

LEVERHULME TRUST _____

An alternative approach to extract a_{μ}^{μ} from the MUonE data

Riccardo Nunzio Pilato

University of Liverpool

r.pilato@liverpool.ac.uk

The Evaluation of the Leading Hadronic Contribution to the Muon g-2: Consolidation of the MUonE Experiment and Recent Developments in Low Energy e⁺e⁻ Data Mainz, 4th June 2024

Space-like integral

2

$\Delta \alpha_{had}$ parameterization

Inspired from the 1 loop QED contribution of lepton pairs and top quark at t < 0

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3}\frac{M}{t} + \left(\frac{4}{3}\frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6}\right)\frac{2}{\sqrt{1 - \frac{4M}{t}}} \ln \left|\frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}}\right| \right\}$$
 2 parameters: K, M

Allows to calculate the full value of $a_{\mu}^{\ \mathrm{HLO}}$

Dominant behaviour in the MUonE kinematic region:

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} K t$$

Extraction of $\Delta \alpha_{had}(t)$

Extraction of $\Delta \alpha_{had}(t)$ through a template fit to the 2D (θ_{e}, θ_{u}) distribution:

Extraction of $\Delta \alpha_{had}(t)$

Extraction of $\Delta \alpha_{had}(t)$ through a template fit to the 2D (θ_{e} , θ_{u}) distribution:

4

Compute a_{μ}^{HLO}

117

Input the best fit parameters in the MUonE master integral

$$a_{\mu}^{HLO} = \frac{\alpha_0}{\pi} \int_{0}^{1} dx (1-x) \underline{\Delta \alpha_{had}[t(x)]}$$

Results from a simulation with the expected final statistics (4×10¹² elastic events):

 $a_{\mu}^{\rm HLO}$ = (688.8 ± 2.4) × 10⁻¹⁰ (0.35% accuracy)

> Input value $a_{\mu}^{\rm HLO}$ = 688.6 × 10⁻¹⁰

Phys. Lett. B 848 (2024) 138344

^a University of Liverpool, Liverpool L69 3BX, United Kingdom

^b INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127, Pisa, Italy

ARTICLE INFO

Editor: G.F. Giudice

ABSTRACT

We propose an alternative method to extract the leading-order hadronic contribution to the muon g-2, $a_{\mu}^{\rm HLO}$, with the MUonE experiment. In contrast to the traditional method based on the integral of the hadronic contribution to the running of the electromagnetic coupling, $\Delta \alpha_{had}$, in the space-like region, our approach relies on the computation of the derivatives of $\Delta \alpha_{had}(t)$ at zero squared momentum transfer *t*. We show that this approach allows to extract ~ 99% of the total value of $a_{\mu}^{\rm HLO}$ from the MUonE data, while the remaining ~ 1% can be computed combining perturbative QCD and data on e^+e^- annihilation to hadrons. This leads to a competitive evaluation of $a_{\mu}^{\rm HLO}$ which is robust against the parameterization used to model $\Delta \alpha_{had}(t)$ in the MUonE kinematic region, thanks to the analyticity properties of $\Delta \alpha_{had}(t)$, which can be expanded as a polynomial at $t \sim 0$.

An alternative method to compute a_{μ}^{HLO} with MUonE

Based on:

Start from traditional dispersive integral:

$$a_{\mu}^{\rm HLO} = \frac{\alpha^2}{3\pi^2} \int_{s_{\rm th}}^{\infty} \frac{ds}{s} K(s) R(s)$$

S. Bodenstein et al, Phys. Rev. D 85 (2012) C.A. Dominguez et al, Phys. Rev. D 96 (2017)

$$K(s) = \int_{0}^{1} dx \frac{x^2(1-x)}{x^2 + (1-x)s/m_{\mu}^2}$$
$$R(s) \propto \sigma(e^+e^- \to \text{hadrons})$$

An alternative method to compute a_{μ}^{HLO} with MUonE

Based on:

Start from traditional dispersive integral:

S. Bodenstein et al, Phys. Rev. D 85 (2012) C. A. Dominguez et al, Phys. Rev. D 96 (2017)

$$K(s) = \int_{0}^{1} dx \frac{x^2(1-x)}{x^2 + (1-x)s/m_{\mu}^2}$$
$$R(s) \propto \sigma(e^+e^- \to \text{hadrons})$$

$$s_{\rm th} = m_{\pi^0}^2$$

$$s_0 \gtrsim (2 \,\text{GeV})^2$$

$$\frac{\alpha^2}{3\pi^2} \int_{s_{\rm th}}^{s_0} \frac{ds}{s} K(s) R(s) + \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} K(s) R(s)$$
pQCD

 $a_{\mu}^{\rm HLO} = \frac{\alpha^2}{3\pi^2} \int_{s_{\rm HI}}^{\infty} \frac{ds}{s} K(s) R(s)$

$$-\mathrm{Im}\Pi_{had}(s) = \frac{\alpha}{3}R(s)$$

Low energy integral

 π

$$\int_{s_{\rm th}}^{s_0} \frac{ds}{s} K(s) \frac{\operatorname{Im}\Pi_{had}(s)}{\pi} = \int_{s_{\rm th}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] \frac{\operatorname{Im}\Pi_{had}(s)}{\pi} + \int_{s_{\rm th}}^{s_0} \frac{ds}{s} K_1(s) \frac{\operatorname{Im}\Pi_{had}(s)}{\pi}$$

Low energy integral

$$\int_{s_{\rm th}}^{s_0} \frac{ds}{s} K(s) \frac{\operatorname{Im}\Pi_{had}(s)}{\pi} = \int_{s_{\rm th}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] \frac{\operatorname{Im}\Pi_{had}(s)}{\pi} + \int_{s_{\rm th}}^{s_0} \frac{ds}{s} K_1(s) \frac{\operatorname{Im}\Pi_{had}(s)}{\pi}$$

$$K_1(s) = a_0 s + \sum_{n=1}^3 \frac{a_n}{s^n}$$

 $K_1(s)$ approximates K(s) for $s < s_0$. Meromorphic function: no cuts, poles in s = 0.

Two different techniques to get $K_1(s)$: 1) Least squares minimization 2) Minimize $\int_{s_{th}}^{s_0} \frac{ds}{s} |K(s) - K_1(s)| R(s)$

Low energy integral

10

High energy integral

Similar strategy for the high energy part

$$\begin{split} \int_{s_0}^{\infty} \frac{ds}{s} K(s) \frac{\mathrm{Im}\Pi_{had}(s)}{\pi} &= \\ \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] \frac{\mathrm{Im}\Pi_{had}(s)}{\pi} + \int_{s_0}^{\infty} \frac{ds}{s} \tilde{K}_1(s) \frac{\mathrm{Im}\Pi_{had}(s)}{\pi} \\ \tilde{K}_1(s) &= K_1(s) - c_0 s \end{split}$$

Compute a_{μ}^{HLO}

Rearranging the previous equations...

$$\begin{aligned} a_{\mu}^{\text{HLO}} &= a_{\mu}^{\text{HLO}(\text{II})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{IV})} \\ a_{\mu}^{\text{HLO}(\text{I})} &= -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_{n} d^{(n)}}{n! dt^{n}} \Delta \alpha_{had}(t) \Big|_{t=0} \\ a_{\mu}^{\text{HLO}(\text{II})} &= \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_{0}} \frac{ds}{s} c_{0} s \Pi_{had}(s) \Big|_{p\text{QCD}} \\ a_{\mu}^{\text{HLO}(\text{III})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{\text{th}}}^{s_{0}} \frac{ds}{s} [K(s) - K_{1}(s)] R(s) \\ a_{\mu}^{\text{HLO}(\text{IV})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{0}}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_{1}(s)] R(s) \end{aligned}$$

Compute a_{μ}^{HLO}

Rearranging the previous equations...

$$\begin{aligned} a_{\mu}^{\text{HLO}} &= a_{\mu}^{\text{HLO}(\text{II})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{III})} + a_{\mu}^{\text{HLO}(\text{IV})} \\ a_{\mu}^{\text{HLO}(\text{I})} &= -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_{n}}{n!} \frac{d^{(n)}}{dt^{n}} \Delta \alpha_{had}(t) \Big|_{t=0} \\ a_{\mu}^{\text{HLO}(\text{II})} &= \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_{0}} \frac{ds}{s} c_{0} s \Pi_{had}(s) \Big|_{p\text{QCD}} \\ a_{\mu}^{\text{HLO}(\text{III})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{\text{th}}}^{s_{0}} \frac{ds}{s} [K(s) - K_{1}(s)] R(s) \\ a_{\mu}^{\text{HLO}(\text{IV})} &= \frac{\alpha^{2}}{3\pi^{2}} \int_{s_{0}}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_{1}(s)] R(s) \end{aligned}$$

Compute a_{μ}^{HLO}

Rearranging the previous equations...

$$a_{\mu}^{\text{HLO}} = a_{\mu}^{\text{HLO}(I)} + a_{\mu}^{\text{HLO}(II)} + a_{\mu}^{\text{HLO}(III)} + a_{\mu}^{\text{HLO}(III)} + a_{\mu}^{\text{HLO}(IV)}$$

$$a_{\mu}^{\text{HLO}(I)} = -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \Big|_{t=0}$$

$$a_{\mu}^{\text{HLO}(II)} = \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_0} \frac{ds}{s} c_0 s \Pi_{had}(s) \Big|_{p\text{QCD}}$$

$$a_{\mu}^{\text{HLO}(III)} = \frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] R(s)$$

$$a_{\mu}^{\text{HLO}(IV)} = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] R(s)$$

$$MUonE$$

$a_{\mu}^{ m HLO~(I)}$ from MUonE data

$$a_{\mu}^{\text{HLO (I)}} = \left. -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \right|_{t=0}$$

The relevant quantities are the derivatives of $\Delta \alpha_{had}(t)$ at t = 0.

$a_{\mu}^{ m HLO~(I)}$ from MUonE data

$$a_{\mu}^{\text{HLO (I)}} = \left. -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \right|_{t=0}$$

The relevant quantities are the derivatives of $\Delta \alpha_{had}(t)$ at t = 0.

Try different parameterizations to fit MUonE data (max 3 fit parameters, due to the statistics collected by MUonE)

$$\Delta \alpha_{had}(t) = KM \left\{ -\frac{5}{9} - \frac{4}{3} \frac{M}{t} + \left(\frac{4}{3} \frac{M^2}{t^2} + \frac{M}{3t} - \frac{1}{6} \right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \ln \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$
 Lepton-like

$$\Delta \alpha_{had}(t) = P_1 t \frac{1 + P_2 t}{1 + P_3 t} \qquad \qquad \Delta \alpha_{had}(t) = P_1 t + P_2 t^2 + P_3 t^3$$

Padé approxiamant 3° polynomial

$a_{\mu}^{ m HLO~(I)}$ from MUonE data

Reconstruction approximants

D. Greynat, E. de Rafael, JHEP 2022 (5)

$$\Delta \alpha_{\text{had}}(t) = \sum_{n=1}^{N} \mathscr{A}(n, L) \left(\frac{\sqrt{1 - \frac{t}{t_0}} - 1}{\sqrt{1 - \frac{t}{t_0}} + 1} \right)^n + \sum_{p=1}^{\lfloor \frac{L+1}{2} \rfloor} \mathscr{B}(2p - 1) \operatorname{Li}_{2p-1}\left(\frac{\sqrt{1 - \frac{t}{t_0}} - 1}{\sqrt{1 - \frac{t}{t_0}} + 1} \right)$$

$$\Delta \alpha_{\text{had}}(t) = A_1 \mathscr{S}_1 + A_2 \mathscr{S}_2 + A_3 \mathscr{S}_3 + B_1 \mathscr{L}_1$$

$$\mathcal{S}_{i} = \left(\frac{\sqrt{1 - \frac{t}{t_{0}} - 1}}{\sqrt{1 - \frac{t}{t_{0}} + 1}}\right); \qquad A_{i} = \mathscr{A}(i, 1) \quad i = 1, 2, 3$$
$$\mathcal{S}_{1} = \operatorname{Li}_{1}\left(\frac{\sqrt{1 - \frac{t}{t_{0}} - 1}}{\sqrt{1 - \frac{t}{t_{0}} + 1}}\right); \qquad B_{1} = \mathscr{B}(1) \qquad \qquad \mathsf{Sev}_{1}$$

Tested L = 1, N = 3 Several variants with different number of free parameters

Simplified fit: simulate the MUonE signal using time-like compilations of $\Delta \alpha_{had}$. Error bars according to the MUonE final statistics.

Results: $a_{\mu}^{\text{HLO (I)}}$

$$a_{\mu}^{\text{HLO (I)}} = \left. -\frac{\alpha}{\pi} \sum_{n=1}^{3} \frac{c_n}{n!} \frac{d^{(n)}}{dt^n} \Delta \alpha_{had}(t) \right|_{t=0}$$

				HLO (I)	(10 - 10)			
Minimization I	a_{μ}^{122} (1) (10 ⁻¹⁰)							
<i>s</i> ⁰ values	LL	Padé	Pol	GdR1	GdR2	GdR3	GdR4	GdR5
$(1.8 {\rm GeV})^2$	688.7±2.2	$688.7{\pm}2.9$	$688.9 {\pm} 2.9$	$688.2{\pm}2.2$	$688.0{\pm}2.2$	$688.0{\pm}2.2$	$687.0{\pm}2.3$	$688.0{\pm}2.6$
$(2.5 \text{GeV})^2$	691.7±2.2	691.6±3.0	691.8±3.0	691.0±2.2	690.8±2.2	690.8±2.2	689.8±2.3	690.9±2.9
$(12 {\rm GeV})^2$	696.3±2.2	696.3±3.0	696.3±3.2	695.4±2.2	695.3±2.2	695.2±2.2	694.1±2.3	695.3±3.7
Minimization II				$a_{\mu}^{\mathrm{HLO}(\mathrm{I})}$	(10^{-10})			
<i>s</i> ⁰ values	LL	Padé	Pol	GdR1	GdR2	GdR3	GdR4	GdR5
$(1.8 {\rm GeV})^2$	688.5 ± 2.2	688.1±4.2	689.8±3.3	$688.3{\pm}2.1$	$688.4{\pm}2.1$	$688.6{\pm}2.2$	687.1±2.1	$688.4{\pm}5.8$
$(2.5 {\rm GeV})^2$	689.5±2.2	689.1±4.2	690.8±3.3	689.3±2.1	$689.4{\pm}2.1$	689.6±2.2	688.1±2.1	$689.4{\pm}5.7$
$(12 \text{ GeV})^2$	690.3±2.1	689.9±4.6	691.6±3.6	689.8±2.1	690.1±2.2	690.2±2.2	688.6±2.1	690.0±5.9

 $a_{\mu}^{\rm ~HLO~(I)}$ ~ 99% of the total value.

(a_{μ}^{HLO} = 695.1×10⁻¹⁰ input from time-like data).

Results: $a_{\mu}^{\text{HLO (II, III, IV)}}$

$$a_{\mu}^{\text{HLO (II)}} = \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_0} \frac{ds}{s} c_0 s \Pi_{had}(s) \Big|_{\text{pQCD}} a_{\mu}^{\text{HLO (III)}} = \frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] R(s)$$

$$a_{\mu}^{\text{HLO (IV)}} = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] R(s)$$

$$\frac{\overline{\text{Minimization I}}}{\frac{s_0 \text{ values } a_{\mu}^{\text{HLO (II)} (10^{-10})} a_{\mu}^{\text{HLO (III)} (10^{-10})} a_{\mu}^{\text{HLO (IV)} (10^{-10})}}{(1.8 \text{ GeV})^2 2.94 \pm 0.04 \quad 0.43 \pm 0.01 \quad 2.95 \pm 0.05} (2.5 \text{ GeV})^2 \quad 1.84 \pm 0.01 \quad -0.34 \pm 0.01 \quad 1.79 \pm 0.02} (12 \text{ GeV})^2 \quad 0.208 \pm 0.001 \quad -1.695 \pm 0.035 \quad 0.079 \pm 0.001} (1.8 \text{ GeV})^2 \quad 3.23 \pm 0.04 \quad 0.91 \pm 0.02 \quad 3.00 \pm 0.05} (2.5 \text{ GeV})^2 \quad 2.54 \pm 0.01 \quad 1.52 \pm 0.02 \quad 1.96 \pm 0.02$$

 $a_{\mu}^{\text{HLO (II+III+IV)}} \sim 1\%$ of the total value. ($a_{\mu}^{\text{HLO}} = 695.1 \times 10^{-10}$ input from time-like data).

 $4.85 {\pm} 0.05$

 0.096 ± 0.001

 $(12 \, \text{GeV})^2 \quad 0.360 \pm 0.001$

Results: a_{μ}^{HLO}

Results: a_{μ}^{HLO}

Conclusions

- Alternative method to calculate a_{μ}^{HLO} with MUonE data: less sensitive to the parameterization chosen to model $\Delta \alpha_{had}(t)$ in the MUonE kinematic range. Comparable uncertainty to the space-like integral method.
- No need to change the template fit workflow: "simply" generate template distributions using different parameterizations.
- From the analysis point of view, fit functions with ≤ 3 free parameters (possibly with low correlation) should be preferred.

BACKUP

Difference K₁(s) - K(s)

Results: $a_{\mu}^{\text{HLO (II, III, IV)}}$

$$a_{\mu}^{\text{HLO (II)}} = \frac{\alpha}{\pi} \frac{1}{2\pi i} \oint_{|s|=s_0} \frac{ds}{s} c_0 s \Pi_{had}(s) \Big|_{\text{pQCD}} a_{\mu}^{\text{HLO (III)}} = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{s_0} \frac{ds}{s} [K(s) - K_1(s)] R(s)$$

$$a_{\mu}^{\text{HLO (IV)}} = \frac{\alpha^2}{3\pi^2} \int_{s_0}^{\infty} \frac{ds}{s} [K(s) - \tilde{K}_1(s)] R(s)$$

$$\frac{\frac{Minimization I}{\frac{s_0 \text{ values } a_{\mu}^{\text{HLO (II)} (10^{-10})} a_{\mu}^{\text{HLO (III)} (10^{-10})} a_{\mu}^{\text{HLO (IV)} (10^{-10})}}{(1.8 \text{ GeV})^2 \ 2.94 \pm 0.04 \ 0.43 \pm 0.01 \ 2.95 \pm 0.05 \ (2.5 \text{ GeV})^2 \ 1.84 \pm 0.01 \ -0.34 \pm 0.01 \ 1.79 \pm 0.02 \ (12 \text{ GeV})^2 \ 0.208 \pm 0.001 \ -1.695 \pm 0.035 \ 0.079 \pm 0.001 \ \frac{Minimization I}{\frac{s_0 \text{ values } a_{\mu}^{\text{HLO (II)} (10^{-10})} a_{\mu}^{\text{HLO (III)} (10^{-10})} a_{\mu}^{\text{HLO (IV)} (10^{-10})}}{(1.8 \text{ GeV})^2 \ 3.23 \pm 0.04 \ 0.91 \pm 0.02 \ 3.00 \pm 0.05 \ (2.5 \text{ GeV})^2 \ 2.54 \pm 0.01 \ 1.52 \pm 0.02 \ 1.96 \pm 0.02}$$

 $a_{\mu}^{\text{HLO (II+III+IV)}} \sim 1\%$ of the total value. ($a_{\mu}^{\text{HLO}} = 695.1 \times 10^{-10}$ input from time-like data).

 4.85 ± 0.05

 0.096 ± 0.001

 $(12 \text{ GeV})^2 \quad 0.360 \pm 0.001$

 160 GeV muon beam on atomic electrons.

 $\sqrt{s} \sim 420 \,\mathrm{MeV}$

 $-0.153 \, {\rm GeV}^2 < t < 0 \, {\rm GeV}^2$

 $\Delta \alpha_{had}(t) \lesssim 10^{-3}$

