

Jonathan Ronca

LoopIn: Loop Integrals for virtual corrections

In collaboration with: M. Bigazzi, G. Brunello G. Crisanti, T. Dave, M. K. Mandal, P. Mastrolia, S. Smith, W. J. Torres Bobadilla

06 June 2024

Istituto Nazionale di Fisica Nucleare **SEZIONE DI ROMA TRE**

[JR – IRNTerascale@LNF – 2024]

PNRR e SuperCalcolo Exascale : 1,000,000,000,000,000,000 Flops

Advancement of HPC developments

• Tecnopolo *Cineca* a Bologna

UNA DATA VALLEY ITALIANA

• Centro Nazionale HPC, BD e QC

Leonardo at Cineca [video link]

CN1.HPC.Spoke2 / Fundamental Research & Space Economy

Spoke2 & Work Packages

- WP1. Theoretical Physics
- WP2. Experimental Particle Physics
- WP3. Experimental Astro-Particle Physics
- WP4. Boosting the Computational Performances
- WP5. Architectural Support

CN1.HPC.Spoke2 / Fundamental Research & Space Economy

Spoke2 & Work Packages

• WP1. Theoretical Physics

- a. theories and models, towards pre-Exascale and Exascale architectures.
- Theoretical research projects in domains already using HPC solutions, such as: b.
 - electromagnetic effects in hadronic processes);
 - ii. collider physics phenomenology;
 - primordial universe, dark matter and energy, neutrino physics);
 - iv. nuclear physics;
 - biology);
 - vi. condensed matter in low dimensional systems;

Development of algorithms, codes and computational strategies for the simulation of physical

i. lattice field theory (flavour physics, QCD phase diagrams, hadronic physics, interactions beyond the Standard Model, machine learning in quantum field theories,

iii. gravitational waves, cosmology and astroparticle physics (neutron-star physics,

v. physics of complex systems (fluid dynamics, disordered systems, quantitative

vii. quantum systems (entanglement, quantum simulations, quantum information).

Usecase HPC.spoke2.WP1 /ADVANCED CALCULUS FOR PRECISION PHYSICS

Nodes: UNIBO - UNICAL - UNIMIB - UNIPD

• Five research directions:

- 1. Models & Diagrams
 3. Cross S
- 2. Amplitudes & Integrals

The software developed in this research program will have a major impact on Collider Phenomenology, as well as on Cosmology and Mathematics.

 Standard Model Physics 	•
 Beyond Standard Model Physics 	•
 Parton Distributions Functions 	•
 Higgs boson and Heavy Particles Physics 	•

• 4. Physics at Colliders

- Effective Field Theories for Quantum and Classical Physics
- Scattering Amplitudes
- Physics of the Universe and Gravitational Waves Physics
- Computational Algebraic Geometry

AIDA framework

- Mathematica framework (user-friendly)
- From the generation of the amplitude to its IBP reduction
- Implementation of the Adaptive Integrand Decomposition (AID)
- Can work with helicity amplitudes, form factors and interferences

What is missing?

- Parallelization
- Designed for up to 2L processes

What we are aiming for LoopIn to be?

- Mathematica front-end (user-friendly)
- Minimal number of inputs
- Modular: LoopIn has to be able to be interfaced with any code
- Flexible: User can manipulate the IO of LoopIn (with care)
- Every module of LoopIn will produce its own output
- Parallelizable
- Designed for any number of loop

• From the generation of the amplitude to its numerical evaluation

From Cross Section to Amplitudes in pQFT

From Cross Section to Amplitudes in pQFT

Example: $\gamma^* \rightarrow \overline{l}l @ N^3 LO QED$

Loopln: setting up the calculation

- Feynman integrals depend will depend on

*dimensional regularization is implicitly assumed during the whole discussion

Calculating Amplitudes: Decomposition

Graph topology with power indices

$$D_{n+r}^{\beta_r}$$

 $\alpha_1 \cdots D_n^{\alpha_n}$

$$\begin{bmatrix}
 (k_1, m_{\mu}) \\
 (k_1 - p_1, m_{\mu}) \\
 (k_1 + p_2, 0) \\
 (k_2 - p_2, m_{\mu}) \\
 (k_2 + p_1, 0) \\
 (k_1 + k_2, m_{\mu}) \\
 (k_2 - p_2 - p_3, m_{\mu})
 \end{bmatrix}$$

$$\beta_n, \beta_1, \ldots, \beta_r)$$

	→topology11,	<pre>{k[1], 0} {k[2], mt} {k[1] + p[3], mt} {k[1] + k[2] + p[3], 0} {k[1] - p[1] - p[2] + p[3], mt} {k[2] + p[1] + p[2], mt}</pre>	ightarrow topology19,
	→topology6,	<pre>{k[1], 0} {k[2], 0} {k[1] + p[3], mt} {k[1] + k[2] + p[3], mt} {k[1] - p[1] - p[2] + p[3], mt} {k[2] + p[1] + p[2], 0}</pre>	→topology36,
<pre>{k[1], mt} {k[2], mt} {k[1] + p[3], 0} {k[1] + k[2] + p[3], mt} {k[2] - p[1] - p[2] + p[3], 0} {k[1] + p[1] + p[2], mt}</pre>	→topology49,	$ \{k[1], 0\} \\ \{k[2], 0\} \\ \{k[1] + k[2], 0\} \\ \{k[2] - p[1] - p[2], 0\} \\ \{k[2] - p[1], 0\} \\ \{k[1] + p[1], 0\} $	logy65,
$ \{k[1], 0\} \\ \{k[2], 0\} \\ \{k[1] + p[2], 0\} \\ \{k[2] - p[1] - p[2], 0\} \\ \{k[1] - p[1], 0\} \\ \{k[1] + k[2] - p[1], 0\} $	{k[1] {k[2] {k[1] .ogy66, {k[2] {k[1] {k[1] {k[1]	<pre>, 0} , 0} + k[2], 0} + p[2], 0} + k[2] + p[1] + p[2] - p[3], mt} + k[2] + p[1] + p[2], 0} + p[1], 0}</pre>	→topology73}

- Every integral coming from the same diagram will belong to the same topology
- Indices $\bar{\alpha}_n$ and $\bar{\beta}_r$ characterize every individual integral
- Denominator basis might be not closed: Automatic choice of ISPs

Grouping Diagrams [Crisanti, Dave, Smith: WIP]

Lee-Pomeransky Polynomials¹ are a way of representing the graphical properties of a Feynman Diagram as a polynomial.

Whilst initially constructed from the momenta of the propagators within the diagram, the result only depends on variables that represent those propagators rather than the momenta within them.

¹R.N. Lee (2013)- <u>http://dx.doi.org/10.1007/JHEP11(2013)165</u>

[courtesy of Tom Dave]

Grouping Diagrams

[Crisanti,Dave,Smith:WIP]

 $(q), (q + p_2 + p_3 + p_4),$ **Propagators:** $(q + p_3 + p_4)$ and $(q + p_4)$. $s(x_3 \cdot x_1) + t(x_2 \cdot x_4) + x_1 + x_2 + x_3 + x_4$

Polynomial:

[courtesy of Tom Dave]

$(q), (q + p_2) \text{ and } (q + p_2 + p_3 + p_4).$ $s(x_2 \cdot x_3) + x_1 + x_2 + x_3$ Polynomial:

Grouping Diagrams [Crisanti,Dave,Smith:WIP]

To consider a pinch, we can set one of the variables to zero.

We can then consider permutations of the variables.

Starting from a diagram with maximal propagators (Parent), if find pinches and a permutation of the variables that match to a diagram with fewer propagators (Sub-Diagram). The Sub-Diagram is a member of the Parent Diagram's family.

Example from the previous diagrams:

 $s(x_3 \cdot x_1) + t(x_2 \cdot x_4) + x_1 + x_2 + x_3 + x_4$

 $x_1 \rightarrow x_3, x_2 \rightarrow x_1$ and $x_3 \rightarrow x_2$ then set $x_4 = 0$

[courtesy of Tom Dave] [Crisanti, Dave, Smith: WIP]

Grouping Diagrams

[Crisanti,Dave,Smith:WIP]

Family	Diagrams
47	47, 48, 93, 94, 95, 96, 97, 98, 99, 100
49	34, 49, 106, 107, 108, 111, 112, 133, 134, 136, 137, 143, 1
50	50, 113, 132
51	51, 116, 117, 118, 120, 127, 128, 129
52	20, 52, 121, 122, 124, 138, 145, 146
53	5, 6, 7, 8, 43, 44, 45, 46, 53, 54, 55, 56, 57, 85, 86, 87, 88
58	1, 2, 3, 4, 36, 37, 38, 39, 40, 58, 101, 102, 103, 104, 135,
59	59,60,61,62
63	63, 64, 65, 66, 67
68	9, 10, 11, 12, 22, 23, 24, 25, 26, 68, 123, 142
69	15, 16, 17, 18, 19, 69, 114, 139
70	29, 30, 31, 32, 33, 70, 130, 141
71	13, 71
72	72,110
73	14, 35, 42, 73, 105, 109, 131, 147
74	74, 75, 76, 77
78	27,78
79	79, 126
80	80, 81, 82, 83
84	21, 28, 41, 84, 115, 119, 125, 148

Table 1: Two Loop Groupings for $e^+e^- \rightarrow \gamma\gamma$

[courtesy of Tom Dave] [Crisanti,Dave,Smith:WIP]

We were able to group 148 diagrams into 20 families, as seen in the table below:

Integration-by-parts identities

Is there a way to reduce the number of integrals we need to evaluate?

Using $\bar{\alpha}_{r}, \bar{\beta}_{s}$ as seeds: **GIGANTIC** system of equation

 $\sum b_{\bar{\alpha}_s,\bar{\beta}_r} \operatorname{Int}(T,\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_r) = 0$ $\bar{\alpha}_{s}, \bar{\beta}_{r}$

Typical 2-loop processes get contribution from $\sim 10^4 - 10^6$ integrals

Feynman Integrals
$$I_{\bar{\alpha}_{n}}^{\bar{\beta}_{r}}\left(\boldsymbol{s},\boldsymbol{m}^{2};d\right) = \int \prod_{l=1}^{L} d^{d}k_{l} \frac{D_{n+1}^{\beta_{1}}}{D_{1}^{\alpha_{1}}}$$

Feynman integrals are invariant over loop momenta shifts

Integration-by-part Identities (IBPs) $k_l \to A_{li}k_i + B_{lj}p_j \implies \int \prod_{l=1}^{L} d^d k_l \frac{d}{dk_i^{\mu}} \left(v_i^{\mu} \frac{D_{n+1}^{\beta_1} \cdots D_{n+r}^{\beta_r}}{D_1^{\alpha_1} \cdots D_n^{\alpha_n}} \right) = 0$

[Chetyrkin,Tkachov:1981] [Laporta:hep-ph/0102033]

 $-Int[T, 1, 0, 0, 0, 0, -1, 0, 0, 0] \alpha_0 +$

Int[T, 1, 0, 0, 0, 0, 0, 0, -1, 0] α_0 + Int[T, -1, 1, 0, 0, 0, 0, 0, 0, 0] α_1 + Int[T, 0, 1, 0, 0, -1, 0, 0, 0, 0] α_1 - Int[T, 0, 1, 0, 0, 0, -1, 0, 0, 0] α_1 + Int[T, -1, 0, 1, 0, 0, 0, 0, 0, 0] α_2 + Int[T, 0, 0, 1, -1, 0, 0, 0, 0, 0] α_2 -Int[T, 0, 0, 1, 0, 0, -1, 0, 0, 0] α_2 + Int[T, 0, 0, 0, 0, 0, 0, 0, 0, 0] ($\alpha_0 - \alpha_5$) + Int[T, -1, 0, 0, 0, 0, 1, 0, 0, 0] α_5 - Int[T, 0, 0, 0, 0, 0, 1, 0, -1, 0] α_5 + Int[T, -1, 0, 0, 0, 0, 0, 0, 0, 1] β_8 - Int[T, 0, 0, 0, -1, 0, 0, 0, 0, 1] β_8 -Int[T, 0, 0, 0, 0, 0, -1, 0, 0, 1] β_8 + Int[T, 0, 0, 0, 0, 0, 0, -1, 0, 1] β_8 + Int[T, 0, 0, 0, 0, 0, 0, 0, -1, 1] β_8 - tInt[T, 0, 0, 0, 0, 0, 0, 0, 1] β_8 == 0

Example of an IBP operator

Integration-by-parts identities

MIs

(d-3)

 $\overline{4m^2 + p^2}$

Is there a way to reduce the number of integrals we need to evaluate?

 $\overline{4m^2 + p^2}$

1	
	diag3[1,0,1,0] \rightarrow
1	+ 0
	3
	diag3[-1,1,1,1] \rightarrow
	+ diag3[0,1,1,1] * ((($s-3*m2$)*t+m2^2)/($s-4*m2$))
	+ diag3[0,0,1,1]*((-t-m2)/(s-4*m2))
1	+ diag3[0,1,1,0] * ((2*t+s-2*m2) / (s-4*m2))
	+ diag3[0,1,0,0] * (((-d+2) *t+(-d+2) *m2) / (((2*d-6) *m2) *s+(-8*d+24) *m2^2))
	3
	diag3[0,1,0,1] →
	+ diag3[0,1,0,0] * ((d-2) / ((2*d-6) *m2))
	,
	diag3[1,-1,1,1] \rightarrow
	+ diag3[0,0,1,1] * ((((d-2)*s+(-2*d+6)*m2)*t+((-d+4)*m2)*s+(2*d-6)*m2^2)/((d-4)*t^2+((-2*d-6)*m2)*s+(-2*d-6)*m2)) + ((d-4)*t^2+((-2*d-6)*m2)*s+(-2*d-6)*m2) + (d-4)*t^2+((-2*d-6)*m2)*s+(-2*d-6)*m2) + (d-4)*t^2+((-2*d-6)*m2)*s+(-2*d-6)*t^2+((-2*d-6)*m2)*s+((-2*d-6)*m2)*s+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*m2)*s+((-2*d-6)*m2)*s+((-2*d-6)*m2)*s+((-2*d-6)*m2)*s+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*m2)*s+((-2*d-6)*m2)*s+((-2*d-6)*m2)*s+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*m2)*s+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*m2)*s+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*m2)*s+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*m2)) + (d-4)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d-6)*t^2+((-2*d
	+ diag3[1,0,0,1] * (((d-4) *t^2+(-2*s+2*m2) *t+(-d+2) *m2^2) / ((d-4) *t^2+((-2*d+8) *m2) *t+(d-4)) *m2^2) / ((d-4) *t^2+((-2*d+8) *m2) *t+(d-4)) *m2^2) / ((d-4) *t^2+(-2*d+8) *m2) *t+(d-4)) *m2^2) *m2^2) / ((d-4) *t^2+(-2*d+8) *m2) *t+(d-4)) *m2^2) *m2^2
	3
	diag3[1,0,1,1] →
	+ diag3[0,0,1,1] * ((2*d-6) / ((d-4) *t+(-d+4) *m2))
	+ diag3[1,0,0,1] * $((-2*d+6)/((d-4)*t+(-d+4)*m2))$
ł	,
	diag3[1,1,-1,1] →
	+ diag3[1,1,0,1] * (((s+m2)*t^2+((m2)*s-2*m2^2)*t+m2^3)/(t^2+(-2*m2)*t+m2^2))
	+ diag3[1,0,0,1] * ((t ² +(2*s-2*m2)*t+m2 ²)/(t ² +(-2*m2)*t+m2 ²))
	+ diag3[0,1,0,0] * (((((-3*d+8)*s)*t+((d-4)*m2)*s)/(((2*d-6)*m2)*t^2+((-4*d+12)*m2^2)*t+(2*d-6)*m2)*t^2+((-4*d+12)*m2^2)*t+(2*d-6)*m2)*t^2+((-4*d+12)*m2^2)*t^2+((-4*d+12)*t^2+((-4*d+12)*t^2)*t^2+((-4*d+12)*t^2+((-4*d+12)*t^2)*t^2)*t^2+((
	,
I	diag3[1,1,0,0] →
	+ diag3[0,1,0,0]*(1/m2)

Example of a reductions table

- Number of integrals drastically decreases
- The choice of MIs is not unique

Integration-by-parts identities

Interference

$$\sum_{\bar{\alpha}_n\bar{\beta}_r} c_{\bar{\alpha}_n\bar{\beta}_r} I_{\bar{\alpha}_n}^{\bar{\beta}_r} \left(\boldsymbol{s}, \boldsymbol{m}^2; d \right)$$

Numerical Integration

How do we evaluate Master integrals?

Evaluating Masters $J_n\left(s_{ij} = \operatorname{Num}, m_k = \operatorname{Num}; d\right) = ??$ Numerical solution of Differential Equations Auxiliary-mass flow DEs solutions along paths

Numerical Integration

Auxiliary mass flow (AMFlow)

[Liu,Ma:2201.11669]

- Introducing a mass parameter η into propagators
- Numerical IBPs + DE system depending on η only
- Automatic Boundary condition at $\eta \to \infty$
- Propagating boundaries to $\eta \rightarrow 0$

Series expansion methods (DiffExp, SeaSyde)

[Hidding:2006.05510] [Armadillo,Bonciani,Devoto,Rana,Vicini:2205.03345]

- Analytical IBPs + Differential equation system
- Boundary condition as input in Euclidean region
- Propagating boundary to physical region

Numerical Integration

Sector Decomposition (SecDec, pySecDec)

[Heinrich, Jones, Kerner, Magerya, Olsson, Schlenk: 2305.19768]

- Feynman parametrization
- Splitting integration domain
- End-point subtraction of singularities and ϵ expansion
- contour deformation + expansion-by-region
- MonteCarlo integration of finite integrals

Tropical integration (FeynTrop)

[Borinski, Munch, Tellander: 2302.08955]

- Tropical approximation of Symanzik Polynomial
- MonteCarlo integration improved with tropical sampling
- Improving sampling by geometrical insights

[Borinsky, Munch, Tellander: 2310.19890]

[courtesy of Marco Bigazzi]

AMFlow interface

AMFlow script

- Loading AMFlow and setting the IBPs reducer;
- Setting the AMFlowInfo parameters (by loading the information from parent folders and files);
- Loading ps-point by Bash script;
- Listing MI to evaluate and setting precision;
- Evaluating MI;
- Exporting the results.

Bash script

- Inputs:
 Number of parallel processes;
 AMFlow scripts paths;
 List of ps-points;

 Controls:

 Number of parallel processes;
 - Avoiding double execution of the same AMFlow script on different ps-points.

LoopIn: current status

Codes references

QGraph [Nogueira:1991] FeynArts [Küblbeck,Böhm,Denner:1991] [Hahn:hep-ph/0012260] FeynCalc [Mertig,Böhm,Denner:1991] [Shtabovenko, Mertig, Orellana: 2312.14089] FORM [Vermaseren:math-ph/0010025] Kira [Maierhöfer, Usovitsch, Uwer: 1705.05610] [Klappert,Lange,Maierhöfer,Usovitsch:2008.06494] LiteRED [Lee:1212.2685] FIRE [Smirnov:2311.02370] FiniteFlow [Peraro:1905.08019] Blade [Guan,Liu,Ma,Wu:2405.14621]

pySecDec

[Carter,Heinrich:1011.5493]

[Heinrich, Jones, Kerner, Magerya, Olsson, Schlenk: 2305.19768]

FeynTrop

[Borinski,Munch,Tellander:2302.08955]

AMFlow

[Liu,Ma:2201.11669]

DiffExp

[Hidding:2006.05510]

SeaSyde

[Armadillo,Bonciani,Devoto,Rana,Vicini:2205.03345]

Summary

We present a novel code for automated evaluation of Scattering Amplitudes LoopIn: Loop Integrals for virtual amplitudes

Features:

- Automated framework for evaluation of scattering amplitudes in pQFT++
- Designed for parallelization
- Modular structure, easily upgradable
- Tested on many 1L and 2L virtual correction in QED/QCD (by M. Bigazzi)

Current status: alpha

Near future:

tackling 3L QED processes

Long term:

- Robust grouping implementation
- Form factors and helicity amplitudes

Thank you for your attention!

Jonathan Ronca — LoopIn: Loop Integrals for virtual corrections — MUonE2024 — 06.06.2024