Atomic Binding Corrections For Fixed Target $\mu e \rightarrow \mu e$ Scattering

Caltech

Neutrino Theory Network

Theory for muon-electron scattering @ 10 ppm

A report of the MUonE theory initiative
factories [80]. Finally, one should not forget that electrons are bound inside the target and the impact of bound-state effects should be evaluated. This will require considering the possibility of scattering of the incident muons off core valence electrons, for which off-shell effects due to the finite binding energy and momentum distribution must be considered.

PART 1

HYDROGEN

PART 2

HELIUM++

- Setup of problem on hydrogen.
- Kinematics and expansion of amplitude.
- Summing over final states.
- The virial theorem and sum rules.

PART 3

PHENO.

- Implications for MuonE.
- Ongoing work on additional radiative corrections.

High Energy Fixed Target Scattering

$$
E_{\mu} \sim E_{e} \sim 100 \mathrm{GeV} \quad s \sim 2 m_{e} E_{\mu}+m_{\mu}^{2} \sim(0.3 \mathrm{GeV})^{2}
$$

Idealized Limit: Electron At Rest

$$
\mu^{ \pm}(\mathbf{k})+e^{-}(\mathbf{0}) \rightarrow \mu^{ \pm}\left(\mathbf{k}^{\prime}\right)+e^{-}\left(\mathbf{p}^{\prime}\right)
$$

- Electron is approximately "at rest" inside of atom.
- Can imagine fixed target as N_{e} electrons at rest.
- Compute radiative corrections to high order to predict $\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}$

Reality: Electron's In Atoms

$$
\mu^{ \pm}(\mathbf{k})+A(\mathbf{0}) \rightarrow \mu^{ \pm}\left(\mathbf{k}^{\prime}\right)+e^{-}\left(\mathbf{p}^{\prime}\right)+B^{+}(\mathbf{p})
$$

- How are these pictures related?
- What controls atomic binding effects?
- Is this relevant for MuonE?

Motivation: Kinematics

$$
s_{0}=2 m_{e} E_{\mu}+m_{e}^{2}+m_{\mu}^{2}
$$

$$
\begin{gathered}
s=\underbrace{2\left(E_{e} E_{\mu}-\mathbf{p}_{e} \cdot \mathbf{p}_{\mu}\right)}+m_{e}^{2}+m_{\mu}^{2} \\
\quad 2 m_{e} E_{\mu}\left(1-\frac{p_{e}}{m_{e}} \cos \theta\right) \\
\quad \text { CORRECTIONS OF } \\
\text { ORDER } p_{e} / m_{e} \sim \alpha!
\end{gathered}
$$

Start With Hydrogen

$$
\begin{aligned}
T & ={ }_{\text {out }}\left\langle e^{\prime} \mu^{\prime} p^{\prime} \mid \mu \mathrm{H}\right\rangle_{\text {in }} \\
|\mathrm{H}\rangle & =\int[\mathrm{d} p] \psi(\mathbf{p})\left|e^{-}(\mathbf{p})\right\rangle\left|p^{+}(-\mathbf{p})\right\rangle+\ldots
\end{aligned}
$$

- Valence electron and proton with wavefunction.
- Can now compute matrix elements

Tree-Level With Bound State

$$
T \simeq\left\langle e^{\prime} p^{\prime}\right| J^{\nu}|\mathrm{H}\rangle D_{\mu \nu}\left(k-k^{\prime}\right) \bar{u}\left(k^{\prime}\right) \gamma^{\mu} u(k)
$$

SINGLE PHOTON EXCHANGE

$\left\langle e^{\prime} p^{\prime}\right| J^{\nu}|\mathrm{H}\rangle \simeq \int[\mathrm{d} p] \psi(\mathbf{p})\left\langle e^{\prime} p^{\prime}\right| \bar{\psi}_{e} \gamma^{\nu} \psi_{e}|e p\rangle$

Strategy For Approximations

- Relate momentum and binding energy via virial theorem.
- Ignore all terms that are suppressed by large kinematic energies, i.e. $\epsilon_{H} / E_{\mu} \sim 10 \mathrm{eV} / 100 \mathrm{GeV} \sim 10^{-10}$.
- Systematically track terms suppressed by electron mass, p_{e}^{2} / m_{e}^{2} or ϵ_{H} / m_{e}.
- Taylor expand amplitude and fold against wave function.

Kinematics

MOMENTUM COMES FROM FINAL STATE

$$
\begin{aligned}
\mathbf{k}_{\mu} & =\mathbf{p}_{e}^{\prime}+\mathbf{k}_{\mu}^{\prime}+\mathbf{P}_{B} \\
\mathbf{k}_{\mu} & -\mathbf{P}_{B}=\mathbf{p}_{e}^{\prime}+\mathbf{k}_{\mu}^{\prime} \leftrightarrow \mathbf{k}_{\mu}+\mathbf{p}_{e}=\mathbf{p}_{e}^{\prime}+\mathbf{k}_{\mu}^{\prime} \\
|\mathrm{H}\rangle & =\int[\mathrm{d} p] \psi(\mathbf{p})\left|e^{-}(\mathbf{p})\right\rangle\left|p^{+}(-\mathbf{p})\right\rangle+\ldots
\end{aligned}
$$

Kinematics

BINDING ENERGY CHANGES ENERGY CONSERVATION

$$
\omega_{\mu}+m_{e}-\epsilon_{H}=\omega_{\mu}^{\prime}+E_{e}^{\prime} \text { ELECTRON IN HYDROGEN }
$$

IN MOMENTUM SPACE
$\omega_{\mu}+E_{e}+\langle V\rangle=\omega_{\mu}^{\prime}+E_{e}^{\prime} \quad\langle V\rangle=-\epsilon_{H}-T_{e}$

- Six (rather than three) mandelstam variables.

Modified Four-Momentum Relations

$$
\begin{aligned}
& \left(p^{\prime} \cdot k\right)=p \cdot k^{\prime}+\langle V\rangle\left(k^{\prime}-p\right)_{0}-\frac{1}{2}\langle V\rangle^{2} \\
& \left(p^{\prime} \cdot k^{\prime}\right)=p \cdot k+\langle V\rangle(p+k)_{0}+\frac{1}{2}\langle V\rangle^{2} \\
& \left(k \cdot k^{\prime}\right)=p \cdot p^{\prime}+m_{\mu}^{2}+\langle V\rangle\left(p^{\prime}-p\right)_{0}-\frac{1}{2}\langle V\rangle^{2}
\end{aligned}
$$

Modified Four-Momentum Relations

$$
\begin{aligned}
& \left(p^{\prime} \cdot k\right) \simeq p \cdot k^{\prime}+\langle V\rangle \omega_{\mu}^{\prime} \\
& \left(p^{\prime} \cdot k^{\prime}\right) \simeq p \cdot k+\langle V\rangle \omega_{\mu} \\
& \left(k \cdot k^{\prime}\right) \simeq p \cdot p^{\prime}+m_{\mu}^{2}+\langle V\rangle E_{e}^{\prime}
\end{aligned}
$$

- Convenient to work in terms of invariants with manifest scaling.
- Trading Lorentz invariants introduces binding energy.

MANIFESTLY
$O\left(m_{e} \omega_{\mu}\right)$

Expand The Matrix Element

$$
\mathrm{M}=\mathscr{M}_{\mathrm{free}}(e \mu \rightarrow e \mu)
$$

$$
\sum_{\text {spins }}|\mathrm{M}|^{2} \simeq 32 e^{4} \frac{\left(k \cdot p^{\prime}\right)\left(k^{\prime} \cdot p\right)+(k \cdot p)\left(k^{\prime} \cdot p^{\prime}\right)-m_{\mu}^{2}\left(p \cdot p^{\prime}\right)}{\left[\left(k-k^{\prime}\right)^{2}\right]^{2}}
$$

- Write in terms of $(k \cdot p),\left(p^{\prime} \cdot p\right),\left(k^{\prime} \cdot p\right)$.
- Expand in p_{e} and $\langle V\rangle$.

PART 1

HYDROGEN

PART 2

HELIUM++

- Setup of problem on hydrogen.
- Kinematics and expansion of amplitude.
- Summing over final states.
- The virial theorem and sum rules.

PART 3

PHENO.

- Implications for MuonE.
- Ongoing work on additional radiative corrections.

Reality: Carbon Is Not Hydrogen

$$
\sum_{B}\left(\mu^{ \pm}(\mathbf{k})+A(\mathbf{0}) \rightarrow \mu^{ \pm}\left(\mathbf{k}^{\prime}\right)+e^{-}\left(\mathbf{p}^{\prime}\right)+B^{+}(\mathbf{p})\right.
$$

- Considering helium and beyond.
- Final state is no longer a proton.
- Need to account for all final states.
- Complicated atomic wave function.

Energy Conservation

BINDING ENERGY CHANGES ENERGY CONSERVATION

$$
\begin{gathered}
\omega_{\mu}+m_{e}-\epsilon_{A}=\omega_{\mu}^{\prime}+E_{e}^{\prime}-\epsilon_{B} \\
\epsilon_{H} \rightarrow \epsilon_{A}-\epsilon_{B}
\end{gathered}
$$

Summing Over Final States

$$
\begin{aligned}
\sigma=\int \mathrm{d} \epsilon & \int \frac{1}{2 \omega} \int \frac{\mathrm{~d} \Pi_{e}}{2 \omega^{\prime}}(2 \pi) \delta(\mathcal{E}-\epsilon) \\
& \sum_{B} \int{\mathrm{~d} \Pi_{B}}^{\int} \frac{\mathrm{d}^{3} q}{(2 \pi)^{3} \sqrt{2 E_{q}}} \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3} \sqrt{2 E_{p}}} \delta\left(\epsilon_{A}-\epsilon_{B}-\epsilon\right)\langle A| \hat{a}_{\mathbf{q}}^{\dagger}\left|B^{+}\right\rangle\left\langle B^{+}\right| \hat{a}_{\mathbf{p}}|A\rangle \frac{1}{2} \sum_{\text {spins }}\left|\mathrm{M}\left(\mathbf{p}, \mathbf{k}, \mathbf{p}^{\prime}, \mathbf{k}^{\prime}\right)\right|^{2}
\end{aligned}
$$

Spectral Function

$$
S_{A}(\epsilon, \mathbf{p})=\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}}\langle A| \hat{a}_{\mathbf{p}}^{\dagger} \delta\left(\epsilon_{A}-\hat{H}-\epsilon\right) \hat{a}_{\mathbf{q}}|A\rangle
$$

Sum Rules

$$
\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \int \mathrm{~d} \epsilon(-\epsilon)
$$

Sum Rules

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \int \mathrm{~d} \epsilon\left(\epsilon_{B}-\epsilon_{A}\right) \\
& \sum_{B}\langle A| \hat{a}_{p}^{\dagger}|B\rangle\langle B| \delta\left(\epsilon-\epsilon_{A}+\hat{H}\right) a_{p}|A\rangle
\end{aligned}
$$

Sum Rules

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \int \mathrm{~d} \epsilon \\
& \quad \sum_{B}\langle A| \hat{a}_{p}^{\dagger}|B\rangle\langle B| \delta\left(\epsilon-\epsilon_{A}+\hat{H}\right)\left[\hat{H}, a_{p}\right]|A\rangle
\end{aligned}
$$

Sum Rules

$$
\hat{H}=\hat{T}+\hat{V}_{1}+\hat{V}_{2}
$$

$$
\int \mathrm{d} \epsilon \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}} \frac{\mathbf{p}^{2}}{2 m_{e}} S_{A}(\epsilon, \mathbf{p})=\langle\hat{T}\rangle_{A}=\epsilon_{A}^{\prime},
$$

$$
\begin{aligned}
\int \mathrm{d} \epsilon \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}}(-\epsilon) S_{A}(\epsilon, \mathbf{p}) & =\langle\hat{T}\rangle_{A}+\left\langle\hat{V}_{1}\right\rangle_{A}+2\left\langle\hat{V}_{2}\right\rangle_{A} \\
& =\left(-3 \epsilon_{A}-\left\langle\hat{V}_{1}\right\rangle_{A}\right) .
\end{aligned}
$$

PART 1

HYDROGEN

PART 2

HELIUM++

- Setup of problem on hydrogen.
- Kinematics and expansion of amplitude.
- Summing over final states.
- The virial theorem and sum rules.

PART 3

PHENO.

- Implications for MuonE.
- Ongoing work on additional radiative corrections.

Shape Only Measurement

- Assuming a shape only measurement relevant quantity is

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}
$$

- Take matrix element and expand like with hydrogen.
- Use sum rules to simplify relevant atomic matrix elements.

Expand The Matrix Element

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} t} \simeq \frac{1}{\sigma^{(0)}} \frac{\mathrm{d} \sigma^{(0)}}{\mathrm{d} t}\left(1-\frac{f(t)}{Z_{A} m_{e}}\left[\frac{11}{3} \epsilon_{A}+\left\langle\hat{V}_{1}\right\rangle_{A}\right]\right)
$$

- Distribution receives corrections.
- Numerical size set by binding energy per electron.

Size Of Effect

- For a carbon target we find that the distortion is $\sim 5 \times 10^{-5}$.
- Inputs are:

1) Measured binding energy.
2) Average of $\left\langle 1 / \hat{r}_{e}\right\rangle$

Open Questions / Ongoing Work

- We have ignored higher order photon exchanges with the proton/ nucleus/atom (both from the muon and the "struck" electron). These are formally of the same order. WDikll Progipss

Open Questions / Ongoing Work

- We have assumed that existing radiative correction calculations (free electron at rest) apply at zeroth order in the binding expansion. ** It would be interesting to see this derived.
- We have ignored higher order photon exchanges with the proton/ nucleus/atom (both from the muon and the "struck" electron). These are formally of the same order. WDIKII PIDIPSS

