An overview of lattice QCD+QED
 Davide Giusti

 progress for the HVP contribution to the muon g -2WORKSHOP

OUTLINE

Q Introduction

Q HVP from the lattice

Q Window observables
Q Connections to the MUonE experiment

Introduction

Muon magnetic anomaly

$$
=(-i e) \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] u(p)
$$

muon anomalous magnetic moment:

$$
a_{\mu} \equiv \frac{g_{\mu}-2}{2}=F_{2}(0)
$$

- is generated by quantum loops;
- receives contribution from QED, EW and QCD effects in the SM;
- is a sensitive probe of new physics

SM contributions to $a_{\mu}\left[\times 10^{10}\right]$	
5-loop QED	$11658471.8931(104)$
2-loop EW	$15.36(10)$
HVP LO	$693.1(4.0)$
HVP NLO	$-9.83(7)$
HVP NNLO	$1.24(1)$
HLbL	$9.2(1.8)$

Theory error dominated by hadronic physics

Muon magnetic anomaly

$$
=(-i e) \bar{u}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right] u(p)
$$

muon anomalous magnetic moment:

$$
a_{\mu} \equiv \frac{g_{\mu}-2}{2}=F_{2}(0)
$$

- is generated by quantum loops;
- receives contribution from QED, EW and QCD effects in the SM;
- is a sensitive probe of new physics

SM contributions to $a_{\mu}\left[\times 10^{10}\right]$	
5-loop QED	$11658471.8931(104)$
2-loop EW	$15.36(10)$
HVP LO	$693.1(4.0)$
HVP NLO	$-9.83(7)$
HVP NNLO	$1.24(1)$
HLbL	$9.2(1.8)$

Theory error dominated by hadronic physics
Precision goal for Fermilab $\times 4$ better

Hadronic contributions

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{QED}}-a_{\mu}^{\mathrm{EW}}=718.9(4.1) \times 10^{-10} \stackrel{?}{=} a_{\mu}^{\mathrm{had}}
$$

Clearly right order of magnitude:

$$
\begin{gathered}
a_{\mu}^{\text {had }}=O\left(\left(\frac{\alpha}{\pi}\right)^{2}\left(\frac{m_{\mu}}{M_{\rho}}\right)^{2}\right)=O\left(10^{-7}\right) \\
\text { (already Gourdin \& de Rafael '69 found } a_{\mu}^{\text {had }}=650(50) \times 10^{-10} \text {) }
\end{gathered}
$$

Huge challenge: theory of strong interaction between quarks and gluons, QCD, hugely nonlinear at energies relevant for a_{μ}
\rightarrow perturbative methods used for electromagnetic and weak interactions do not work
\rightarrow need nonperturbative approaches
Write

$$
a_{\mu}^{\mathrm{had}}=a_{\mu}^{\mathrm{LO}-\mathrm{HVP}}+a_{\mu}^{\mathrm{HO}-\mathrm{HVP}}+a_{\mu}^{\mathrm{HLbyL}}+O\left(\left(\frac{\alpha}{\pi}\right)^{4}\right)
$$

Hadronic contributions: diagrams

$$
\rightarrow a_{\mu}^{\mathrm{LO}-H V P}=O\left(\left(\frac{\alpha}{\pi}\right)^{2}\right)
$$

Hadronic light-by-light

- HLbL much more complicated than HVP, but ultimate precision needed is $\simeq 10 \%$ instead of $\simeq 0.2 \%$
- For many years, only accessible to models of QCD w/ difficult to estimate systematics (Prades et al ${ }^{\circ} 09$):

$$
a_{\mu}^{\mathrm{HLLL}}=10.5(2.6) \times 10^{-10}
$$

- Also, lattice QCD calculations were exploratory and incomplete
- Tremendous progress in past 5 years:

$709.7(4.5) \times 10^{-10} \stackrel{?}{=} a_{\mu}^{\mathrm{HVP}}$
[Blum et al '23]

Standard Model prediction vs Experiment

$$
a_{\mu}^{\mathrm{SM}}<a_{\mu}^{\mathrm{HVP}}+\left[a_{\mu}^{\mathrm{QED}}+a_{\mu}^{\mathrm{Weak}}+a_{\mu}^{\mathrm{HLbL}}\right]
$$

Lattice OCD + OED
hybrid: combine data \& lattice
data driven

+ unitarity/analyticity constraints

Small interlude: Lattice QCD

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Discretise QCD onto 4D space-time lattice
- QCD equations \longleftrightarrow integrals over the values of quark and gluon fields on each site/link (QCD path integral)
- 10^{12} variables (for state-of-the-art)

- Evaluate by importance sampling
- Paths near classical action dominate
- Calculate physics on a set (ensemble) of samples of the quark and gluon fields

Lattice QCD

Numerical first-principles approach to non-perturbative QCD

- Euclidean space-time $t \rightarrow i \tau$
- Finite lattice spacing a
- Volume $L^{3} \times T=64^{3} \times 128$
- Boundary conditions

Approximate the QCD path integral by Monte Carlo

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathcal{D} A \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{O}[A, \bar{\psi} \psi] e^{-S[A, \bar{\psi} \psi]} \rightarrow\langle\mathcal{O}\rangle \simeq \frac{1}{N_{\text {conf }}} \sum_{i}^{N_{\text {conf }}} \mathcal{O}\left(\left[U^{i}\right]\right)
$$

with field configurations U^{i} distributed according to $e^{-S[U]}$

Lattice QCD

Workflow of a lattice QCD calculation

1 Generate field configurations via Hybrid Monte Carlo

- Leadership-class computing
- ~I00K cores or I000GPUs, IO's of TF-years

- $\mathrm{O}(100-1000)$ configurations, each $\sim 10-100 \mathrm{~GB}$

2 Compute propagators

Contract into

 correlation functions- Large sparse matrix inversion
- ~few 100s GPUs
- 10x field config in size, many per config
- ~few GPUs
- O(I00k-IM) copies

Hadrons are emergent phenomena of statistical average over background gluon configurations

- 1 year on supercomputer $\sim 100 \mathrm{k}$ years on laptop

Challenges of a full lattice calculation

To make contact with experiment need:

- A valid approximation to the SM
\rightarrow at least u, d, s in the sea $w / m_{u}=m_{d} \ll m_{s}\left(N_{f}=2+1\right) \Rightarrow \sigma \sim 1 \%$
\rightarrow better also include $c\left(N_{f}=2+1+1\right) \& m_{u} \leq m_{d} \& E M \Rightarrow \sigma \sim 0.1 \%$
- $\mathbf{u} \& \mathbf{d} \mathbf{w} /$ masses well w/in $S U(2)$ chiral regime : $\sigma_{\chi} \sim\left(M_{\pi} / 4 \pi F_{\pi}\right)^{2}$
$\rightarrow M_{\pi} \sim 135 \mathrm{MeV}$ or many $M_{\pi} \leq 400 \mathrm{MeV}$ w/ $M_{\pi}^{\mathrm{min}}<200 \mathrm{MeV}$ for $M_{\pi} \rightarrow 135 \mathrm{MeV}$
$\mathbf{a} \rightarrow \mathbf{0}: \sigma_{a} \sim\left(\mathrm{a} \wedge_{\mathrm{QCD}}\right)^{n},\left(a m_{q}\right)^{n},(a|\vec{p}|)^{n} \mathrm{w} / \mathrm{a}^{-1} \sim 2 \div 4 \mathrm{fm}$
\rightarrow at least 3 a's $\leq 0.1 \mathrm{fm}$ for $a \rightarrow 0$
$\mathbf{L} \rightarrow \infty: \sigma_{L} \sim\left(M_{\pi} / 4 \pi F_{\pi}\right)^{2} \times e^{-L M_{\pi}}$ for stable hadrons, $\sim 1 / L^{n}$ for resonances, QED,\ldots
\rightarrow many $L \mathrm{w} /\left(L M_{\pi}\right)^{\max } \geq 4$ for stable hadrons \& better otherwise to allow for $L \rightarrow \infty$
- These requirements $\Rightarrow O\left(10^{12}\right)$ dofs that have to be integrated over
- Renormalization : best done nonperturbatively
- A signal : $\sigma_{\text {stat }} \sim 1 / \sqrt{N_{\text {meas }}}$, reduce $\mathrm{w} / N_{\text {meas }} \rightarrow \infty$

HVP from the lattice

HVP from LQCD

nul///hnn

$$
\Pi_{\mu v}(Q)=\int d^{4} x e^{i Q \cdot x}\left\langle J_{\mu}(x) J_{v}(0)\right\rangle=\left[\delta_{\mu v} Q^{2}-Q_{\mu} Q_{v}\right] \Pi\left(Q^{2}\right)
$$

$a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=4 \alpha_{e m}^{2} \int_{0}^{\infty} d Q^{2} \frac{1}{m_{\mu}^{2}} f\left(\frac{Q^{2}}{m_{\mu}^{2}}\right)\left[\Pi\left(Q^{2}\right)-\Pi(0)\right]$

B. E. Lautrup et al., 1972

$\mathrm{FV} \& a \neq 0$:A. discrete momenta $\left(Q_{\min }=2 \pi / T>m_{\mu} / 2\right)$; B. $\Pi_{\mu \nu}(0) \neq 0$ in FV contaminates $\Pi\left(Q^{2}\right) \sim \Pi_{\mu \nu}(Q) / Q^{2}$ for $Q^{2} \rightarrow 0 \mathrm{w} /$

very large FV effects; C. П(0) $\sim \ln (a)$
F. Jegerlehner, "alphaQEDcI7"

Time-Momentum Representation

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=4 \alpha_{e m}^{2} \int_{0}^{\infty} d t \tilde{f}(t) V(t) \quad V(t) \equiv \frac{1}{3} \sum_{i=1,2,3} \int d \vec{x}\left\langle J_{i}(\vec{x}, t) J_{i}(0)\right\rangle
$$

D. Bernecker and H. B. Meyer, 20II

Time-Momentum Representation

- No reliance on exp. data, except for hadronic quantities used to calibrate the simulation ($M_{\pi}, M_{K}, M_{n u c l}, \ldots$)
- Can perform an explicit quark flavor separation of $a_{\mu}^{\text {HVP,LO }}$

light-quark connected $a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}(\mathrm{ud}) \sim 90 \%$ of total s,c-quark connected $a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}(\mathrm{s}, \mathrm{c}) \sim 8 \%, 2 \%$ of total

disconnected
$\mathrm{IB}\left(m_{u} \neq m_{d}+\mathrm{QED}\right)$
$a_{\mu, \text { disc }}^{\mathrm{HVP}, \mathrm{LO}} \sim 2 \%$ of total
$\delta a_{\mu}^{\mathrm{HVP}, \mathrm{LO}} \sim 1 \%$ of total

Challenges:

- sub-percent stat. precision exp. growing StN ratio in $V(t)$ as $t \rightarrow \infty$
- correct for FVEs, control discr. effects (scale setting and continuum extrap.)
- quark-disconn. diagrams control stat. \& stochastic noise

Results for each contribution

Isospin-breaking contributions

$-0.55(15)(11)$
BMW
RBC/UKQCD

BMW [arXiv:2002.12347]
RBC/UKQCD [Phys.Rev.Lett. 121 (2018) 2, 022003] ETM [Phys. Rev. D 99, 114502 (2019)] FHM [Phys.Rev.Lett. 120 (2018) 15, 152001]
LM [Phys.Rev.D 101 (2020) 074515]

- Small overall value due to large cancellations
- Large statistical uncertainties
- More precise calculations are in progress

Ratios of the HVP contributions to the lepton $g-2$

Ratio electron/muon

DG and S. Simula 2020

numerator and denominator share the same hadronic input hadronic uncertainties strongly correlated ($\sim 98 \%$) and largely cancel out

$$
R_{e / \mu} \equiv R_{e / \mu}^{u d} \cdot \widetilde{R}_{e / \mu}
$$

$R_{e / \mu}^{u d}=\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \frac{a_{e}^{\mathrm{HVP}}(u d)}{a_{\mu}^{\mathrm{HVP}}(u d)}$

$$
\widetilde{R}_{e} \rho \mu \mu=\frac{1+\sum_{j=s, s, l, I B, \text { disc }} \frac{a_{e}^{\mathrm{HVP}}(j)}{a_{e}^{\mathrm{HVP}}(u d)}}{1+\sum_{j=s, c, I B, \text { disc }} \frac{a_{\mu}^{\mathrm{HIP}}(j)}{a_{\mu}^{\mathrm{HVP}}(u d)}}
$$

Trying to accommodate the g-2 discrepancy

Shift of the e/ $\mu \mathrm{g}-2$ scaled HLO ratio

Good agreement between lattice [Giusti \& Simula 2020] and KNT19. Possible future bounds on very low energy shifts $\Delta \sigma(\mathrm{s})$?

Window observables

Windows "on the g-2 mystery"

Restrict integration over Euclidean time to sub-intervals
\longrightarrow reduce/enhance sensitivity to systematic effects

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=a_{\mu}^{S D}+a_{\mu}^{W}+a_{\mu}^{L D}
$$

$$
\begin{gathered}
a_{\mu}^{S D}\left(f ; t_{0}, \Delta\right) \equiv 4 \alpha_{e m}^{2} \int_{0}^{\infty} d t \tilde{f}(t) V^{f}(t)\left[1-\Theta\left(t, t_{0}, \Delta\right)\right] \\
a_{\mu}^{W}\left(f ; t_{0}, t_{1}, \Delta\right) \equiv 4 \alpha_{e m}^{2} \int_{0}^{\infty} d t \tilde{f}(t) V^{f}(t)\left[\Theta\left(t, t_{0}, \Delta\right)-\Theta\left(t, t_{1}, \Delta\right)\right] \\
a_{\mu}^{L D}\left(f ; t_{1}, \Delta\right) \equiv 4 \alpha_{e m}^{2} \int_{0}^{\infty} d t \tilde{f}(t) V^{f}(t) \Theta\left(t, t_{1}, \Delta\right)
\end{gathered}
$$

$$
\Theta\left(t, t^{\prime}, \Delta\right)=\frac{1}{1+e^{-2\left(t-t^{\prime}\right) / \Delta}}
$$

"Standard" choice:

$$
t_{0}=0.4 \mathrm{fm} \quad t_{1}=1.0 \mathrm{fm}
$$

$$
\Delta=0.15 \mathrm{fm}
$$

RBC/UKQCD 2018

Intermediate window

- Reduced FVEs
- Much better StN ratio
\rightarrow Precision test of different lattice calculations
\rightarrow Commensurate uncertainties compared to dispersive evaluations

Comparison with R-ratio

$$
V(t)=\frac{1}{12 \pi^{2}} \int_{M_{\pi^{0}}}^{\infty} d(\sqrt{s}) R(s) s e^{-\sqrt{s} t} \quad R(s)=\frac{3 s}{4 \pi \alpha_{e m}^{2}} \sigma\left(s, e^{+} e^{-} \rightarrow \text { hadrons }\right)
$$

Insert $V(t)$ into the expression for TMR

$$
a_{\mu, w i n}^{\mathrm{HVP}, \mathrm{LO}}=4 \alpha_{e m}^{2} \int_{M_{\pi^{0}}}^{\infty} d(\sqrt{s}) R(s) \frac{1}{12 \pi^{2}} s \int_{0}^{\infty} d t \tilde{f}(t) \Theta_{w i n}(t) e^{-\sqrt{s} t}
$$

	$a_{\mathrm{SD}}^{\mathrm{HVP}}$	$a_{\mathrm{int}}^{\mathrm{HVP}}$	$a_{\mathrm{LD}}^{\mathrm{HVP}}$	$a_{\mathrm{total}}^{\mathrm{HVP}}$
All channels	$68.4(5)$	$229.4(1.4)$	$395.1(2.4)$	$693.0(3.9)$
	$[9.9 \%]$	$[33.1 \%]$	$[57.0 \%]$	$[100 \%]$
2π below 1.0 GeV	$13.7(1)$	$138.3(1.2)$	$342.3(2.3)$	$494.3(3.6)$
	$[2.8 \%]$	$[28.0 \%]$	$[69.2 \%]$	$[100 \%]$
3π below 1.8 GeV	$2.5(1)$	$18.5(4)$	$25.3(6)$	$46.4(1.0)$
	$[5.5 \%]$	$[39.9 \%]$	$[54.6 \%]$	$[100 \%]$
White Paper [1]	-	-	-	$693.1(4.0)$
RBC/UKQCD [24]	-	$231.9(1.5)$	-	$715.4(18.7)$
BMWc [36]	-	$236.7(1.4)$	-	$707.5(5.5)$
BMWc/KNT [7, 36]	-	$229.7(1.3)$	-	-
Mainz/CLS [99]	-	$237.30(1.46)$	-	-
ETMC [100]	$69.33(29)$	$235.0(1.1)$	-	-

Results for the intermediate window

Blinding

- 2 analysis groups for ensemble parameters (not blinded)
- 5 analysis groups for vector-vector correlators (blinded, to avoid bias towards other lattice/R-ratio results)
- Blinded vector correlator $C_{b}(t)$ relates to true correlator $C_{0}(t)$ by

$$
\begin{equation*}
C_{b}(t)=\left(b_{0}+b_{1} a^{2}+b_{2} a^{4}\right) C_{0}(t) \tag{1}
\end{equation*}
$$

with appropriate random b_{0}, b_{1}, b_{2}, different for each analysis group. This prevents complete unblinding based on previously shared data on coarser ensembles.

Results for the intermediate window

Results for the intermediate window

Results for the intermediate window

Other windows

plot from RBC/UKQCD ‘23

- dominated by perturbation theory
- large cutoff effects

large FV effects + StN problem
continuum limit in BMW20 calculation is non trivial
sub-percent accuracy goal

BMW '20
RBC/UKQCD - blind, preliminary

Probing the R-ratio on the lattice

$R_{\sigma}(E)$: preliminary results

$$
R_{\sigma}(E)=\int_{2 M_{\pi}}^{\infty} \mathrm{d} \omega \delta_{\sigma}(\omega, E) R(\omega) \quad \delta_{\sigma}(\omega, E)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(\omega-E)^{2}}{2 \sigma^{2}}}
$$

$$
R_{\sigma}(E) \text { from } e^{+} e^{-} \text {data }
$$

- Uncertainty coming mostly from light quark contributions, strange \& charm ones are very precise
- Disconnected contributions are tiny and cannot be appreciated on this scale

Connections to the
 MUonE Experiment

MUonE

$$
t(x) \equiv-\frac{x^{2}}{1-x} m_{\mu}^{2}
$$

B. E. Lautrup et al. I972

$$
\underbrace{a_{\mu}^{\mathrm{HVP}}=\frac{\alpha_{e m}}{\pi} \int_{0}^{1} d x(1-x) \Delta \alpha_{e m}^{\mathrm{HVP}}[t(x)]}_{\downarrow}
$$

$x \in[0.93,1]$ not experimentally reached

LQCD

DG and S. Simula 2019

$$
\left[a_{\mu}^{\mathrm{HVP}}\right]_{>}=4 \alpha_{e m}^{2} \int_{0}^{\infty} d t \tilde{f}_{>}(t) V(t) \quad\left[a_{\mu}^{\mathrm{HVP}}\right]_{>}=92(2) \cdot 10^{-10}
$$

Uncertainty $\left(\simeq 2 \cdot 10^{-10}\right)$ close to the experimental statistical target $(\simeq 0.3 \%)$ of $\left[a_{\mu}^{\mathrm{HVP}}\right]_{\alpha}$

Hadronic running of $\alpha_{e m}$ from the lattice

Lattice result for the hadronic running of α

[Cè et al., arXiv:2203.08676]
Starting point: Results for $\Delta \alpha_{\text {had }}\left(-Q^{2}\right)$ for Euclidean momenta $0 \leq Q^{2} \leq 7 \mathrm{GeV}^{2} \quad$ [T. San José, TUE 17:10]

Rational approximation:

- Mainz/CLS and BMWc (2017) differ by $2-3 \%$ at the level of $1-2 \sigma$
- Tension between Mainz/CLS and phenomenology by $\sim 3 \sigma$ for $Q^{2} \gtrsim 3 \mathrm{GeV}^{2}$
- Tension increases to $\gtrsim 5 \sigma$ for $Q^{2} \lesssim 2 \mathrm{GeV}^{2}$
(smaller statistical error due to ansatz for continuum extrapolation)

Systematic uncertainties from fit ansatz, scale setting, charm quenching, isospin-breaking and missing bottom quark contribution (five flavour theory) included in error budget

Hadronic running of $\alpha_{e m}$ from the lattice

$$
(1-x) \Delta \alpha_{\text {had }}^{\text {ud, conn, iso }}\left(\frac{x^{2} m_{\mu}^{2}}{x-1}\right)
$$

$$
Q^{2}=\frac{x^{2} m_{\mu}^{2}}{1-x}
$$

$$
0.001 \mathrm{GeV}^{2} \lesssim Q^{2} \lesssim 5 \mathrm{GeV}^{2}
$$

Summary and Outlook

- Tremendous progress in lattice calculations of HVP (and HLbL!) contributions
- Sub-percent calculation by BMW must be checked and impressive efforts from various lattice collaborations are in progress
- An update of the White Paper is aimed for late 2024
- Benchmark quantities (windows) crucial for checking the internal consistency of lattice calculations. For a_{μ}^{W} a new puzzle arises: remarkable agreement between lattice calculations but significant tension with dispersive prediction
- Extend calculation of window quantities to individual flavor and quarkdisconnected contributions. Reach better precision for isospin-breaking contr.
- Extend comparison with phenomenological analyses to understand discrepancies. Clarify tensions in $\pi^{+} \pi^{-} \mathrm{BaBar}$, KLOE, CMD3

- $\mu e \rightarrow \mu e$ experiment MUonE very important for experimental cross-check and complementarity w/ LQCD

