Simulation of lepton pair production with MESMER

Andrea Gurgone

Based on arXiv:2109.14606 and arXiv:2401.06077

The Evaluation of the Leading Hadronic Contribution to the Muon g-2MITP Topical Workshop – 04 June 2024

Introduction

- Lepton pair production, both in muon-electron (∝ Z) and muon-nucleus (∝ Z²) scattering is the main physical background of MUonE experiment
- There are four possible processes:
 - $\mu^\pm e^- \rightarrow \mu^\pm e^- e^+ e^-$
 - $\mu^\pm e^- \rightarrow \mu^\pm e^- \mu^+ \mu^-$
 - $\mu^{\pm}N \rightarrow \mu^{\pm}N e^+e^-$
 - $\mu^{\pm}N \rightarrow \mu^{\pm}N \,\mu^{+}\mu^{-}$
- They can resemble the elastic signal if ony two tracks are detected
- All processes are implemented in MESMER at tree-level with exact kinematics:
 - E. Budassi et al., NNLO virtual and real leptonic corrections to muon-electron scattering, JHEP 11 (2021) 098, [2109.14606]
 - G. Abbiendi et al., Lepton pair production in muon-nucleus scattering, Phys. Lett. B 854 (2024) 138720, [2401.06077]

Lepton pair production in muon-electron scattering

- Process computed at tree level in the context of NNLO leptonic corrections to muon-electron scattering
- Exact $2 \rightarrow 4$ phase space sampled with a multi-channel importance sampling
- Event selection criteria ($E_{\mu} = 150 \text{ GeV}$):
 - One muon-like track: $heta_{\mu} <$ 4.84 mrad, $E_{\mu} <$ 10.28 GeV
 - One electron-like track: $heta_e < 100$ mrad, $E_e > 1$ GeV
 - Minimum scattering angles: θ_e , $\theta_\mu > 0.2$ mrad
 - Elasticity cut: $\delta = \sqrt{(heta_e heta_e^{el})^2 + (heta_\mu heta_\mu^{el})^2} < 0.2$ mrad
 - Acoplanarity: $\xi = |\pi |\phi_e \phi_\mu|| < 3.5$ mrad

Numerical results for $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}e^{+}e^{-}$ (1)

Numerical results for $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}e^{+}e^{-}$ (2)

$$K_{\rm NNLO} = {\rm d}\sigma(\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}e^{+}e^{-})/{\rm d}\sigma(\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-})$$

Lepton pair production in muon-nucleus scattering

- Lepton pair production in μN scattering is expected to the MUonE dominant background:
 - \hookrightarrow Two-track events are caused by only **one** undetected particle instead of two as in μe scattering
 - $\,\hookrightarrow\,$ The cross section is $\propto {\pmb Z}^2$ instead of $\propto {\pmb Z}$
- In GEANT4 the muon deflection is neglected (θ_μ = 0)
 → But for MUonE we expect O(m_μ/E_μ) ~ 0.66 mrad
- The process μ[±]N → μ[±]N ℓ⁺ℓ⁻ with ℓ = {e, μ} is now implemented in MESMER for N = {Be, C, Fe} without any approximation on the angular variables
- The agreement between MESMER and GEANT4 is about 1-5% for the inclusive cross section

[From Giovanni Abbiendi]

6/14

The calculation in a nutshell

- The process is described as a scattering of a muon in an **external Coulomb field**, generated by a nucleus at rest
- Nuclear recoil is neglected and therefore only the energy is conserved
- The cross section is highly enhanced for θ_μ → 0 since dσ/dθ_μ ~ 1/|Q|⁴
 → Phase-space sampling based on a multi-channel importance sampling
- The finite size of the nucleus is accounted by using the e.m. form factor

$$F(Q) = \frac{4\pi}{Ze} \int_0^\infty \mathrm{d}r \, r^2 \rho(r) \frac{\sin(Qr)}{Qr}$$

Q: momentum transferred to the nucleus, ρ : nuclear charge density

- Good approximation for small angles: $heta_\mu <$ 4.84 mrad $\longrightarrow Q^2 <$ 0.6 GeV 2
- Different models for ρ are used to evaluate the theoretical uncertainty on the model

Form factor models

• One parameter Fermi model (1pF):

• Modified harmonic oscillator model (MHO):

$$ho(r) =
ho_0'\left(1 + \omega rac{r^2}{a^2}
ight) \exp\left(-rac{r^2}{a^2}
ight) \qquad \longleftarrow \quad {
m Alternative model for Be}$$

• Fourier-Bessel expansion (FB):

with $j_0(x) = sin(x)/x$

J. Heeck, R. Szafron, Y. Uesaka, Isotope dependence of muon decay in orbit, Phys. Rev. D 105 (5) (2022) 053006

Background-to-signal ratio for $\mu^+ C \rightarrow \mu^+ C e^+ e^-$

- The background/signal ratio R_{bs} is $\sim 10^{-3}$ with only acceptance cuts and $\sim 7 \cdot 10^{-5}$ with both acoplanarity and elasticity cuts
- Even a conservative uncertainty of $\sim 10\%$ on the model should allow a background subtraction with an accuracy below the target precision of 10^{-5}
- QED corrections can be enhanced up to $\sim 10\%$
- Uncertainty on background simulation can be taken under control thanks to data:
 - 1. Measure 3-tracks events that can be unambiguously identified as pair events
 - 2. Obtain the **ratio** between 2-track and 3-track from MC simulation
 - 3. Extract the expected 2-track events

Numerical results for $\mu^+ C \rightarrow \mu^+ C e^+ e^-$ (1)

• Cuts: $E_e > 0.2 \text{ GeV}$, $E_\mu > 10.2 \text{ GeV}$, $\theta_e < 32 \text{ mrad}$, $\theta_\mu < 4.8 \text{ mrad}$, $\theta_\mu > 0.2 \text{ mrad}$, $|Q|^2 < 0.6 \text{ GeV}^2$

• Only the events with one muon track and one electron track in the acceptance region are selected \hookrightarrow Only one e^{\pm} is accepted, or both e^{\pm} are accepted but their tracks overlap, i.e. $\theta_{ee} < 20 \ \mu$ rad

Numerical results for $\mu^+ C \rightarrow \mu^+ \overline{C \ e^+ e^-}$ (2)

Andrea Gurgone

11/14

Numerical results for $\mu^+ C \rightarrow \mu^+ C e^+ e^-$ (3)

Two additional cuts to reject the background (only for two-track events):

• Acoplanarity: $|\pi - |\phi_e - \phi_\mu|| < 400 \text{ mrad}$ • Elasticity: $\delta_{elastic}(\theta_e, \theta_\mu) < 0.2 \text{ mrad}$

Background-to-signal ratio for $\mu^+ C \rightarrow \mu^+ C e^+ e^-$

- The background/signal ratio R_{bs} is $\sim 10^{-3}$ with only acceptance cuts and $\sim 7 \cdot 10^{-5}$ with both acoplanarity and elasticity cuts
- Even a conservative uncertainty of $\sim 10\%$ on the model should allow a background subtraction with an accuracy below the target precision of 10^{-5}
- QED corrections can be enhanced up to $\sim 10\%$
- Uncertainty on background simulation can be taken under control thanks to data:
 - 1. Measure 3-tracks events that can be unambiguously identified as pair events
 - 2. Obtain the **ratio** between 2-track and 3-track from MC simulation
 - 3. Extract the expected 2-track events

- The processes $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}\ell^{+}\ell^{-}$ and $\mu^{\pm}N \rightarrow \mu^{\pm}N\ell^{+}\ell^{-}$ with $\ell = \{e, \mu\}$ are implemented in MESMER
- The computation of $\mu^{\pm}N \rightarrow \mu^{\pm}N \ell^{+}\ell^{-}$ can be improved by going beyond the external field approximation and by including the dominant QED corrections
- GEANT4 collaboration is working to implement $\mu^{\pm}N \rightarrow \mu^{\pm}N \,\ell^+\ell^-$ with $\theta_{\mu} \neq 0$ starting from MESMER
- Strategies for background subtraction are under studies by experimental colleagues
- Bremsstrahlung $\mu^{\pm} N \rightarrow \mu^{\pm} N \gamma$ can trigger non-prompt pair production $\gamma N' \rightarrow N' \ell^+ \ell^-$
 - $\,\hookrightarrow\,$ Work in progress to include it in MESMER

Numerical results for $\mu^{\pm}e^{-} \rightarrow \mu^{\pm}e^{-}e^{+}e^{-}$ (3)

$$\mathcal{K}_{\mathrm{NNLO}} = \mathrm{d}\sigma(\mu^{\pm}e^{-}
ightarrow \mu^{\pm}e^{-}e^{+}e^{-})/\mathrm{d}\sigma(\mu^{\pm}e^{-}
ightarrow \mu^{\pm}e^{-})$$

14/14

- The calculation has been included in MESMER in two separate channels:
 - \hookrightarrow "nphot 1020" generates $\mu^\pm N o \mu^\pm N \, e^+ e^-$ with N= Be, C, Fe
 - \hookrightarrow "nphot 1021" generates $\mu^\pm N o \mu^\pm N \, \mu^+ \mu^-$ with N= Be, C, Fe
- It works both in standalone and embedded mode
- The code requires a **cut on the minimum** θ_{μ} to obtain a numerical convergence \hookrightarrow We suggest $\theta_{\mu} > 0.1$ mrad to avoid any instability
- The code is available on the muesli gitlab repository:
 - \hookrightarrow https://gitlab.cern.ch/muesli/nlo-mc/mesmer-dev
- Don't hesitate to contact the Pavia group for any clarification or suggestion!

To run the program in standalone mode:

- Download the latest MESMER distribution from the Muesli gitlab repository
- Compile the code with the usual make command to get the mesmer executable
- Run the executable with the new input card using the command ./mesmer < input_nuclear
- The output (distributions, events, cross sections) is saved in the chosen path

It is also possible to run the code in embedded mode

Example of input data card

Ebeam 160.	
nphot 1020	
nev 1e4	
wnorm 1.	
path test-run	
store yes no	
run	
10.23d0 !	Muon min energy in LAB [GeV]
0.2d-3 !	Muon min angle in LAB [rad]
4.84d-3 !	Muon max angle in LAB [rad]
0.2d0 !	Electron min energy in LAB [GeV]
0.d0 !	Electron min angle in LAB [rad]
0.032d0 !	Electron max angle in LAB [rad]
2 !	Min number of electrons passing the cuts (1 or 2)
0.774d0 !	Q max transferred to the nucleus [GeV]
1 !	Muon charge (1 or -1)
6 !	Atomic number (Z=4 for Be, Z=6 for C, Z=26 for Fe)
1 !	Form factor? (1: yes, 0: no, -1: alt)