoferichter, Stoffer, 2308.04217 [hep-ph]

discrepancy	$a_{\mu}^{\pi\pi} _{[0.60, 0.88]{ m GeV}}$	$a_{\mu}^{\pi\pi} _{\leq 1\mathrm{GeV}}$	int window
SND06	1.8σ	1.7σ	1.7σ
CMD-2	2.3σ	2.0σ	2.1σ
BaBar	3.3σ	2.9σ	3.1σ
KLOE''	5.6σ	4.8σ	5.4σ
BESIII	3.0σ	2.8σ	3.1σ
SND20	2.2σ	2.1σ	2.2σ
Combination	$4.2\sigma (6.1\sigma)$	3.7σ (5.0 σ)	$3.8\sigma~(5.7\sigma)$

(discrepancies in brackets exclude systematic effect due to BaBar-KLOE tension)

- p-value of fit to CMD-3: 20%
- $\pi\pi$ phase shifts reasonable, main effect in conformal polynomial
- effect on charge radius as expected for rather uniform cross-section shift

2

Introduction

- 2 Dispersive analysis of pion VFF
- 3 Zeros in the form factor
- 4 Structure-dependent radiative corrections

5 Summary

Zeros in the pion VFF?

 presence of zeros can in principle be tested with modulus sum rule → H. Leutwyler, arXiv:hep-ph/0212324

$$\psi(s) := \frac{1}{(s_0 - s)^{3/2}} \log \frac{F_{\pi}^V(s)}{F_{\pi}^V(s_0)}, \quad s_0 = 4M_{\pi}^2$$

 \Rightarrow check if $\psi(s)$ fulfills unsubtracted dispersion relation

$$\psi(s) \stackrel{?}{=} \frac{1}{\pi} \int_{s_0}^{\infty} ds' \frac{\mathrm{Im}\psi(s')}{s'-s} \,, \quad \mathrm{Im}\psi(s) = -\frac{1}{(s-s_0)^{3/2}} \log \left| \frac{F_{\pi}^V(s)}{F_{\pi}^V(s_0)} \right|$$

only need modulus of form factor ⇒ experiment

Zeros in the pion VFF?

- no zeros possible in the region of validity of $\chi {\rm PT}$
 - \rightarrow H. Leutwyler, arXiv:hep-ph/0212324
- zeros in low-energy region excluded via unitarity/analyticity

→ B. Ananthanarayan, I. Caprini, I. Sentitemsu Imsong, PRD 83 (2011) 096002

- zeros excluded at large values of |s| from asymptotic behavior \rightarrow G. P. Lepage, S. J. Brodsky, PLB **87** (1979) 359
- use VFF parametrization to test presence of zeros:
 - fits lead to $G_{in}^N(s)$ free of zeros for $N \leq 4$
 - for N > 4, zeros show up, accompanied by fit instabilities
 - zeros for N > 4 source of main systematic uncertainty in our representation

Constrained fits without zeros

- → work in progress with Thomas Leplumey (ETH master student)
- impose absence of zeros, either via explicit parametrization, or sum-rule constraint

$$\log G_{\rm in}^N(s_{\rm in}) = \frac{1}{\pi} \int_{s_{\rm in}}^{\infty} \frac{ds'}{s'} \frac{s_{\rm in}^{3/2}}{(s' - s_{\rm in})^{3/2}} \log \left| \frac{G_{\rm in}^N(s')}{G_{\rm in}^N(s_{\rm in})} \right|$$

 observe stabilization of fits for larger N ⇒ main source of uncertainty eliminated

Constrained fits without zeros

→ work in progress with Thomas Leplumey (ETH master student)

- marginal impact on χ^2/dof of fit, ω mass and mixing parameter, central values of $\pi\pi$ phase
- systematic uncertainties much reduced for $\pi\pi$ -phase δ_1^1 , $a_{\mu}^{\pi\pi}$, and pion charge radius $\langle r_{\pi}^2 \rangle$
- fits now lead to results for ⟨r²_π⟩ that could be used to discriminate between experiments ⇒ opportunity for independent lattice-QCD checks

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

Constrained fits without zeros: $a^{\pi\pi}_{\mu}$

→ work in progress with Thomas Leplumey (ETH master student)

3

Constrained fits without zeros: pion charge radius $\langle r_{\pi}^2 \rangle$

 \rightarrow work in progress with **Thomas Leplumey** (ETH master student)

3

I Introduction

- 2 Dispersive analysis of pion VFF
- 3 Zeros in the form factor
- 4 Structure-dependent radiative corrections

5 Summary

How can we resolve the discrepancies?

- CMD-3 vs. CMD-2 (and SND): experimental issue?
- SND20: incompatible with unitarity/analyticity constraints (*p*-value: 3.8×10^{-3})
- CMD-3 vs. radiative-return experiments: model-dependent theory input—how reliable are uncertainties?

How can we resolve the discrepancies?

- certainly no conceptual problem with dispersive approach per se
- dispersive approach relies on data input
- but experiments require theory input
 - \Rightarrow try to reduce model dependence in that theory input
 - \Rightarrow need more dispersion theory, not less!

Structure-dependent radiative corrections

Dispersive approach to isospin corrections in $\pi\pi$ scattering and $F_\pi^V \to {\rm talk}$ by G. Colangelo at Zurich WorkStop 2023

 \rightarrow G. Colangelo, M. Cottini, J. Monnard, J. Ruiz de Elvira, work in progress

- pion-mass difference in Roy equations
- photonic corrections (real + virtual) to ππ scattering and pion vector form factor

Structure-dependent radiative corrections

Dispersive approach to isospin corrections in $\pi\pi$ scattering and $F_\pi^V \to {\rm talk}$ by G. Colangelo at Zurich WorkStop 2023

 \rightarrow G. Colangelo, M. Cottini, J. Monnard, J. Ruiz de Elvira, work in progress

 \rightarrow J. Monnard, PhD thesis (2021)

 \Rightarrow no dramatic effects found

$Comparison \ of \ MCs \rightarrow {\sf talks \ by \ A. \ Signer, \ Y. \ Ulrich}$

- radiative-return experiments: PHOKHARA
 - FSR from pointlike pions
 - boxes, pentagons with vector form factor *outside* loop integral
- direct scan experiments: MCGPJ
 - FSR from pointlike pions
 - box diagrams for asymmetry with vector form factor inside loop

Direct scan experiments: LO

xxxvQ x OxxvX

Direct scan experiments: NLO

Forward-backward asymmetry

 \rightarrow talks by G. Colangelo and F. Ignatov at Zurich WorkStop 2023

→ Colangelo, Hoferichter, Monnard, Ruiz de Elvira (2022)

Dispersion relations for $\gamma^*\gamma^* \to \pi^+\pi^-$

→ Colangelo, Hoferichter, Procura, Stoffer (2015), Hoferichter, Stoffer (2019)

pole term = FsQED

Radiative-return experiments: LO

Radiative-return experiments: NLO (omitting pure QED corrections to LO)

contributes only to asymmetry

Radiative-return experiments: NLO (omitting pure QED corrections to LO)

PHOKHARA: sQED + resonance approximations dispersive approach by Colangelo et al.

contained in PHOKHARA pure FSR: sufficiently suppressed by experimental cuts?

???

PHOKHARA: sQED, multiplied by form factors *outside* loop ISR–FSR interference potential red flag identified during 2023 WorkStop Most difficult sub-process: $\gamma^* \gamma^* \gamma \rightarrow \pi^+ \pi^-$

- PHOKHARA: sQED $\times F_{\pi}^{V}(s)$ (s: e^+e^- invariant squared energy)—model prescription, which achieves cancellation of IR singularities
- not FsQED (= dispersive pole terms): lesson learnt from asymmetry might raise concerns
- here: dispersive pole terms expected to be bad approximation: ππ system in *p*-wave, *ρ* resonance in rescattering

Most difficult sub-process: $\gamma^*\gamma^*\gamma \to \pi^+\pi^-$

 \rightarrow work in progress with Emilis Kaziukėnas, Nikolas Geralis (ETH master

students), J.-N. Toelstede

- goal: dispersive treatment of $\gamma^*\gamma^*\gamma \to \pi\pi$
- synergies with dispersive approach to HLbL in triangle kinematics → talk by M. Hoferichter
- warm-up: $\gamma^* \gamma^* \gamma \rightarrow \pi \pi$ at NLO in $SU(2) \chi PT$ computed

 \rightarrow work in progress with Emilis Kaziukėnas

 \Rightarrow useful to understand **analytic structure** and for fixing **subtraction constants**

HLbL in triangle kinematics

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

- same sub-process
- for HLbL: only soft-photon limit required
- beyond soft limit: ambiguities in tensor decomposition need to be addressed for $e^+e^- \to \pi^+\pi^-\gamma$
- dispersive definition of pole terms non-trivial
 - \rightarrow work in progress with Emilis Kaziukėnas

HLbL in triangle kinematics

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

- same sub-process
- for HLbL: only soft-photon limit required
- beyond soft limit: ambiguities in tensor decomposition need to be addressed for $e^+e^- \to \pi^+\pi^-\gamma$
- dispersive definition of pole terms non-trivial
 - \rightarrow work in progress with Emilis Kaziukėnas

I Introduction

- 2 Dispersive analysis of pion VFF
- 3 Zeros in the form factor
- 4 Structure-dependent radiative corrections

5 Summary

Summary

Summary

- systematic uncertainties in pion VFF drastically reduced if zeros are excluded
- data do not prefer zeros: presence of zeros in fit connected with instabilities
- reduce model dependence in radiative corrections: rely on dispersion theory
- $\gamma^* \gamma^* \to \pi \pi$ sub-process: well understood **pion-pole** terms, rescattering could be included
- γ*γ*γ → ππ sub-process: very difficult, but synergies with new dispersive approach to HLbL; pole terms not enough

Backup

Tension with lattice QCD

Backup

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

- force a different HVP contribution in VFF fits by including "lattice" datum with tiny uncertainty
- three different scenarios:
 - "low-energy" physics: $\pi\pi$ phase shifts
 - "high-energy" physics: inelastic effects, ck
 - all parameters free
- study effects on pion charge radius, hadronic running of $\alpha_{\rm QED}^{\rm eff},$ phase shifts, cross sections

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \mathrm{GeV}}$

- → Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073
- "low-energy" scenario requires large local changes in the cross section in the ρ region
- "high-energy" scenario has an impact on pion charge radius and the space-like VFF ⇒ chance for independent lattice-QCD checks

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \mathrm{GeV}}$

Backup

 \rightarrow Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \mathrm{GeV}}$

Backup

→ Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073

correlations between $a_{\mu}^{\pi\pi}$ and $\langle r_{\pi}^2 \rangle$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, {\rm GeV}}$

correlations between $a_{\mu}^{\pi\pi}$ and $\Delta lpha_{\pi\pi}^{(5)}(M_Z^2)$

Modifying $a_{\mu}^{\pi\pi}|_{\leq 1 \, \text{GeV}}$

