An overview of lattice QCD+QED progress for the HVP contribution to the muon g-2

Consolidation of the MUonE Experiment Mainz

5th June 2024

OUTLINE

- Introduction
- HVP from the lattice
- Window observables
- Connections to the MUonE experiment

Introduction

Muon magnetic anomaly

$$= (-ie) \bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

muon anomalous magnetic moment: $a_{\mu} = \frac{g_{\mu} - 2}{2} = F_2(0)$

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2 \left(0 \right)$$

is generated by quantum loops; muon anomalous magnetic moment: $a_{\mu} = F_2(0)$ muon anomalous magnetic moment: $a_{\mu} = F_2(0)$ effects in the SM; \bullet is generated by quantum effects (loops). is a sensitive probe of new physics is a sensitive probe of new physics is a sensitive probe of new physics.

residential indicates the contributions to $a_{\mu}[\times 10^{10}]$

•	: -	
*	IS	5-loop QED
		2-loop EW
		HVP LO
		HVP NLO
		HVP NNLO
		HLbL

Theory error dominated by hadronic physics

Muon magnetic anomaly

$$= (-ie) \bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] u(p)$$

muon anomalous magnetic moment:

$$a_{\mu} \equiv \frac{g_{\mu} - 2}{2} = F_2(0)$$

• is generated by quantum loops; muon anomalous magnetic moment: muon anomalous magnetic moment: $a_{\mu} = F_2(0)$ muon rene irresto anomalous magnetic momente. $a_{\mu} = F_2(0)$ muon rene irresto anomalous magnetic momente. $a_{\mu} = F_2(0)$ effects in the SM; \bullet is generated by quantum effects (loops). \bullet is a sensitive probe of new physics \bullet is a sensitive probe of new physics \bullet is generated by quantum effects. (loops).

resides exiting ibroband from 0.000; EW, and QCD effects in the SM. SM contributions to $a_{\mu}[\times 10^{10}]$

•	:	
•	IS	5-loop QED
		2-loop EW
		HVP LO
		HVP NLO
		HVP NNLO
		HLbL

Theory error dominated by hadronic physics

Precision goal for Fermilab ×4 better implies knowing HVP at 0.2-0.3% accuracy

Muon g-2 2023

Hadronic contributions

$$a_{\mu}^{ ext{exp}} - a_{\mu}^{ ext{QED}} - a_{\mu}^{ ext{EW}} = 718.9(4.1) imes 10^{-10} \stackrel{?}{=} a_{\mu}^{ ext{had}}$$

Clearly right order of magnitude:

$$a_{\mu}^{\text{had}} = O\left(\left(\frac{\alpha}{\pi}\right)^2 \left(\frac{m_{\mu}}{M_{\rho}}\right)^2\right) = O\left(10^{-7}\right)$$

(already Gourdin & de Rafael '69 found $a_{\mu}^{\mathsf{had}} = 650(50) imes 10^{-10}$)

Huge challenge: theory of strong interaction between quarks and gluons, QCD, hugely nonlinear at energies relevant for a_{μ}

- → perturbative methods used for electromagnetic and weak interactions do not work
- → need nonperturbative approaches

Write

$$a_{\mu}^{\mathsf{had}} = a_{\mu}^{\mathsf{LO-HVP}} + a_{\mu}^{\mathsf{HO-HVP}} + a_{\mu}^{\mathsf{HLbyL}} + O\left(\left(rac{lpha}{\pi}
ight)^4
ight)$$

Hadronic contributions: diagrams

$$o extbf{ extit{a}}_{\mu}^{ exttt{LO-HVP}} = extbf{ extit{D}} \left(\left(rac{lpha}{\pi}
ight)^{2}
ight)$$

dronic vacuum polarisalita de Bonic light-by-light

• HLbL much more complicated than HVP, but ultimate precision needed is $\simeq 10\%$ instead of $\simeq 0.2\%$

utations of the q_i

• For many years, only accessible to models of QCD w/difficult to estimate systematics (Prades et al '09): $a_{\mu}^{\rm HLbL}=10.5(2.6)\times 10^{-10}$

- Also, lattice QCD calculations were exploratory and incomplete
 - Tremendous progress in past 5 years:
 - → Phenomenology: rigorous data

Procura, Stoffer,...'15-'20]

- Lattice: first two solid lattice calculations
- All agree w/ older model results but error estimate much more solid and will improve
- Agreed upon average w/ NLO HLbL and conservative error estimates [WP '20]
- $a_{\mu}^{\text{exp}} a_{\mu}^{\text{QED}} a_{\mu}^{\text{EW}} a_{\mu}^{\text{HLbL}} = 709.7(4.5) \times 10^{-10} \stackrel{?}{=} a_{\mu}^{\text{HVP}}$

12

Hadron Models +

ENLATINAMO del prediction vo ment $a_{\mu}^{ ext{HVP}}$ $+a_{\mu}^{\mathrm{HLbL}}$ $\left[a_{\mu}^{\rm QED} + a_{\mu}^{\rm Weak} + a_{\mu}^{\rm HLbL}\right]$ HVP from: rom: BMW2 20 ETM18 Mainz 3/19 FHM19 manuz/CLS19 PACS FHM19 **RBC/U** PACS19 BMW₁ RBC/UKQCD18 hybrich coi RBC/L BMW97X RBCnokused in WP20 <u>attice</u> certainty goal data/lattice Fermilab J17 BDJ19 not used in WP20 not used in WP20 [T. Aoyama et al, arXiv:2006.04822, Phys. Repts 887 (2020) data drive J17 + unitarity vticity DHMZ19 ΚN WF _ıconstraint: KINITHO WP20 -20 -10 20 ₋₆30 20[T. Aoyama et a , <u>a</u> -40 10 x 10¹⁰ exp exp Phys. Repts. 887 (2 -30 -20 -10 30 -60 -50 -40 0 10 20 SM exp) v 10¹⁰

Small interlude: Lattice QCD

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Discretise QCD onto 4D space-time lattice
- QCD equations
 — integrals over the values of quark and gluon fields on each site/link (QCD path integral)
- ~ 10¹² variables (for state-of-the-art)

- Evaluate by importance sampling
- Paths near classical action dominate
- Calculate physics on a set (ensemble) of samples of the quark and gluon fields

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Euclidean space-time $t \rightarrow i au$
- \circ Finite lattice spacing α
- Volume $L^3 \times T = 64^3 \times 128$
- Boundary conditions

Approximate the QCD path integral by Monte Carlo

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \mathcal{D}\overline{\psi} \mathcal{D}\psi \mathcal{O}[A, \overline{\psi}\psi] e^{-S[A, \overline{\psi}\psi]} \longrightarrow \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{N_{\text{conf}}} \mathcal{O}([U^{i}])$$

with field configurations U^i distributed according to $e^{-S[U]}$

Lattice QCD

Workflow of a lattice QCD calculation

- 1 Generate field configurations via Hybrid Monte Carlo
 - Leadership-class computing
 - ~100K cores or 1000GPUs, 10's of TF-years
 - O(100-1000) configurations, each $\sim 10-100$ GB
- 2 Compute propagators
 - Large sparse matrix inversion
 - ~few IOOs GPUs
 - I0x field config in size, many per config

- Contract into correlation functions
- ~few GPUs
- O(100k-1M) copies

Hadrons are emergent phenomena of statistical average over background gluon configurations

1 year on supercomputer~ 100k years on laptop

Lattice QCD action density, Leinweber, CSSM Adelaide, 2003

Challenges of a full lattice calculation

To make contact with experiment need:

- A valid approximation to the SM
 - \rightarrow at least u, d, s in the sea w/ $m_u = m_d \ll m_s (N_f = 2+1) \Rightarrow \sigma \sim 1\%$
 - \rightarrow better also include $c (N_f = 2 + 1 + 1) \& m_u \le m_d \& EM \Rightarrow \sigma \sim 0.1\%$
- u & d w/ masses well w/in SU(2) chiral regime : $\sigma_{\chi} \sim (M_{\pi}/4\pi F_{\pi})^2$
 - $\rightarrow M_{\pi} \sim 135 \,\mathrm{MeV}$ or many $M_{\pi} \leq 400 \,\mathrm{MeV}$ w/ $M_{\pi}^{\mathrm{min}} < 200 \,\mathrm{MeV}$ for $M_{\pi} \rightarrow 135 \,\mathrm{MeV}$
- $\mathbf{a} \to \mathbf{0}$: $\sigma_a \sim (a\Lambda_{\rm QCD})^n$, $(am_q)^n$, $(a|\vec{p}|)^n$ w/ $a^{-1} \sim 2 \div 4$ fm
 - \rightarrow at least 3 a's \leq 0.1 fm for $a\rightarrow$ 0
- L $\rightarrow \infty$: $\sigma_L \sim (M_\pi/4\pi F_\pi)^2 \times e^{-LM_\pi}$ for stable hadrons, $\sim 1/L^n$ for resonances, QED, ...
 - ightarrow many L w/ $(LM_\pi)^{max} \gtrsim 4$ for stable hadrons & better otherwise to allow for $L
 ightarrow \infty$
- These requirements $\Rightarrow O(10^{12})$ dofs that have to be integrated over
- Renormalization : best done nonperturbatively
- A signal: $\sigma_{\text{stat}} \sim 1/\sqrt{N_{\text{meas}}}$, reduce w/ $N_{\text{meas}} \rightarrow \infty$

HVP from the lattice

HVP from LQCD

$$\Pi_{\mu\nu}(Q) = \int d^4x \ e^{iQ\cdot x} \left\langle J_{\mu}(x)J_{\nu}(0)\right\rangle = \left[\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu}\right] \Pi\left(Q^2\right)$$

$$a_{\mu}^{\text{HVP,LO}} = 4\alpha_{em}^2 \int_{0}^{\infty} dQ^2 \frac{1}{m_{\mu}^2} f\left(\frac{Q^2}{m_{\mu}^2}\right) \left[\Pi(Q^2) - \Pi(0)\right]$$

B. E. Lautrup et al., 1972

FV & $a \neq 0$: A. discrete momenta $(Q_{\min} = 2\pi/T > m_{\mu}/2); \text{B.} \ \Pi_{\mu\nu}(0) \neq 0 \text{ in FV}$ contaminates $\Pi(Q^2) \sim \Pi_{\mu\nu}(Q)/Q^2 \text{ for } Q^2 \rightarrow 0 \text{ w/}$

very large FV effects; C. $\Pi(0) \sim \ln(a)$

F. Jegerlehner, "alphaQEDc17"

Time-Momentum Representation

$$a_{\mu}^{\text{HVP,LO}} = 4\alpha_{em}^2 \int_{0}^{\infty} dt \ \widetilde{f}(t) \ V(t)$$

$$V(t) = \frac{1}{3} \sum_{i=1,2,3} \int d\vec{x} \left\langle J_i(\vec{x},t) J_i(0) \right\rangle$$

D. Bernecker and H. B. Meyer, 2011

Isospin-breaking contributions

BMW 20

ETMC 19

BMW 17

FHM 17

20

10

15

 $\delta a_{\mu}^{\mathrm{IB}} \cdot 10^{10}$

RBC/UKQCD 18

5

0

BMW [arXiv:2002.12347]
RBC/UKQCD [Phys.Rev.Lett. 121 (2018) 2, 022003]
ETM [Phys. Rev. D 99, 114502 (2019)]
FHM [Phys.Rev.Lett. 120 (2018) 15, 152001]
LM [Phys.Rev.D 101 (2020) 074515]

- Small overall value due to large cancellations
- Large statistical uncertainties
- More precise calculations are in progress

18

Ratios of the HVP contributions to the lepton g-2

Ratio electron/muon

DG and S. Simula 2020 $K_{\ell} = t^{2} \int_{0}^{1} dx (1-x) \left[1 - j_{0}^{2} \left(\frac{m_{\ell}t}{2} \frac{x}{\sqrt{1-x}}\right)\right] dx$ $0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0 \quad 3.5 \quad 4.0 \quad t \quad (fm)$

$$R_{e/\mu} \equiv \left(\frac{m_{\mu}}{m_{e}}\right)^{2} \frac{a_{e}^{\mathrm{HVP}}}{a_{\mu}^{\mathrm{HVP}}}$$

- numerator and denominator share the same hadronic input
 - hadronic uncertainties strongly correlated (\sim 98%) and largely cancel out

$$R_{e/\mu} \equiv R_{e/\mu}^{ud} \cdot \widetilde{R}_{e/\mu}$$

$$R_{e/\mu}^{ud} \equiv \left(\frac{m_{\mu}}{m_{e}}\right)^{2} \frac{a_{e}^{\mathrm{HVP}}(ud)}{a_{\mu}^{\mathrm{HVP}}(ud)}$$

$$\widetilde{R}_{e/\mu} \equiv \frac{1 + \sum_{j=s,c,IB,disc} \frac{a_e^{\text{HVP}}(j)}{a_e^{\text{HVP}}(ud)}}{1 + \sum_{j=s,c,IB,disc} \frac{a_\mu^{\text{HVP}}(j)}{a_\mu^{\text{HVP}}(ud)}}$$

$R_{e/\mu}^{ud}$

- Precision of the data \approx 4 times better than the individual HVP terms
- Discretization and scale setting errors play a minor role
- Non-trivial pion mass dependence
- Visible FVEs, removed using the analytic representation. The correction does not exceed $\sim 1.3\%$

Trying to accommodate the g-2 discrepancy

Shift of the e/µ g-2 scaled HLO ratio

Good agreement between lattice [Giusti & Simula 2020] and KNT19. Possible future bounds on very low energy shifts $\Delta \sigma(s)$?

Keshavarzi, Marciano, MP, Sirlin, PRD 2020

Window observables

Windows "on the g-2 mystery"

Restrict integration over Euclidean time to sub-intervals

reduce/enhance sensitivity to systematic effects

$$\left(a_{\mu}^{\text{HVP,LO}} = a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD}\right)$$

$$a_{\mu}^{SD}(f;t_{0},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \left[1 - \Theta\left(t,t_{0},\Delta\right) \right]$$

$$a_{\mu}^{W}(f;t_{0},t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \Big[\Theta\left(t,t_{0},\Delta\right) - \Theta\left(t,t_{1},\Delta\right) \Big] \Big|$$

$$a_{\mu}^{LD}(f;t_{1},\Delta) \equiv 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \tilde{f}(t) V^{f}(t) \, \Theta\left(t,t_{1},\Delta\right)$$

$$\Theta(t, t', \Delta) = \frac{1}{1 + e^{-2(t-t')/\Delta}}$$

"Standard" choice:

$$t_0 = 0.4 \text{ fm}$$
 $t_1 = 1.0 \text{ fm}$

$$\Delta = 0.15 \text{ fm}$$

RBC/UKQCD 2018

Intermediate window

ReducedFyEs

Much better St. ratio

Precision test of different lattice calculations Mainz/CLS 20 (prelim.)

 $(t_0, t_1, \Delta) = (0.4, 1.0, 0.15)$ fm

Commensurate uncertainties compared to dispersive evaluations

Comparison w

$$V(t) = \frac{1}{12\pi^2} \int_{M_{\pi^0}}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s}t}$$

$$G(t) = \frac{1}{12\pi^2} \int_{m^2}^{\infty} d(\sqrt{s}) I$$

Insert V(t) into the expression for TMR

 $\sqrt{s} \, [\mathrm{GeV}]$

 Θ_{SD}

- $\tilde{\Theta}_{\mathrm{LD}}$

8.0

0.6

0.4

0.2

Insert G(t) into expression for time-mom-

$$a_{\mu,win}^{\text{HVP,LO}} = 4\alpha_{em}^{2}$$

$$a_{\mu}^{\text{hvp,ID}} = \begin{pmatrix} a_{em}^{2} \\ - \end{pmatrix} W_{m_{-0}^{2}}^{\text{ol}} (\sqrt{s}) R(s) \frac{1}{12\pi^{2}}$$

0.8

0.6

0.4

0.2

Colangelo et al. 2022

Intermediate window from R-ratio follow All channels edure 168.4(5) 229.4(1.4) 395.1(2.4) 411 channels edure 168.4(5) W.P. estimate: [100%] 2π below $1.0 \,\text{GeV}$ hvp, ID.8%1 138.3(1.2) 342.3(2.3) 494.3(3.6) $\frac{2.8\%}{2.5(1)} a_{\mu_{1}8.5(4)}^{\nu_{1}28n_{1}0\%}$ 3π below 1.8 GeV [5.5%] [39.9%] [54.6%] [100%] White Paper [1] 693.1(4.0) RBC/UKQCD [24] 715.4(18.7) 231.9(1.5) BMWc [36] 236.7(1.4) 707.5(5.5) BMWc/KNT [7, 36] 229.7(1.3) Mainz/CLS [99] 237.30(1.46) [Colom Melooet al., a69X3X22209512963]

Blinding

- ▶ 2 analysis groups for ensemble parameters (not blinded)
- ▶ 5 analysis groups for vector-vector correlators (blinded, to avoid bias towards other lattice/R-ratio results)
- ▶ Blinded vector correlator $C_b(t)$ relates to true correlator $C_0(t)$ by

$$C_b(t) = (b_0 + b_1 a^2 + b_2 a^4) C_0(t)$$
 (1)

with appropriate random b_0 , b_1 , b_2 , different for each analysis group. This prevents complete unblinding based on previously shared data on coarser ensembles.

Relative unblinding (standard window)

Other windows

SD

plot from RBC/UKQCD '23

- dominated by perturbation theory
- large cutoff effects

RBC/UKQCD - blind, preliminary

Probing the R-ratio on the lattice

 $R_{\sigma}(E)$: preliminary results

$$R_{\sigma}(E) = \int_{2M_{\pi}}^{\infty} d\omega \delta_{\sigma}(\omega, E) R(\omega) \qquad \delta_{\sigma}(\omega, E) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(\omega - E)^2}{2\sigma^2}}$$

- Uncertainty coming mostly from light quark contributions, strange & charm ones are very precise
- Disconnected contributions are tiny and cannot be appreciated on this scale

Alessandro De Santis

Probing the ${\cal R}$ ratio on the lattice

13/16

Connections to the MUonE Experiment

MUonE

$$t(x) \equiv -\frac{x^2}{1-x} m_{\mu}^2$$

B. E. Lautrup et al. 1972

$$a_{\mu}^{\text{HVP}} = \frac{\alpha_{em}}{\pi} \int_{0}^{1} dx (1-x) \Delta \alpha_{em}^{\text{HVP}} [t(x)]$$

$$\sigma(\mu e \to \mu e)$$

 $x \in [0.93, 1]$ not experimentally reached

$$\left[a_{\mu}^{\text{HVP}}\right]_{>} = 4\alpha_{em}^{2} \int_{0}^{\infty} dt \, \widetilde{f}_{>}(t) V(t) \qquad \longrightarrow \qquad \left[a_{\mu}^{\text{HVP}}\right]_{>} = 92(2) \cdot 10^{-10}$$

DG and S. Simula 2019

$$\left[a_{\mu}^{\text{HVP}}\right] = 92(2) \cdot 10^{-10}$$

quark-connected terms only

Uncertainty $(\approx 2 \cdot 10^{-10})$ close to the experimental statistical target $(\approx 0.3\%)$ of a_{μ}^{HVP}

Hadronic running of α_{em} from the lattice

Lattice result for the hadronic running of lpha

[Cè et al., arXiv:2203.08676]

Starting point: Results for $\Delta \alpha_{\rm had}(-Q^2)$ for Euclidean momenta $0 \le Q^2 \le 7 \, {\rm GeV}^2$ [T. San José, TUE 17:10]

- Mainz/CLS and BMWc (2017) differ by 2-3% at the level of $1-2\sigma$
- Tension between Mainz/CLS and phenomenology by $\sim 3\sigma$ for $Q^2 \gtrsim 3 \, {\rm GeV}^2$
- Tension increases to $\gtrsim 5\sigma$ for $Q^2 \lesssim 2 \, \mathrm{GeV^2}$ (smaller statistical error due to ansatz for continuum extrapolation)

Systematic uncertainties from fit ansatz, scale setting, charm quenching, isospin-breaking and missing bottom quark contribution (five flavour theory) included in error budget

Hartmut Wittig 2

Hadronic running of α_{em} from the lattice

Summary and Outlook

- Tremendous progress in lattice calculations of HVP (and HLbL!) contributions
- Sub-percent calculation by BMW must be checked and impressive efforts from various lattice collaborations are in progress
- An update of the White Paper is aimed for late 2024
- Benchmark quantities (windows) crucial for checking the internal consistency of lattice calculations. For a_{μ}^{W} a new puzzle arises: remarkable agreement between lattice calculations but significant tension with dispersive prediction
- Extend calculation of window quantities to individual flavor and quarkdisconnected contributions. Reach better precision for isospin-breaking contr.
- Extend comparison with phenomenological analyses to understand discrepancies. Clarify tensions in $\pi^+\pi^-$ BaBar, KLOE, CMD3

