NEW METHODS FOR FEYNMAN INTEGRALS AND THEIR APPLICATIONS TO MU-E SCATTERING Matteo Fael (CERN)

MUonE@MITP Mainz - June 4th 2024

Funded by the European Union

IMPRESSIVE PROGRESS TOWARDS MU-E SCATTERING AT N3LO

Three-loop amplitude $\gamma^* \rightarrow e^+e^-$

MF, Lange, Schönwald, Steinhauser, Phys.Rev.Lett. 128 (2022), Phys.Rev.D 106 (2023), Phys.Rev.D 107 (2023)

Two-loop amplitude $\gamma^* \rightarrow e^+ e^- \gamma$

Badger, Krys, Moodie, Zoia, JHEP 11 (2023) 041. Fadin, Lee, JHEP 11 (2023) 148

IMPRESSIVE PROGRESS TOWARDS MU-E SCATTERING AT N3LO

Three-loop amplitude $\gamma^* \rightarrow e^+e^-$

MF, Lange, Schönwald, Steinhauser, Phys.Rev.Lett. 128 (2022), Phys.Rev.D 106 (2023), Phys.Rev.D 107 (2023)

Two-loop amplitude $\gamma^* \rightarrow e^+ e^- \gamma$

Badger, Krys, Moodie, Zoia, JHEP 11 (2023) 041. Fadin, Lee, JHEP 11 (2023) 148

What is it still to be done?

IMPRESSIVE PROGRESS TOWARDS MU-E SCATTERING AT N3LO

Three-loop amplitude $\gamma^* \rightarrow e^+e^-$

MF, Lange, Schönwald, Steinhauser, Phys.Rev.Lett. 128 (2022), Phys.Rev.D 106 (2023), Phys.Rev.D 107 (2023)

What is it still to be done? What can be done?

Two-loop amplitude $\gamma^* \rightarrow e^+ e^- \gamma$

Badger, Krys, Moodie, Zoia, JHEP 11 (2023) 041. Fadin, Lee, JHEP 11 (2023) 148

MU-E SCATTERING: WHATS NEXT?

NNLO and N3LO amplitudes

n_f contributions at N3LO

- > n_f corrections to $\gamma^* \to e^+ e^- \gamma$ with $m_e \neq 0$
 - dispersive or hypershperical method
- \blacktriangleright *n_f* corrections to VVV with unequal masses

OUTLOOK

Numerical evaluation of master integrals Improvements for generation of IBP system and solutions

Disclaimer: I will present some interesting recent developments. Personal selection based on my experience and tests that I've done

SCATTERING AMPLITUDES AND FEYNMAN INTEGRALS

RATIONAL FUNCTIONS

Integration-by-part relations
 Analytic or numerical methods

FEYNMAN INTEGRALS

Complicated loop integrations
 Polylogarithms and Elliptic functions
 Analytic/numerical method

Integral family
$$I(a_1, a_2, a_3) = \int d^d k \frac{1}{[k^2]^{a_1} [(k+q_1) - m^2]^{a_2} [(k+q_2) - m^2]^{a_3}}$$

with
$$s = (q_1 - q_2)^2$$

Integration-by-part reduction

$$I(2,1,1) = \frac{(d-2)(4dm^2 + ds - 20m^2 - 4s)}{2(d-6)(d-5)m^4s^2}$$

Differential Equations

Kotikov, Phys. Lett. B 254 (1991) 158; Gehrmann, Remiddi, Nucl. Phys. B 580 (2000) 485

$$\frac{d}{ds}I(0,1,1) = \frac{d}{ds} \int d^d k \frac{1}{k^2 [(k+q_1-q_2)^2 - m^2]}$$
$$= \frac{I(-1,2,1)}{s-4} - \frac{I(0,1,1)}{s-4} + \frac{2I(0,1,1)}{(s-4)s} - \frac{2I(0,2,0)}{(s-4)s}$$
$$\underset{IBP}{IBP} \frac{(d-2)}{s(4m^2-s)}I(0,0,1) + \frac{(-4dm^2+ds+12m^2-4s)}{2s(s-4m^2)}I(0,1,1)$$

Differential Equations

Kotikov, Phys. Lett. B 254 (1991) 158; Gehrmann, Remiddi, Nucl. Phys. B 580 (2000) 485

$$\frac{d}{ds} \begin{pmatrix} I(0,0,1) \\ I(0,1,1) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \frac{d-2}{s(4m^2-s)} & \frac{-4dm^2+ds+12m^2-4s}{2s(s-4m^2)} \end{pmatrix} \begin{pmatrix} I(0,0,1) \\ I(0,1,1) \end{pmatrix}$$

Boundary conditions

$I(0,0,1)|_{s=0} = (m^2)^{1-\epsilon} \Gamma(\epsilon - 1)$ $I(0,1,1)|_{s=0} = \dots$

M. Fael | MUonE@MITP 2024 | June 4th 2024

Analytic solution

- Solve in terms of known constants/functions
- Function properties well understood
- Known analytic structures and series expansions
- ► Fast and generic numerical evaluation tools

Numerical solution

- Oriented to phenomenological studies
- Applicable to larger class of problems
- ► Finite numerical accuracy

TWO LOOP CORRECTIONS TO $\gamma^* \to e^+ e^- \gamma^* \to e^+ e^- \gamma$

Badger, Krys, Moodie, Zoia JHEP 11 (2023) 041. Fadin, Lee, JHEP 11 (2023) 148

$$p_{e}^{2} = p_{\bar{e}}^{2} = 0$$

$$p_{\gamma}^{2} = 0$$

$$p_{\gamma^{\star}}^{2} = s_{4}$$

$$s_{12} = (p_{e} + p_{\bar{e}})^{2}, \quad s_{23} = (p_{\bar{e}} + p_{\gamma})^{2}$$

 $2_{\bar{\ell}}$

(b) $\mathcal{A}_{1,1}^{(1)\mu}$

Canonical differential equations

Henn, Phys.Rev.Lett. 110 (2013) 251601

Previous calculations

Gehrmann, Remiddi, NPB 601 (2001) 248; Gehrmann, Remiddi, NPB 601 (2001) 287; Gehrman Jakubcik, Mella, Syrrakos, Tancredi, JHEP 04 (2023) 016

Express all MIs in terms of a set of algebraically independent special functions $\{F_i^{(w)}(s)\}$

$$MI^{(2)}(\vec{s}) = \sum_{i} \alpha_{i} F_{i}^{(2)}(\vec{s}) + \sum_{i \le j} \beta_{ij} F_{i}^{(1)}(\vec{s}) F_{j}^{(1)}(\vec{s}) + \gamma \zeta_{2}$$

Multiple Polylogarithms $G(a_1, ..., a_n; 1)$

STANDARD AMPLITUDE WORKFLOW

$$A^{(2)}(\{p\}, \epsilon) = \sum_{i} \text{Feynman diagram}_{i} \bullet A^{(2)}(\{p\}, \epsilon) = \sum_{i} c_{i}(\{p\}, \epsilon) \text{ I}_{i}(\{p\}, \epsilon) \bullet A^{(2)}(\{p\}, \epsilon) = \sum_{i} c_{i}(\{p\}, \epsilon) \text{ II}_{i}(\{p\}, \epsilon) \bullet A^{(2)}(\{p\}, \epsilon) = \sum_{i} d_{i}(\{p\}, \epsilon) \text{ MI}_{i}(\{p\}, \epsilon) \bullet A^{(2)}(\{p\}, \epsilon) = \sum_{i} \sum_{k=-4}^{0} e^{k} r_{ki}(\{p\}) \text{ F}_{i}(\{p\}) \bullet B^{i}(\{p\}) \bullet B^{i}$$

slide by S. Zoia @ Moriond QCD 2024

Large intermediate expressions which eventually simplify!

er integrals"

al functions, e.g.

), $G(a_1, ...; x)$...

Perform all operations modulus a large prime *P*

NUMERICAL SAMPLING

Sample $\{p\}, \epsilon$

 $r_{ki}(\{p\}) \mod P$

Reconstruction of analytic from numerical samples

Analytic solution

- Solve in terms of known constants/functions
- Function properties well understood
- Known analytic structures and series expansions
- ► Fast and generic numerical evaluation tools

Numerical solution

- Oriented to phenomenological studies
- Applicable to larger class of problems
- ► Finite numerical accuracy

SOLVING DIFFERENTIAL EQUATIONS NUMERICALLY

M. Fael | MUonE@MITP 2024 | June 4th 2024

Armadillo, Bonciani, Devoto, Rana, Vicini, Comput.Phys.Commun. 282 (2023) 108545

Compare order by order in x_0 and ϵ

$$\sum_{m} \sum_{n=1}^{\infty} nc_{a,mn} \epsilon^m (x - x_0)^{n-1} = \sum_{m=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{$$

 $\partial I_{a}/\partial x$

- Linear system of equations for the expansion coefficients $c_{k,mn}$
- Solve the liner system in term of a minimal set of coefficients
- The minimal set of undetermined coefficients are fixed from boundary conditions

$\sum M_{ab}(x,\epsilon) \sum c_{b,mn} \epsilon^m (x-x_0)^n$ h m n=0

 I_h

- Proceeds with a new expansion around
- Match new expansion to the previous one (with finite accuracy)
- ► Iterate until all range of is covered

M. Fael | MUonE@MITP 2024 | June 4th 2024

- Proceeds with a new expansion around
- Match new expansion to the previous one (with finite accuracy)
- Iterate until all range of is covered

Power-log expansion around singular points (thresholds)

MANY VARIATIONS

- \succ The solution is not in close form
- Solution with arbitrary number of digits
- Multivariate case can be approached by considering one variable at a time
- Final amplitude can be parametrised via grids

Several approaches DESS

Lee, Smirnov, Smirnov, JHEP 03 (2018) 008

DiffExp

Hidding, Comput.Phys.Commun. 269 (2021) 108125

► SeaSide

Armadillo, Bonciani, Devoto, Rana, Vicini, Comput. Phys. Commun. 282 (2023) 108545

► AMFlow

Xiao Liu, Yan-Qing Ma, Comput.Phys.Commun. 283 (2023) 108565

Expand and match

MF, Lange, Schönwald, Steinhauser JHEP 09 (2021) 152

Heavy quark form factors at $O(\alpha_s^3)$

00000 000000000 MF, Lange, Schönwald, Steinhauser Phys.Rev.Lett. 128 (2022) 17; Phys.Rev.D 106 (2022) 3, 034029; Phys.Rev.D 107 (2023), 094017

AUXILIARY MASS METHOD

Xiao Liu, Yan-Qing Ma, Comput.Phys.Commun. 283 (2023) 108565

 $I(\vec{n})$ $D_{N}^{n_{N}}$ i=1 $= \lim_{\eta \to i0^{-}} I_{aux}(\vec{n},\eta)$

Integrals with auxiliary mass parameter η

$$I_{\text{aux}}(\vec{n},\eta) = \int \prod_{i=1}^{L} d^{D} \ell_{i} \frac{1}{(D_{1} - D_{1})} d^{$$

Fix all external kinematics to numerical values

s = 2, t = 1/10, m = 1, etc

$-\eta)^{n_1}\dots(D_K-\eta)^{n_K}\dots D_N^{n_N}$

Method of regions

$$\frac{1}{(\ell+p)^2 - m^2 - \eta} = \frac{1}{\ell^2 - \eta} \sum_{i} \left(-\frac{2p \cdot \ell + p^2 - m^2}{\ell^2 - \eta} \right)^2$$

Differential equations

$$\frac{\partial I_{\text{aux}}(\eta)}{\partial \eta} = A(\eta)I_{\text{aux}}(\eta)$$

Boundary conditions at $\eta = i\infty$: Equal mass vacuum integrals

Davydychev and Tausk, Nucl, Phys. B, 1993, Broadhurst, Eur. Phys. J. C, 1999, Schroder and Vuorinen, JHEP, 2005, Kniehl, Pikelner and Veretin, JHEP, 2017, Luthe, phdthesis, 2015, Luthe, Maier, Marquard et al, JHEP, 2017

https://gitlab.com/multiloop-pku/amflow

MASSIVE FORM FACTORS

	non singlet	n _h singlet	n _l singlet
diagrams	271	66	66
families	34	17	13
masters	422	316	158

- ► We obtain deep series expansion for the master integrals around singular and regular points in $s = (q_1 + q_2)^2$
- Boundary conditions with a mixture of analytic method and numerical evaluation with AMFlow

	Current	Form factors
vector	$j^{ m v}_{\mu}=\overline{\psi}\gamma_{\mu}\psi$	$\Gamma^{v}_{\mu}(s) = F^{v}_{1}(s)\gamma_{\mu} - rac{i}{2m}F^{v}_{2}(s)\sigma_{\mu u}q^{ u}$
axial-vector	$j^a_\mu = \overline{\psi} \gamma_\mu \gamma_5 \psi$	$\Gamma^{a}_{\mu}(s) = F^{a}_{1}(s)\gamma_{\mu}\gamma_{5} - \frac{1}{2m}F^{a}_{2}(s)\gamma_{5}q_{\mu}$
scalar	$j_{ m s}=m\overline{\psi}\psi$	$\Gamma^{s}(s) = mF^{s}(s)$
pseudo-scalar	$j_{ ho}=im\overline{\psi}\gamma_{5}\psi$	$\Gamma^p(s) = imF^p(s)$

BOUNDARY CONDITIONS

- Analytic boundary conditions can be reconstructed from AMFlow evaluation see e.g. MF, Herren,, hep-ph/2403.03976
- No need to study specific kinematic limit
- Generic analytic solution must be also evaluated with many digits
- > Basis of transcendental constants must be guessed in advance

Suddenly, new applications are enabled...

 $B - \overline{B}$ mixing: Reeck, Shtabovenko, Steinhauser, 2405.14698 [hep-ph]

 $gg \rightarrow HH$: Davies, Schönwald, Steinhauser, Phys.Lett.B 845 (2023) 138146

 $gg \rightarrow H$: Niggetiedt, Usovitsch, JHEP 02 (2024) 087

Drell-Yan: Armadillo et al, 2405.00612 [hep-ph], JHEP 05 (2022) 072

 $\sigma_{\rm tot}(e^+e^- \to q\bar{q})$:

Xiang Chen, Xin Guan, Chuan-Qi He, Xiao Liu, Yan-Qing Ma, Phys.Rev.Lett. 132 (2024) 10, 10

Suddenly, new applications are enabled...

 $B - \overline{B}$ mixing: Reeck, Shtabovenko, Steinhauser, 2405.14698 [hep-ph]

 $gg \rightarrow HH$: Davies, Schönwald, Steinhauser, Phys.Lett.B 845 (2023) 138146

 $gg \rightarrow H$: Niggetiedt, Usovitsch, JHEP 02 (2024) 087

Drell-Yan: Armadillo et al, 2405.00612 [hep-ph], JHEP 05 (2022) 072

 $\sigma_{\rm tot}(e^+e^- \to q\bar{q})$: Xiang Chen, Xin Guan, Chuan-Qi He, Xiao Liu, Yan-Qing Ma, Phys.Rev.Lett. 132 (2024) 10, 10

Can we perform IBP reduction for the amplitude? Can we generate the DEQs?

LINEAR RELATIONS AMONG FEYNMAN INTEGRALS

Integration-by-parts relations

Chetyrkin, Tkachov, Nucl. Phys. B 192 (1981) 159. Tkachov, Phys. Lett. B 100 (1981) 65.

Lorentz-invariance relations

Gehrmann, Remiddi, Nucl. Phys. B580, 485

 $q_i^{\mu}q_j^{\nu} \left(\sum_{i=1}^{E} q_{r[\nu]} \right)$

Symmetries

 $I(\dots, a_m, \dots, a_n, \dots) = I(\dots, a_n, \dots, a_m, \dots)$

$$\left((q_j)_{\mu} \frac{1}{[D_1]^{a_1} \dots [D_N]^{a_N}} \right) = 0$$

$$\frac{\partial}{\partial q_r^{\mu]}}\right) I(a_1, \dots, a_n) = 0$$

LAPORTA ALGORITHM

Laporta, Int. J. Mod. Phys. A 15 (2000) 5087

IBP relation templates

Laporta algorithm

► Insert seeds into IBP relations:

$$a_1 = 1, a_2 = 0, a_3 = -1, \dots$$

 $a_1 = 2, a_2 = 0, a_3 = -1, \dots$ $\rightarrow 0 = c_1 I(1, -1, 0) = c_1 I(2, -1,$

Solve highly redundant and sparse linear system (Gaussian elimination)

$c_1(\{a_f\}, \vec{s}, d)I(a_1, \dots, a_N - 1) + \dots + c_m(\{a_f\}, \vec{s}, d)I(a_1 + 1, \dots, a_N) = 0$

This stage can blow up the memory for complicated problems

$-1,\ldots) + c_2 I(2,0,-1,\ldots) + c_3 I(1,0,-2,\ldots) + \ldots$ $-1,\ldots) + c_2 I(3,0,-1,\ldots) + c_3 I(2,0,-2,\ldots) + \ldots$

Complicated operations over multivariate polynomials

BETTER COMPUTER ALGEBRA SYSTEMS

► Kira, FIRE and Reduze in C++

https://gitlab.com/kira-pyred/kira https://gitlab.com/feynmanintegrals/fire https://reduze.hepforge.org/

► FERMAT has beed standard for

many years

http://home.bway.net/lewis/

https://flintlib.org

https://symbolica.io/

Comparisons with FIRE

Smirnov, Zeng, Comput.Phys.Commun. 302 (2024) 109261

Simplifier	rank-2 time (s)	rank-8 time
FLINT	7.5, 10.8	0.13, 0
Symbolica	6.7, 9.2	0.13, 0
Fermat	7.9, 14.9	0.25, 0

Simplifier	Time (1000s)
FLINT	0.62, 1.01
Symbolica	$1.02, \ 1.66$
Fermat	5.36, 9.23

Simplifier	Time $(1000s)$
FLINT	$0.45, \ 0.97$
Symbolica	$0.45, \ 0.94$
Fermat	$0.82, \ 1.60$

Challenging 5loop families: 12 propagators + 8 numerators

Insane combinatorics when seeding the IBP vectors ► We do not even generate the system with Kira 2.3

MF, Usovitsch, Phys.Rev.D 108 (2023) 11, 11

► N3LO corrections to $\Gamma(b \rightarrow u l \bar{\nu}_l)$

Set $m_q = 0$. Integrals depend only on $\epsilon = (4 - d)/2$

► Integrals up to 5 irreducible scalar products (sum of negative indices)

> - reduce_sectors: reduce: - {topologies: [SLTOP51542], sectors: [4095], r: 12, s: 5}

- Fix sum positive indices r, negative indices s, and dots d I(1,1,1,1,1,1,0,-5) r = 6, s = 5, d = 0
- \succ Example I(1,1,1,1,1,1,0,-5)
 - Top sector b11111100 seed with r = 6, s = 5, d = 0
 - Subsector b11111000 seed with r = 6, s = 5, d = 1

- Subsector b11110000 seed with r = 6, s = 5, d = 2
- High values of s lead to huge combinatorics in lower sectors

▶ ...

- Fix sum positive indices r, negative indices s, and dots d
- \succ Example I(1,1,1,1,1,1,0,-5)
 - Top sector b11111100 seed with r = 6, s = 5, d = 0
 - Subsector b11111000 seed with r = 6, s = 5, d = 1

- Subsector b11110000 seed with r = 6, s = 5, d = 2
- ► High values of *s* lead to huge combinatorics in lower sectors

▶ ...

I(1,1,1,1,1,1,0,-5) r = 6, s = 5, d = 0

Kira developers are improving the seeding strategy ...

- ► Fix sum positive indices r, negative indices s, and dots d
- \succ Example I(1,1,1,1,1,1,0,-5)
 - Top sector b11111100 seed with r = 6, s = 5, d = 0
 - Subsector b11111000 seed with r = 6, s = 5, d = 1

- Subsector b11110000 seed with r = 6, s = 5, d = 2
- High values of *s* lead to huge combinatorics in lower sectors

> ...

I(1,1,1,1,1,1,0,-5) r = 6, s = 5, d = 0For *n* missing propagators ~ reduce total negative indices by n

Kira developers are improving the seeding strategy ...

FIFTH POST-MINKOWSKIAN, FIRST SELF-FORCE ORDER CONTRIBUTIONS TO CONSERVATIVE BLACK HOLE SCATTERING

Driesse, Jakobsen, Mogull, Plefka, Sauer, Usovitsch, 2403.07781 [hep-th]

- ► 4 loop calculation
- ► 13 propagators + nine irreducible scalar propagators
- ► Perform reduction on a 1.5TiB RAM

$\Gamma(b \rightarrow u l \bar{\nu}_l)$: NUMERICAL EVALUATION WITH AMFLOW

- Example: DEQs generation for the auxiliary mass flow for a complicated 5 loop family from the bosonic diagrams:
 - ► 4×10^6 equations $\rightarrow 300\,000$ equations
 - ► FireFly: 500s per probe \rightarrow 16s per probe

FIFTH POST-MINKOWSKIAN, FIRST SELF-FORCE ORDER CONTRIBUTIONS TO CONSERVATIVE BLACK HOLE SCATTERING

Driesse, Jakobsen, Mogull, Plefka, Sauer, Usovitsch, 2403.07781 [hep-th]

- ► 4 loop calculation
- ► 13 propagators + nine irreducible scalar propagators
- ► Perform reduction on a 1.5TiB RAM

$\Gamma(b \rightarrow u l \bar{\nu}_l)$: NUMERICAL EVALUATION WITH AMFLOW

- Example: DEQs generation for the auxiliary mass flow for a complicated 5 loop family from the bosonic diagrams:
 - ► 4×10^6 equations $\rightarrow 300\,000$ equations
 - ► FireFly: 500s per probe \rightarrow 16s per probe

b

Approximate 10^{*L*-1} runtime improvement!

lecced

	Kira 2.3	Kira 2.3, tuned	Kira dev
# of generated equations	304 821 183	198 405 903	3779262
# of selected equations	21 666 745	24 708 949	828010
# of terms	828 060 148	583976288	12 516 161
probe time	2255 s	3726 s	19 s
memory (generator)	194 GiB	129 GiB	3.2 GiB

slide by F. Lange, Loops and Legs 2024

M. Fael | MUonE@MITP 2024 | June 4th 2024

• Heavy-to-light form factors at three loops [Fael, Huber, FL, Müller, Schönwald, Steinhauser SOON]

• Reduce all integrals required for amplitude including gauge dependence

Improvement: $\times 119$ in runtime and $\times 61$ in memory usage

SYZYGY E Gluza, Kajda, Kosower, Phys. Rev. D 83 (2011) 045012

IBP relations without raising operators

- Contract an optimised system
- Solution of syzygy equations simpler

► NeatIBP

Wu, Boehm, Ma, Xu, Zhang, Comput. Phys. Commun. 295 (2024) 108999 https://github.com/yzhphy/NeatIBP

 $-m^{2}$

BLOCK-TRIANGULAR FORM

Xiao Liu and Yan-Qing Ma. Phys.Rev.D 99 (2019) 071501. Xin Guan, Xiao Liu and Yan-Qing Ma, Chin.Phys.C 44 (2020) 9, 093106 Xin Guan, Xiao Liu, Yan-Qing Ma and Wen-Hao Wu. hep-ph/2405.14621 https://gitlab.com/multiloop-pku/blade

- Many equations to solve irrelevant auxiliary integrals.
- Construct (guess) linear relations within much smaller sets

- ► $Q_i(\epsilon, \vec{s})$ numerically computable from IBP system over finite fields.
- ► Find relations to write difficult integrals in terms of simpler ones

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ \vdots \\ I_n \end{pmatrix} = \begin{pmatrix} 0 & X & X & X & \dots & X \\ 0 & 0 & X & X & \dots & X \\ 0 & 0 & 0 & X & \dots & X \\ \vdots & & & \vdots & \\ 0 & 0 & 0 & 0 & \dots & X \end{pmatrix}$$

CONCLUSIONS

- > Ongoing efforts to including dominant N3LO corrections to μ -e scattering.
 - \blacktriangleright VVV: massive form factors at three loops \checkmark
 - > VVR: two-loop amplitude with $m_{\rho} = 0$
- ► Numerical evaluation of master integrals: new approach to higher-order calculations. > New interesting methods to improve/speed up IBP reductions with many variables
- or many loops.
- MUonE has already profited and will profit a lot!

