

Muon g-2: experimental status

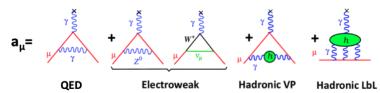
Anna Driutti
University and INFN Pisa
on behalf of the Muon g-2 Collaboration

Introduction: the muon anomaly

• **Muon:** elementary particle with spin-1/2 and magnetic moment proportional to spin through the g-factor:

$$\vec{\mu} = \mathbf{g} \frac{q}{2m_{\mu}} \vec{S}$$

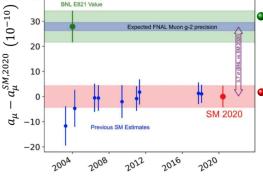
• At first order (Dirac theory for s = 1/2 particles) g = 2but with higher order corrections g > 2:



$$\underbrace{g_{\mu} = 2 \left(1 + a_{\mu} \right)}_{\text{Dirac}} \Rightarrow \underbrace{a_{\mu} = \frac{g - 2}{2}}_{}$$

$$a_{\mu} = \frac{g-2}{2}$$

muon anomaly


-> Theoretically calculated using the Standard Model (SM):

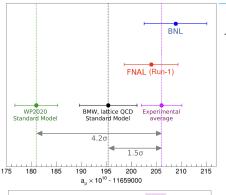
Comparison to measurement allows for a precise test of the SM and to look for new physics

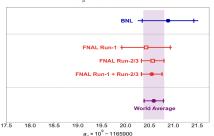
Experimental measurement vs. SM calculation (before 2021)

• Long-standing > 3σ discrepancy

• E821 (BNL) experimental value:

$$a_{\mu}^{E821,BNL} = 116592080(63) \times 10^{-11}$$
(Phys. Rev. D. 73 (2006) 072003)


• SM value re-evaluated in 2020 by Muon g-2 Theory Initiative:


$$a_{\mu}^{SM,2020} = 116591810(43) \times 10^{-11}$$
 [Phys. Rept. **887**, 1 (2020)]

• In the meantime: **FNAL Exp.** was constructed and began collecting data in 2018, continuing operations until 2023 aiming to improve uncertainty with 140 ppb goal

[E821, BNL uncertainty: 540 ppb; SM, 2020 uncertainty: 370 ppb]

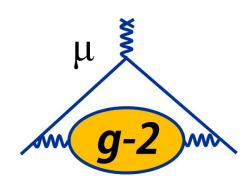
Experimental measurement vs. SM calculation (after 2021)

– <u>In April 2021</u> were published:

the first measurement from FNAL Muon
 g - 2 Exp. Run-1 data that confirmed
 result from BNL:

```
\begin{aligned} \mathbf{a}_{\mu}(\text{FNAL}) &= 116592040(54) \cdot 10^{-11} \text{ (460 ppb)} \\ \mathbf{a}_{\mu}(\text{BNL}) &= 116592089(63) \cdot 10^{-11} \text{ (540 ppb)} \\ \mathbf{a}_{\mu}(\text{Exp}) &= 116592061(41) \cdot 10^{-11} \text{ (350 ppb)} \\ & \text{[Phys. Rev. Lett. 126, no.14, 141801 (2021)]} \end{aligned}
```

- a new theoretical calculation $\mathbf{a}_{\mu}(\mathbf{BMW}, \mathbf{HVP} \mathbf{LO})$ based on Lattice QCD in tension with $\mathbf{a}_{\mu}(\mathbf{WP}, \mathbf{HVP} \mathbf{LO})$ calculation based on e^+e^- data


 [Nature 593 (2021) 51-55]
- In August 2023 was presented:
 - the second measurement from FNAL
 Muon g 2 Exp. Run-2/3 data

```
\mathbf{a}_{\mu} (FNAL) = 116592055(24) · 10<sup>-11</sup> (203 ppb)

[Phys. Rev. Lett. 131, 161802 (2023)]
```

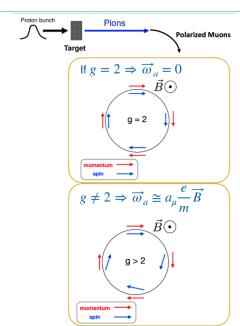
Outline of the talk

- Experimental Technique
- Run-1 measurement
- Run-2/3 measurement
- Experimental world average
- Improvements in Run-4/5/6 measurement

Experimental technique

- Inject polarized muons into a magnetic storage ring
- 2. Muons circulate around the ring at the cyclotron frequency:

$$\vec{\omega}_C = \frac{q}{\gamma m_\mu} \vec{B}$$


3. Muon spin precession frequency (Larmor) is given by:

$$\vec{\omega}_S = \frac{q}{\gamma m_\mu} \vec{B} (1 + \gamma a_\mu)$$

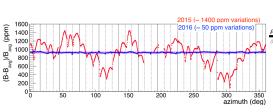
4. Muon anomaly is related to anomalous precession frequency:

$$\vec{\omega}_a \cong \vec{\omega}_S - \vec{\omega}_C \cong a_\mu \frac{q}{m_\mu} \vec{B}$$

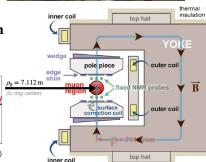
5. Measure *B* and ω_a to extract the anomaly

Production of the muon beam

- Recycler Ring: 8 GeV protons from Booster are divided in 4 bunches
- Target Station: p-bunches are collided with target and π^+ with 3.1 GeV/c (±10%) are collected
- Beam Transport and Delivery Ring: magnetic lenses select μ^+ from $\pi^+ \to \mu^+ \nu_\mu$ then μ^+ are separated from p and π^+ in circular ring
- Muon Campus: polarized μ⁺ are ready to be injected into the storage ring

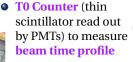


The storage ring journey: from BNL to FNAL in Summer 2013


Storage ring magnet

- Three superconducting coils provide 1.45 T vertical magnetic field
- Vacuum chambers surrounded by a cryosystem and C-shaped yokes to allow the decay positrons to reach the detectors.
- Achieved 50 ppm on field uniformity thanks to low-carbon steel poles, edge shims, steel wedges, surface correction coil

final field ~ 3 times more uniform than at BNL



Injection of the muons into the ring

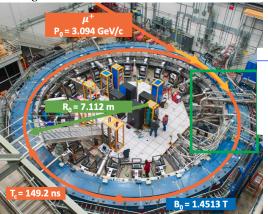
Inflector

Beam enters the ring through a 2.2 m-long 10 cm hole in the iron yoke

IBMS 2

 Inflector magnet provides nearly field free region for muons to enter the storage region

 Inflector Beam Monitoring System (scintillator fiber grids) to measure beam spatial profile

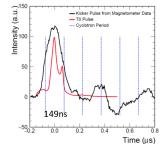

IBMS spatial beam profiles

 $P_0 = 3.094 \text{ GeV/c}$

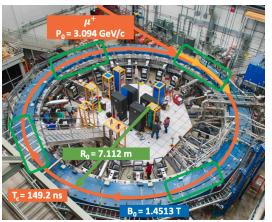
 $B_0 = 1.4513 T$

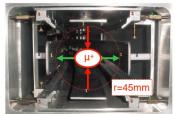
Muon storage

Injected beam is 77 mm off from storage region center



Kicker Magnets


 3 pulsed magnets deflect beam ~10 mrad onto the closed storage orbit in less than 150 ns

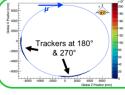


Vertical focusing

Electrostatic Quadrupoles

 4 sets of quads provide vertical beam focusing

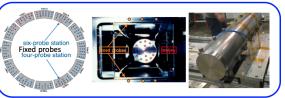
• *E*-field component cancels out (at first order) when muons at *magic momentum*:


$$\vec{\omega}_a \cong -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{2^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

 $\sim 0 \text{ if } \gamma = 29.3 \text{ i.e., } p_{\mu} = 3.094 \text{ GeV/c}$

Detectors and field probes

24 Calos around the ring


- Each made of 6×9 PbF₂ crystals read out by large-area SiPMs
- 1296 channels individually calibrated by 405nm-laser system

2 in-vacuum straw trackers

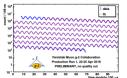
 Each with 8 modules consisting of 128 gas filled straws

2 types of field probes

- 378 fixed NMR probes above and below storage region
 - → measure B-field 24/7
- Trolley with 17-probe NMR
 - → 2D profile of B over the entire azimuth when beam is OFF

Final formula

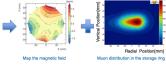
Muon anomaly is determined with:


$$a_{\mu} = \boxed{\frac{\omega_a}{\widetilde{\omega}_p'(T_r)}} \frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

ratio of frequencies (R_{μ}) measured by us

fundamental factors (combined uncertainty 25 ppb):

 ω_a : muon anomalous precession frequency


Extract from decay positron time spectra $N(t) = N_0 e^{-t/\tau_{p}} [1 + Acos(\omega_a t + \phi)]$

 $\mu_P'(T_r)/\mu_e(H)$ from [Metrologia **13**, 179 (1977)] $\mu_e(H)/\mu_e$ from [Rev. Mod. Phys. **88** 035009 (2016)] m_μ/m_e from [2018 CODATA (Web Version 8.1)] $g_e/2$ from [Phys. Rev. Lett. **130**, 071801 (2023), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), and 2023 update]

 $\widetilde{\omega}_p'(T_r)$: magnetic field B in terms of (shielded) proton precession frequency (proton NMR $\hbar\omega_P=2\mu_p B$) and weighted by the muon distribution

(shielded = measured in spherical water sample at $T_r = 34.7$ °C)

Master formula for Muon g-2 analysis

$$R_{\mu} = \left(\underbrace{\frac{f_{clock} \cdot \omega_{a}^{meas} \cdot (1 + C_{e} + C_{p} + C_{ml} + C_{pa} + C_{dd})}{f_{calib} \cdot \omega_{p}'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_{k} + B_{q})} \right)$$

 $\widetilde{\omega}'_{n}(T_{r})$

fclock: blinded clock

: measured precession

frequency

f_{calib}: absolute magnetic field calibration

calibration

 $\omega_p'(x, y, \phi)$: field maps

 $M(x, y, \phi)$: muon beam distribution

Ce: electric field correction

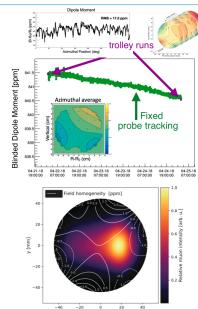
 C_p : pitch correction

 C_{ml} : muon loss correction

 C_{pa} : phase-acceptance correction

 C_{dd} : differential-decay correction

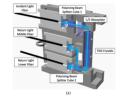
 B_k : transient field from eddy current in kicker


 B_q : transient field from quad vibration

field corrections

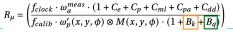
Measuring the magnetic field seen by the muons

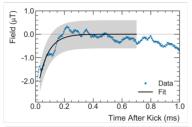
$$R_{\mu} = \left(\frac{f_{clock} \cdot \omega_{a}^{meas} \cdot (1 + C_{e} + C_{p} + C_{ml} + C_{pa} + C_{dd})}{f_{calib} \cdot \omega_{p}'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_{k} + B_{q})} \right)$$

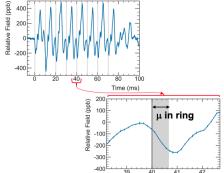

- ω_p' is proportional to the magnetic field and it is mapped every 3 days using 17 NMR probes on a trolley
- During data taking fixed NMR probes located above and below the storage region monitor the field
- Fixed probes to interpolate the field between trolley runs
- Field maps are weighted by beam distribution (extrapolated from the decay e⁺ trajectory measured by the trackers and simulations)

Magnetic field corrections

Kicker transient field


- due to eddy currents produced by kicker pulses
- measured using Faraday magnetometers



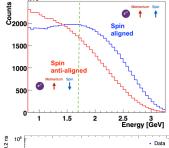

Quads transient field

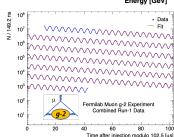
- due to mechanicals vibrations from pulsing the quads
- mapped using special NMR probes

Measuring ω_a

 $R_{\mu} = \left(\frac{f_{clock} \cdot \boxed{\omega_a^{meas}} \cdot (1 + C_e + C_p + C_{ml} + C_{pa} + C_{dd})}{f_{calib} \cdot \omega_p'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_k + B_q)}\right)$

Polarized muon decay:

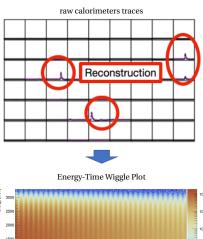

$$\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$$


- High energy e^+ are preferentially emitted in direction of μ^+ spin (parity violation of the weak decay)
- Energy spectrum modulates at the ω_a frequency
- Counting the number of e^+ with $E_{e^+} > E_{\rm threshold}$ as a function of time (wiggle plot) leads to $\underline{\omega}_a$:

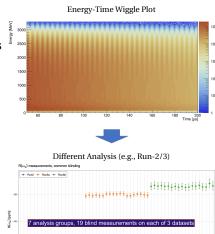
muon lab-frame lifetime

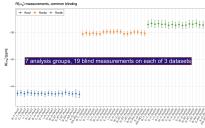
g-2 phase

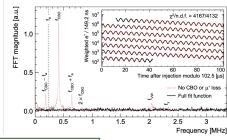
$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \varphi)]$$
normalization g-2 asymmetry



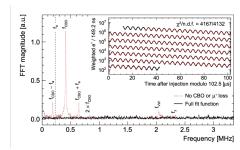
 $E_{e^{\scriptscriptstyle +}}$ and t are measured by the calorimeters with a blinding factor applied to the digitization rate

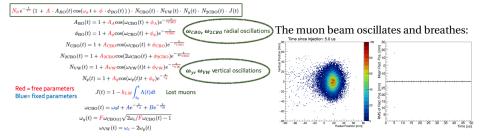

Wiggle plot

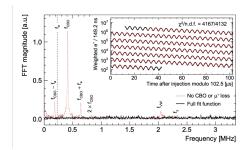

- Calorimeters data is reconstructed into energies and times
 - -> 2 (Run-1) or 3 (Run-2/3) independent reconstruction routines

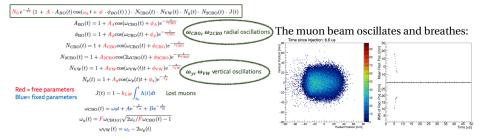

Wiggle plot

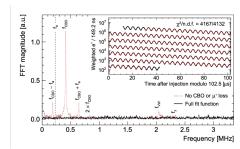
- Calorimeters data is reconstructed into energies and times
 - -> 2 (Run-1) or 3 (Run-2/3) independent reconstruction routines
- Different and software independently blind analysis techniques:
 - Threshold (T) Method
 - only positrons above energy threshold
 - Asymmetry-Weighted (A) Method:
 - positrons divided into energy bins and weighted by g-2 asymmetry
 - Ratio (R) Method
 - muon lifetime exponential decay removed before fitting
 - Ratio Asymmetry-Weighted (RA) Method
 - Integrated Charge (Q) Method:
 - sum of raw calorimeter traces (unique method independent of reconstruction)

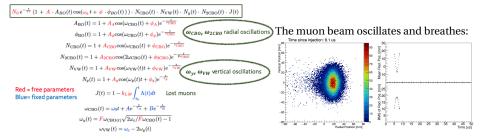


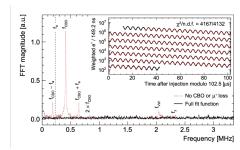

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical)
 22-parameter fit function that includes beam dynamics effects

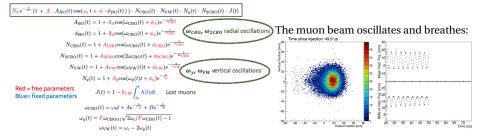

$$\begin{split} N_0 \, e^{-\frac{t}{\tau_T}} \left(1 + A \cdot A_{BO}(t) \cos(\omega_0 \, t + \phi \cdot \phi_{BO}(t) \,) \cdot N_{\rm CBO}(t) \cdot N_{\rm VW}(t) \cdot N_y(t) \cdot N_{2{\rm CBO}}(t) \cdot J(t) \right] \\ A_{\rm BO}(t) &= 1 + A_4 \cos(\omega_{\rm CBO}(t) + \phi_A) e^{-\frac{t}{\tau_{\rm CBO}}} \qquad \omega_{CBO}, \, \omega_{2CBO} \, {\rm radial \, oscillations} \\ \phi_{\rm BO}(t) &= 1 + A_2 \cos(\omega_{\rm CBO}(t) + \phi_{\rm CBO}) e^{-\frac{t}{\tau_{\rm CBO}}} \qquad \omega_{CBO}, \, \omega_{2CBO} \, {\rm radial \, oscillations} \\ N_{\rm CBO}(t) &= 1 + A_{\rm CBO} \cos(\omega_{\rm CBO}(t) + \phi_{\rm CBO}) e^{-\frac{t}{\tau_{\rm CBO}}} \\ N_{\rm VW}(t) &= 1 + A_{\rm VW} \cos(\omega_{\rm VW}(t) t + \phi_{\rm VW}) e^{-\frac{t}{\tau_{\rm VW}}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \qquad \omega_{y,t} \, \omega_{VW} \, {\rm vertical \, oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \, \omega_{VW} \, {\rm oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \, \omega_{VW} \, {\rm oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \, \omega_{VW} \, {\rm oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \, {\rm oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \, {\rm oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \, {\rm oscillations} \\ N_y(t) &= 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \, {\rm oscillations} \\ N_y($$

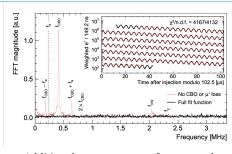

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical)
 22-parameter fit function that includes beam dynamics effects

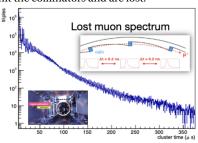



- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical)
 22-parameter fit function that includes beam dynamics effects

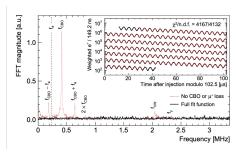



- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical)
 22-parameter fit function that includes beam dynamics effects

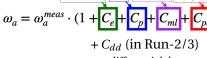

- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical)
 22-parameter fit function that includes beam dynamics effects



- Fit → Residuals → Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical)
 22-parameter fit function that includes beam dynamics effects



Additional term to account for muons that hit the collimators and are lost:


- Fit \rightarrow Residuals \rightarrow Fast Fourier Transform (FFT)
- Analyses of FFT fit residuals shows that simple 5-parameter model is inadequate
- Flat FFT of residuals using a (typical) 22-parameter fit function that includes beam dynamics effects

 $\omega_v(t) = F \omega_{CBO(t)} \sqrt{2\omega_c/F \omega_{CBO}(t) - 1}$ $\omega_{\text{VW}}(t) = \omega_{\text{o}} - 2\omega_{\text{o}}(t)$

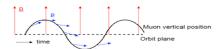
+ beam dynamics corrections:

Electric Field | Pitch | Muon Loss | Acceptance

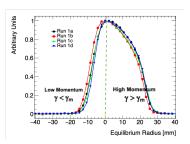
differential decay

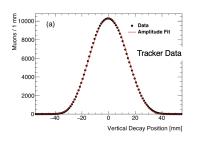
Correction for Effects on Spin Precession

 $R_{\mu} = \left(\frac{f_{clock} \cdot \omega_a^{meas} \cdot (1 + |C_e| + |C_p| + C_{ml} + C_{pa} + C_{dd})}{f_{calib} \cdot \omega_p'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_k + B_q)}\right)$ Non-simplified spin-motion is described by:


$$\vec{\omega}_{a} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} - a_{\mu} \frac{\gamma}{\gamma + 1} \left(\vec{B} \cdot \vec{\beta} \right) \vec{\beta} \right] \begin{bmatrix} \frac{g}{\beta} \times \vec{E} \\ \frac{g}{\beta} = 0 \end{bmatrix}$$

Electric Field

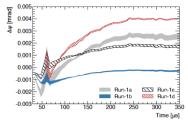

- due to momentum spread around p_{magic}
- measured using momentum distribution provided by the calorimeters in terms of equilibrium radius


Pitch

due to vertical beam oscillation

 measured using the beam vertical amplitude from the trackers, calorimeter data, and simulations

Corrections for Phase-Changing Effects

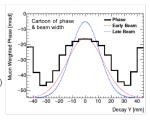

Muon losses

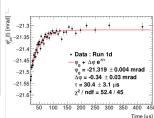
- cause a phase shift because muon-phase and muon loss rate are momentum-dependent
- measured using data-driven technique

Differential Decay

 correction to account for high momentum muons having a longer lifetime

$R_{\mu} = \left(\frac{f_{clock} \cdot \omega_{a}^{meas} \cdot (1 + C_{e} + C_{p} + \boxed{C_{ml}} + \boxed{C_{pa}} + \boxed{C_{dd}}}{f_{calib} \cdot \omega_{p}'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_{k} + B_{q})}\right)$




Phase acceptance

 phase changes due to early to late variations of the beam

$$cos(\omega_a t + \phi(t)) = cos(\omega_a t + \phi_0 + \phi' t + \dots)$$
$$= cos((\omega_a + \phi')t + \phi_0 + \dots)$$

 measured using tracker data and simulations

Simulation Tools

- Beam dynamics from simulations:
 - for beam dynamics corrections
 - to propagate the muon distribution around the ring

Muon

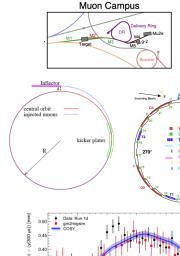
Campus Simulation

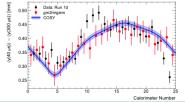
Storage Ring

Simulation

Main simulation tools:

MARS


• G4BEAMLINE


• BMAD

COSY

• GM2RINGSIM

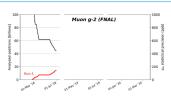
 simulation tools are cross-checked against benchmarks and against each other.

Blinding/Unblinding

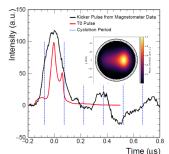
$$R_{\mu} = \frac{\left[f_{clock}\right] \ \omega_{a}^{meas} \cdot (1 + C_{e} + C_{p} + C_{ml} + C_{pa} + C_{dd})}{f_{calib} \cdot \omega_{p}'(x, y, \phi) \otimes M(x, y, \phi) \cdot (1 + B_{k} + B_{q})}$$

Clock frequency (f_{clock}):

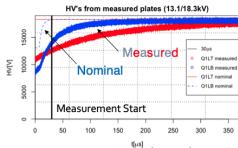
- frequency that our DAQ clock ticks
- **stable** at ppt level
- hardware-blinded to have (40ε) MHz
 - $\rightarrow \varepsilon$ kept **secret** from all collaborators
- revealed only when physics analysis is completed:
 - -> <u>Run-1</u> result unblinded on Feb 25, 2021 during a virtual meeting
 - -> Run-2/3 result unblinded on Jul 24, 2023 during the collaboration meeting



First production run

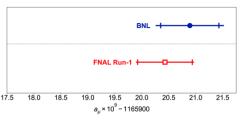

Statistics:

- March 26 July 7 2018 : Run1
- 1.2 × BNL after data quality selection



Main challenges:

- Non-ideal kick
 - → low amplitude and ringing
 - → beam not centered in storage region

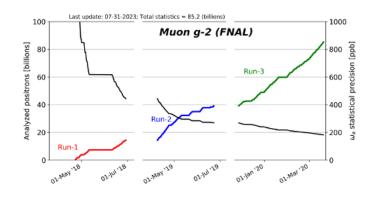


- 2 of 32 HV Quad resistors were damaged
 - \rightarrow slow recovery time, enhanced C_{pa}

• Temperature variations larger than 1°C

Run-1 Result

- Run-1 result uncertainty is statistics dominated
- Major systematic uncertainties: Phase Acceptance and Quad field transients
- Next: reduce as much as possible the experimental uncertainty on g-2!


• First **FNAL** g - 2 result :

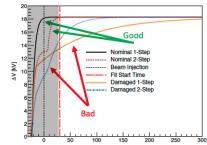
$$a_{\mu} = 116592040(54) \times 10^{-11} \; (462 \; \mathrm{ppb})$$

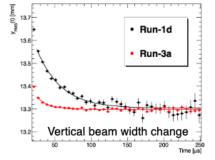
• Good agreement with BNL g - 2

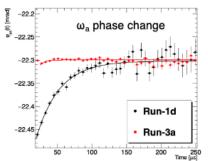
Quantity	Correction Terms	s Uncertainty
	(ppb)) (ppb)
ω_a (statistical)	-	- 434
ω_a (systematic)	-	- 56
C_e	489	53
C_p	180) 13
C_{ml}	-11	l 5
C_{pa}	-158	3 75
$f_{\text{calib}}\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \rangle$	-	- 56
B_k	-27	7 37
B_q	-17	92
$\mu'_{p}(34.7^{\circ})/\mu_{e}$	-	- 10
m_{μ}/m_e	-	- 22
$g_e/2$	-	- 0
Total systematic	-	- 157
Total fundamental factors		- 25
Totals	544	462

Run-2 and Run-3 Statistics Improvement

Statistics:

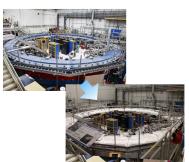

• ~ 4.7 more data in Run-2/3 than Run-1


Dataset	Stat. Unc.
Run-1	434 ppb
Run-2/3	201 ppb
Run-1+Run-2/3	185 ppb


Before Run-2:

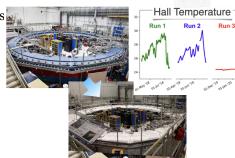
 Replaced bad quads HV resistors Less beam motion and reduced C_{pa}

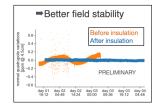
$$C_{pa}$$
: $-158 \pm 75 \text{ ppb} \rightarrow -27 \pm 13 \text{ ppb}$

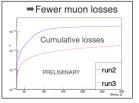


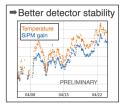
• Before Run-2:

- -> Replaced bad quads HV resistors
- -> Magnet covered with a thermal blanket



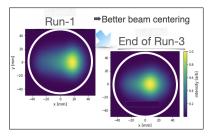

Before Run-2:

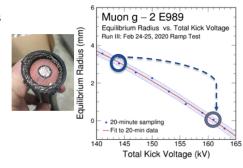

- -> Replaced bad quads HV resistors
- -> Magnet covered with a thermal blanket

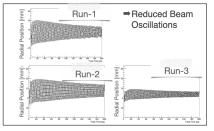

Before Run-3:

 Hall temperature control improved

Before Run-2:

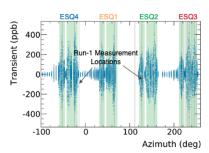

- -> Replaced bad quads HV resistors
- –> Magnet covered with a thermal blanket

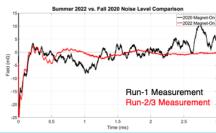

Before Run-3:


 Hall temperature control improved

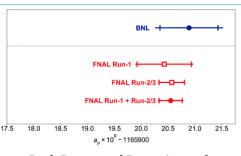
During Run-2 and Run-3:

 Replaced kicker cables ⇒ kickers at HV design value


Run-2 and Run-3 Measurement Improvements


- Improved ω_a analysis technique:
 - added new positron reconstruction algorithms
 - improved pile-up subtraction technique
- Improved **quadrupole field transient** (B_q) uncertainty by measuring all azimuthal locations

$$\delta_{B_q}: 92\,\mathrm{ppb} \to 20\,\mathrm{ppb}$$


 Improved kicker field transient (B_k) uncertainty by performing new measurements and a cross-check with a new magnetometer

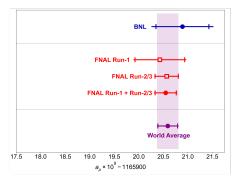
$$\delta_{B_k}: 37 \,\mathrm{ppb} \to 13 \,\mathrm{ppb}$$

Run-2/3 Result

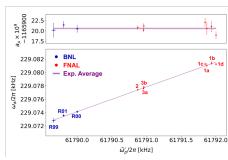
- Both Run-1 and Run-2/3 results uncertainties are statistics dominated
- Run-2/3 systematic uncertainty of 70 ppb is lower than our TDR goal of 100 ppb!
- Run-1+ Run-2/3 combination uncertainty of 203 ppb (assuming systematics 100% correlated)

• **New (2023) FNAL** *g* − 2 result :

$$a_{\mu} = 116592057(25) \times 10^{-11} \; (215 \, \mathrm{ppb})$$

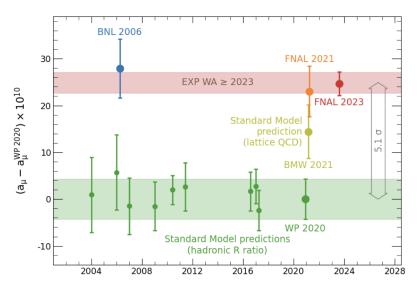

 Good agreement with FNAL Run-1 BNL g - 2

Quantity	Correction	Uncertainty
	[ppb]	[ppb]
ω_a^m (statistical)	_	(201)
ω_a^m (systematic)	_	25
C_e	451	32
C_p C_{pa}	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\text{calib}}\langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46
B_k	-21	13
B_q	-21	20
$\mu'_{p}(34.7^{\circ})/\mu_{e}$	_	11
m_{μ}/m_e	-	22
$g_e/2$	-	0
Total systematic	_	(70)
Total external parameters	-	\simeq
Totals	622	(215)

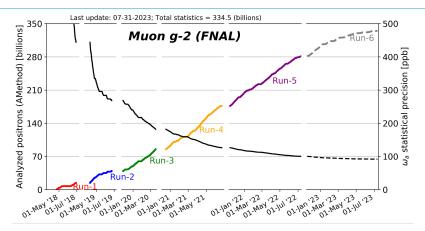

Experimental world average and field dependence

 Combined world average dominated by FNAL value:

$$\mathbf{a}_{\mu}(\mathbf{Exp}) = 116592059(22) \cdot 10^{-11} (190 \,\mathrm{ppb})$$



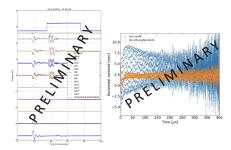
Measurements were taken at different Magnetic Fields:

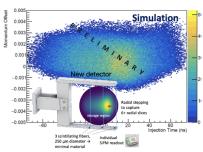

• Also checked a_{μ} against temperature, day/night & others

Experimental measurement vs. SM calculation

How precisely can we predict the muon g-2 in the standard model? see previous talk by Marc Knecht about the SM prediction.

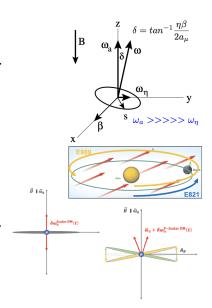
What's next?




- Completed all runs (collected > 21×BNL): there is **more data still to analyze**!
- Not only statistical improvement (see next slide):
 - improved running conditions
 - extensive systematic measurements & Studies
- After beam running ended in July 2023, we focused on magnetic field systematic studies

Run-4 and beyond Improvements

- New Radio Frequency System mounted on quadrupoles which reduces Beam Betatron oscillations (and lost muons)
 - damps beam oscillations in the first 10 μ s
 - tested during Run-4 and in use during Run-5 (and Run-6)
- Improved knowledge of the time-momentum correlation with simulation and a new detector
 - scintillating fibers


 (miniSciFi) for direct beam
 measurements

Not only Muon g-2 measurement

- EDM previous searches statistical limited $(10^{-19}e \text{ cm})$, goal to reach $10^{-21}e \text{ cm}$. Search for an up-down oscillation, out of phase with ω_a .
- CPT/LV using long period of data collected we can look if the spin precession rate changes over a sidereal day (as predicted by Standard-Model Extension).
 - DM Muon *g* 2 experiment enables the direct search for two (scalar and pseudoscalar) ultralight dark matter candidates that primarily interact with muons.

Summary and Conclusions

- FNAL g-2 Experiment goal is to measure a_{μ} with a **precision of 140 ppb** (4×BNL precision)
- The result from the analysis of the Run-1/2/3 data confirmed result from BNL experiment
- With **Run-2 and Run-3 data** measurement achieved a factor 2 uncertainty reduction both in statistics and systematics!
- Next: analysis of Run-4, Run-5 and Run-6 (expect to achieve the uncertainty goal), also other analysis EDM, CPT/LV and Dark Matter searches are been developed.

Thanks!

Enjoy the
PRL 131, 161802 (2023)
and the new paper:
arXiv:2402.15410
and stay tuned for the
next result!

