MITP TOPICAL WORKSHOP

Flavour Models with Multiple Modular Symmetries

Ye-Ling Zhou, HIAS-UCAS, 2024-5-13

Modular Invariance Approach to the Lepton and Quark Flavour Problems: from Bottom-up to Top-down May 13 – 17, 2024

https://indico.mitp.uni-mainz.de/event/350

Favour symmetry and residual symmetries in flavour models
Modular symmetry as the direct origin of lepton mixing
From a modular symmetry to multiple modular symmetries
TM₁ and TM₂ mixing achieved in multiple modular symmetries

The Stardard Model (SM)

17+2 free parameters

Neutrino masses and lepton mixing

SM + massive neutrinos

24(26)+2 free parameters

What is the flavour symmetry?

Continu	
U(1)	Abelian
SU(3), SO	Non-Abelian

Common-used non-Abelian discrete symmetries

irrep: 1, 1', 1'', 3

In this talk, 3d irrep will always be presented in the Altarelli-Feruglio basis

Lee, Mohapatra, 94

$$T^{3} = S^{2} = (ST)^{3} = \mathbf{1}$$
$$U^{2} = (SU)^{2} = (TU)^{2} = (STU)^{4} = \mathbf{1}$$

irrep: 1, 1', 2, 3, 3'

Typical mixing patterns and achievement in flavour symmetries

Tri-bimaximal (TBM)

$$3\sin^2 \theta_{12} = 1$$
$$2\sin^2 \theta_{23} = 1$$
$$\sin^2 \theta_{13} = 0$$

Harrison, Perkins, Scott, 02 Xing, 02 Tri-bimaximal (TBM)

From Tri-bimaximal to Trimaximal mixing

Trimaximal (TM) mixing

- Xing, Zhou, 0607302; Lam, 0611017; Albright, Rodejohann, 0812.0436
- Bjorken, Harrison, Scott, 0511201; He, Zee, 0607163; Grimus, Lavoura, 0809.0226; 0810.4516

$$S^{U} \Rightarrow \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}, (Z_3^T, Z_2^S) \Rightarrow \begin{pmatrix} 1\\1\\1 \end{pmatrix}, (Z_3^T, Z_2^U) \Rightarrow \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$

Vacuum aligni 0

ts Flavons
$$\varphi = (\varphi_1, \varphi_2, \varphi_3) \sim 3, \chi = (\chi_1, \chi_2, \chi_3) \sim 3$$
 $\eta \sim 1$
ends $L = (L_e, L_\mu, L_\tau) \sim 3, (e^c, \mu^c, \tau^c) \sim (1, 1', 1''), \nu^c = (N_1, N_2, N_3) \sim 3$ $H \sim 1$
 $W \supset \left[y_e(L\varphi)_1 e^c + \frac{y_\mu}{\Lambda} (L\varphi)_{1'} \mu^c + \frac{y_\tau}{\Lambda} (L\varphi)_{1''} \tau^c \right] \frac{H_d}{\Lambda} \implies M_l$
 $+ y_D L \nu^c H_u + \left[\frac{y_1}{2} (\nu^c \nu^c)_{3\chi} + \frac{y_2}{2} (\nu^c \nu^c)_{1\eta} + h.c. \implies M_{\gamma} \right]$
noment and flavour mixing
 $\left\{ \langle \varphi \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v_\varphi \\ \langle \chi \rangle = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \frac{v_\chi}{\sqrt{3}} \\ \langle \eta \rangle = v_\eta \right\} \xrightarrow{M_l} M_l = \frac{1}{2\sqrt{3}} y_l v_\chi$
 $H \sim 1$
 $W \supset \left[y_e(L\varphi)_1 e^c + \frac{y_\mu}{\Lambda} (L\varphi)_{1''} \mu^c + \frac{y_\tau}{\Lambda} (L\varphi)_{1''} \tau^c \right] \frac{H_d}{\Lambda} \implies M_l$
 $H \sim 1$
 M_{γ}
 M_{γ}
 M_{γ}
 $P_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
 $P_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
 $H \sim \left\{ \begin{array}{c} M_l = \text{diag} \{y_e, y_\mu, y_\tau\} \frac{v_\phi v_d}{\Lambda} \\ M_D = y_D P_{23} v_u \\ M_\nu = \begin{pmatrix} a + 2b & -b & -b \\ -b & a - b & 2b \\ -b & a - b & 2b \end{pmatrix} \\ M_{\gamma} = y_2 v_\eta, \quad b = \frac{1}{2\sqrt{3}} y_1 v_\chi \end{array} \xrightarrow{M_{\gamma}}$

Simplified based on Altarelli, Feruglio, hep-ph/0504165, 0512103

Two approaches for model building

e.g., the toy model in the last slide + hundreds of models ...

> For some reviews, see Alterelli, Feruglio, 1002.0211; Ishimori, Kobayashi, et al, 1003.3552; King, Luhn, 1301.1340; King, Merle, Morisi, Shimizu, Tanimoto, 1402.4271; Xing, 1909.09610; Feruglio, Romanino, 1912.06028;

Flavour symmetries from modular symmetry

Modular symmetry predicted in string orbifold compactifications

$$\mathbb{T}^2/\Lambda$$
$$\tau = 2B + i\sqrt{3}R^2$$
$$\mathrm{Im}\tau > 0$$

Finite modular symmetries

Г

Ferrara, Lust, Theisen, 89 $S_{\tau}: \tau \to \frac{-1}{\tau}$ $T_{\tau}: \tau \to \tau + 1$ $S_{\tau}^2 = (S_{\tau}T_{\tau})^3 = 1$

$$= \left\{ \gamma \middle| \gamma \tau = \frac{a\tau + b}{c\tau + d}, a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

$$S_{\tau}T_{\tau}, U = T_{\tau}S_{\tau}T_{\tau}^2S_{\tau}$$

de Adelhart Toorop, Feruglio and Hagedorn, 1112.1340

Modular symmetry as direct origin of flavour mixing

0

Flavour models with a modular symmetry

see Ding, King, 2311.09282 for a recent review

modular forms reduces free parameters and new d.o.f.

14

From a single modular symmetry to multiple modular symmetries

Motivation for multiple modular symmetries 0

Orbifold compactification

Top-down

- the parameter space.
- leading to residual symmetries unbroken.

1. Multiple moduli fields can be introduced. They take different VEVs, enlarging

2. In particular, VEVs may be fixed at some special values, called stabilisers,

3. The flavour mixing, following the classical flavour model building approach, arises from the misalignment of different breaking directions.

From a single modular symmetry to multiple modular symmetries

Motivation for multiple modular symmetries

 r symmetries
 $\tau_i = 2B_i + i\sqrt{3}R_i^2$

 Orbifold
 $\int 4D$

 compactification
 $\int 4D$

Bottom-up

We could not find models with one modulus field τ and residual symmetry \mathbb{Z}_3^{ST} or \mathbb{Z}_2^S , which are phenomenologically viable. Since the residual symmetry is the same for both the charged lepton and neutrino mass matrices,⁸ the resulting neutrino mixing matrix always contains zeros, which is ruled out by the data. We will consider next the case of having two moduli fields in the theory — one, τ^{ℓ} , responsible via its VEV for the breaking of the modular S_4 symmetry in the charged lepton sector, and a second one, τ^{ν} , breaking the modular symmetry in the neutrino sector. This will be done on purely phenomenological grounds: we will not attempt to construct a model in which the discussed possibility is realised; we are not even sure such models exist.

in Sec 5 in [Novichkov, Penedo, Petcov, Titov, 1811.04933]

Framework of multiple modular symmetries

- Multiple finite modular symmetries (simplest case, direct product) 0 $\Gamma^1_{N_1} \times I$
- Multiple moduli fields τ_1, τ_2, \ldots as target space
- $\gamma_J \in \Gamma_{N_J}^J$ acts on τ_J as $\gamma_J : \tau_J \to \gamma_J \tau_J$ $\sim \gamma_I$ acts on superfields ϕ_i and Yukawa forms as $\phi_i(\tau_1,...,\tau_M) \rightarrow \phi_i(\gamma_1\tau_1,...,\gamma_M\tau_M)$ = $(c_J \tau_J -$ J = 1, ..., M $Y_{(I_Y)}$

$$= \prod_{J=1,...,M} (c_J \tau_J + d_J)^{2k_{Y,J}} \bigotimes_{J=1,...,M} \rho_{I_{Y,J}}(\gamma_J) Y_{(I_{Y,1},...,I_{Y,M})}(\tau_1,...,\tau_M)$$

$$\Gamma^2_{N_2} \times \ldots$$

de Medeiros Varzielas, King, **YLZ**, 1906.02208

$$\tau_J = \frac{a_J \tau_J + b_J}{c_J \tau_J + d_J}$$

$$(M_{J}) + d_{J})^{-2k_{i,J}} \bigotimes_{J=1,...,M}
ho_{I_{i,J}}(\gamma_{J}) \phi_{i}(au_{1}, au_{2},..., au_{M})$$

Framework of multiple modular symmetries

• $\mathcal{N} = 1 \text{ SUSY}$

$$\mathcal{S} = \int d^4 x d^2 \theta d^2 \bar{\theta} K + \left[\int d^4 x d^2 \theta W + \text{h.c.} \right]$$

Kahler potential (the simplest case)

$$\begin{split} K &= -\sum_{J} h_{J} \log(-i\tau_{J} + i\bar{\tau}_{J}) + \sum_{i} \frac{\bar{\phi}_{i} \phi_{i}}{\prod_{J} (-i\tau_{J} + i\bar{\tau}_{J})^{2k_{i,J}}} \\ \Rightarrow \sum_{J} \frac{h_{J}}{\langle -i\tau_{J} + i\bar{\tau}_{J} \rangle^{2}} \partial_{\mu} \bar{\tau}_{J} \partial^{\mu} \tau_{J} + \sum_{i} \frac{\partial_{\mu} \bar{\phi}_{i} \partial^{\mu} \phi_{i}}{\prod_{J} \langle -i\tau_{J} + i\bar{\tau}_{J} \rangle^{2k_{i,J}}} \end{split}$$

$$\begin{split} K &= -\sum_{J} h_{J} \log(-i\tau_{J} + i\bar{\tau}_{J}) + \sum_{i} \frac{\bar{\phi}_{i} \phi_{i}}{\prod_{J} (-i\tau_{J} + i\bar{\tau}_{J})^{2k_{i,J}}} \\ \Rightarrow \sum_{J} \frac{h_{J}}{\langle -i\tau_{J} + i\bar{\tau}_{J} \rangle^{2}} \partial_{\mu} \bar{\tau}_{J} \partial^{\mu} \tau_{J} + \sum_{i} \frac{\partial_{\mu} \bar{\phi}_{i} \partial^{\mu} \phi_{i}}{\prod_{J} \langle -i\tau_{J} + i\bar{\tau}_{J} \rangle^{2k_{i,J}}} \end{split}$$

Superpotential (should by invariant under any modular transformation)

$$W = \sum_{n} \prod_{i_1,...,i_n} (Y_{I_{Y,1},I_{Y,2},...} \phi_{i_1},\ldots,\phi_{i_n})_1$$

Framework of models with multiple modular symmetries

- Two S_4 are broken to a single S_4 along flat direction of bi-triplet
 - Bi-triplet scalar $\Phi \sim (\mathbf{3}, \mathbf{3})$ of $S_{4}^{l} \times S_{4}^{\nu}$
 - Driving fields $\chi^d \sim (\mathbf{3}, \mathbf{3}), \, \tilde{\chi}^d \sim (\mathbf{1}, \mathbf{3})$
 - $W_d = [(\Phi \Phi)_{(3,3)} + M \Phi] \chi^d + (\Phi \Phi)_{(1,3)} \tilde{\chi}^d$
 - There are 24 solutions

 $P_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

- $\langle \Phi \rangle \sim \rho(\gamma) P_{23}$ for γ spanning in S_4
 - All equivalent to P_{23} after basis transformation

 ρ : 3D irrep matrix in <u>Altarelli-Feruglio</u> basis

- Same method applies to $A_4^l \times A_4^\nu \to A_4$
 - Also 24 solutions, $\langle \Phi \rangle \sim \rho(\gamma) P_{23}, \rho(\gamma)$

de Medeiros Varzielas, Lourenco, 2107.04042

But not all equivalent Zhang, YLZ, 2401.17810

19

TM_1 in approach I

LH lepton
$$L \sim 3$$

RH lepton e^c , μ^c ,
weights: $-6, -4,$
 V
 S_4^l, τ_l

Fields	S_4^l	S_4^{ν}	$2k_l$	$2k_{\nu}$
e^{c}	1'	1	-6	-2
$\mid \mu^c$	1'	1	-4	-2
$ au^c$	1'	1	-2	-2
$\mid L$	3	1	0	+2
ν^c	1	3	0	-2
Φ	3	3	0	0
$H_{u,d}$	1	1	0	0

$$w = [LY_e(\tau_l)e^c + LY_\mu(\tau_l)\mu^c + LY_\tau(\tau_l)\tau^c]H_d + \frac{y_\nu}{\Lambda}L\Phi\nu^c H_u + \frac{1}{2}M_1(\tau_\nu)(\nu^c\nu^c)_1 + \frac{1}{2}M_2(\tau_\nu)(\nu^c\nu^c)_2 + \frac{1}{2}M_3(\tau_\nu)(\nu^c\nu^c)_3.$$

King, **YLZ**, 1908.02770

TM₁ in approach I

LH lepton
$$L \sim 3$$

RH lepton e^c , μ^c ,
weights: $-6, -4,$
 V
 S_4^l, τ_l

Fields	S_4^l	S_4^{ν}	$2k_l$	$2k_{\nu}$
e^{c}	1'	1	-6	-2
$\mid \mu^c$	1'	1	-4	-2
τ^{c}	1'	1	-2	-2
$\mid L$	3	1	0	+2
ν^c	1	3	0	-2
Φ	3	3	0	0
$H_{u,d}$	1	1	0	0

$$w_{\text{eff}} = [LY_e(\tau_l)e^c + LY_\mu(\tau_l)\mu^c + LY_\tau(\tau_l)\tau^c] H_d + y_D L\nu^c H_u + \frac{1}{2}M_1(\tau_\nu)(\nu^c\nu^c)_1 + \frac{1}{2}M_2(\tau_\nu)(\nu^c\nu^c)_2 + \frac{1}{2}M_3(\tau_\nu)(\nu^c\nu^c)_3.$$

King, **YLZ**, 1908.02770

21

TM₁ in approach I

LH lepton
$$L \sim 3$$

RH lepton e^c , μ^c ,
weights: -6 , -4

Fields	S_4^l	S_4^{ν}	$2k_l$	$2k_{\nu}$
e^{c}	1'	1	-6	-2
μ^{c}	1'	1	-4	-2
$ au^c$	1'	1	-2	-2
L	3	1	0	+2
$ u^c $	1	3	0	-2
Φ	3	3	0	0
$H_{u,d}$	1	1	0	0

King, **YLZ**, 1908.02770

TM_1 in approach II

TM_1 in approach II

TM₁ in approach II

- VEVs of both Φ_{AC} and Φ_{BC} are achieved via the flat directions from the bi-triplet contraction and triplet contraction
- Superpotential before and after $S_{\Delta}^A \times S_{\Delta}^A$ \bigcirc

$$\begin{split} w_{\ell} &= \frac{1}{\Lambda} \left[L \Phi_{AC} Y_A(\tau_A) N_A^c + M_A \right] \\ &+ \left[L Y_e(\tau_C) e^c + L Y_\mu(\tau_C) \right] \\ &+ \frac{1}{2} M_A(\tau_A) N_A^c N_A^c + \frac{1}{2} M_A^c \right] \\ w_{\ell}^{\text{eff}} &= \left[\frac{v_{AC}}{\Lambda} L Y_A(\tau_A) N_A^c + \frac{v_B}{\Lambda} \right] \\ &+ \left[L Y_e(\tau_C) e^c + L Y_\mu(\tau_C) \right] \end{split}$$

Two-triplet scalars Φ_{AC} and Φ_{BC} : bridges to connect different modular symmetries

$$S_4^B \times S_4^C$$
 breaking

 $L\Phi_{BC}Y_B(\tau_B)N_B^c]H_u$

 $(T_C)\mu^c + LY_\tau(\tau_C)\tau^c H_d$

 $M_B(\tau_B)N_B^c N_B^c + M_{AB}(\tau_A, \tau_B)N_A^c N_B^c$

 $\frac{BC}{\Lambda} LY_B(\tau_B) N_B^c \Big] H_u$ $\tau_C) \mu^c + LY_\tau(\tau_C) \tau^c] H_d$ $+\frac{1}{2}M_{A}(\tau_{A})N_{A}^{c}N_{A}^{c}+\frac{1}{2}M_{B}(\tau_{B})N_{B}^{c}N_{B}^{c}+M_{AB}(\tau_{A},\tau_{B})N_{A}^{c}N_{B}^{c}$

TM₁ in approach II

 Z_3^{TS} $\langle \tau_A \rangle$ N_A Yukawa coupling $Y_A(\langle \tau_A \rangle) = \begin{pmatrix} -1\\ 2\omega\\ 2\omega^2 \end{pmatrix}$ $\begin{aligned} \langle \tau_A \rangle &= \frac{1}{2} + i \frac{\sqrt{3}}{2} \\ \langle \tau_B \rangle &= \frac{1}{2} + \frac{i}{2} \\ \langle \tau_C \rangle &= -\frac{1}{2} + i \frac{\sqrt{3}}{2} \end{aligned}$

Diagonal charged lepton Yukawa coupling

Multiple modular symmetries in GUTs

• SU(5) GUT with $S_4^F \times S_4^N$

Fields	SU(5)	S_4^F	S_4^N	$2k_F$	$2k_N$
T_1	10	1	1	+4	+2
T_2	10	1	1	+3	+1
T_3	10	$\mathbf{1'}$	1	0	0
F	$\overline{5}$	3	1	0	+2
N	1	1	3	0	-2
H_5	5	1	1	0	0
$H_{ar{5}}$	$\overline{5}$	1	1	0	0
$H_{ar{45}}$	$\overline{45}$	1	1	0	0
Φ	1	3	3	0	0
ϕ_1	1	1	1	-1	-1
ϕ_2	1	1	1	-3	-1

$$\begin{split} Y_{3}^{(2)}(\tau_{SU}) &= \begin{pmatrix} 2\\ -1\\ -1 \end{pmatrix} \\ Y_{3}^{(4)}(\tau_{SU}) &= \sqrt{2} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} - \sqrt{3} \begin{pmatrix} 0\\ 1\\ -1 \end{pmatrix} \end{split}$$

$$Y_d =$$

 $Y_e =$

 $M_R = a$

$$\begin{pmatrix} y_{dd}\epsilon_{1}\epsilon_{2}^{3} & y_{ds}\epsilon_{1}^{2}\epsilon_{2}^{2} & y_{db}\epsilon_{2}^{4} \\ 0 & y_{ss}\epsilon_{1}\epsilon_{2}^{2} & 0 \\ 0 & 0 & y_{bb}\epsilon_{1}^{2} \end{pmatrix}^{*} Y_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}^{2}\epsilon_{2}^{2} & y_{uc}\epsilon_{1}\epsilon_{2}^{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{uc}\epsilon_{1}\epsilon_{2}^{2} & y_{cc}\epsilon_{2}^{2} & y_{ct}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$\begin{pmatrix} y_{ee}\epsilon_{1}\epsilon_{2}^{3} & 0 & 0 \\ y_{\mu e}\epsilon_{1}^{2}\epsilon_{2}^{2} & y_{\mu\mu}\epsilon_{1}\epsilon_{2}^{2} & 0 \\ y_{\tau e}\epsilon_{2}^{4} & 0 & y_{\tau\tau}\epsilon_{1}^{2} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}^{2}\epsilon_{2}^{2} & y_{uc}\epsilon_{1}\epsilon_{2}^{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}^{2}\epsilon_{2}^{2} & y_{uc}\epsilon_{1}\epsilon_{2}^{2} & y_{ut}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}^{2}\epsilon_{2}^{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}\epsilon_{2}^{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}\epsilon_{2}^{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}\epsilon_{2}^{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{uu}\epsilon_{1}\epsilon_{2}^{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{ct}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$k_{u} = \begin{pmatrix} y_{u}\epsilon_{1}\epsilon_{2} & y_{ut}\epsilon_{1}\epsilon_{2} \\ y_{ut}\epsilon_{1}\epsilon_{2} & y_{tt}\epsilon_{2} & y_{tt} \end{pmatrix}^{*}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} + c\sqrt{2} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} - c\sqrt{3} \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$

Stabilisers and residual symmetries

$$\Rightarrow \qquad \rho_I(\gamma) \ \mathbf{Y}(\tau_{\gamma}) = (c\tau_{\gamma} + d)^{-2k} \ \mathbf{Y}(\tau_{\gamma})$$

$$S = T_{\tau}^2$$
, $T = S_{\tau}T_{\tau}$, $U = T_{\tau}S_{\tau}T_{\tau}^2S_{\tau}$

Typical stabilisers (not complete)

$$\begin{aligned} \tau_S &= i\infty \;,\; \tau_T = \omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \;,\; \tau_U = \frac{1}{2} + \frac{i}{2} \;,\\ \tau_{TS} &= -\omega^2 = \frac{1}{2} + i\frac{\sqrt{3}}{2} \;,\; \tau_{ST} = \frac{1}{2} + \frac{i}{2\sqrt{3}} \;,\; \tau_{STS} = -\frac{1}{2} + \frac{i}{2\sqrt{3}} \end{aligned}$$

$$\rho_{3}(S_{\tau}) = \frac{1}{3} \begin{pmatrix} -1 & 2\omega^{2} & 2\omega \\ 2\omega & 2 & -\omega^{2} \\ 2\omega^{2} & -\omega & 2 \end{pmatrix} \qquad \rho_{3}(T_{\tau}) = \frac{1}{3} \begin{pmatrix} -1 & 2\omega \\ 2\omega & 2\omega^{2} \\ 2\omega^{2} & -1 \end{pmatrix}$$
$$Y_{3}(\tau_{S_{\tau}}) \propto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, x \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \qquad Y_{3}(\tau_{T_{\tau}}) \propto \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

A stabiliser of $\gamma \in \Gamma_N$ refers to some value of τ satisfying $\gamma \tau_{\gamma} = \tau_{\gamma} \Rightarrow Y(\tau_{\gamma}) = Y(\gamma \tau_{\gamma}) = (c\tau_{\gamma} + d)^{2k} \rho_I(\gamma) Y(\tau_{\gamma})$

A modular form at a stabiliser τ_{γ} is an eigenvector of the representation matrix $\rho_I(\gamma)$ with eigenvalue $(c\tau_{\gamma} + d)^{-2k}$

		weight 2 weight 4		4		weight 6	
		3′	3	3′	3	$3_1'$	$3_2'$
	$ au_S$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$	0	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$
	$ au_U$	$ \left(\begin{array}{c}0\\1\\-1\end{array}\right) $	$\begin{pmatrix} 2-i\sqrt{2}\\ -1-i\sqrt{2}\\ -1-i\sqrt{2} \end{pmatrix}$	$\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$	$\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$	$\begin{pmatrix} 2\sqrt{2}+i\\ -\sqrt{2}+i\\ -\sqrt{2}+i \end{pmatrix}$	$\begin{pmatrix} 2-i\sqrt{2}\\ -1-i\sqrt{2}\\ -1-i\sqrt{2} \end{pmatrix}$
	$ au_T$	$ \begin{pmatrix} 0\\1\\0 \end{pmatrix} $	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0
$2\omega^2$ -1	$ au_{TS}$	$\begin{pmatrix} 2\omega\\ 2\omega^2\\ -1 \end{pmatrix}$	$\begin{pmatrix} 2\omega^2 \\ -1 \\ 2\omega \end{pmatrix}$	$\begin{pmatrix} 2\omega^2 \\ -1 \\ 2\omega \end{pmatrix}$	$\begin{pmatrix} -1\\ 2\omega\\ 2\omega^2 \end{pmatrix}$	$\begin{pmatrix} -1\\ 2\omega\\ 2\omega^2 \end{pmatrix}$	0
2ω) (0)	$ au_{ST}$	$ \begin{pmatrix} 2\omega \\ -1 \\ 2\omega^2 \end{pmatrix} $	$\begin{pmatrix} 2\omega^2 \\ 2\omega \\ -1 \end{pmatrix}$	$\begin{pmatrix} 2\omega^2 \\ 2\omega \\ -1 \end{pmatrix}$	$\begin{pmatrix} -1\\ 2\omega^2\\ 2\omega \end{pmatrix}$	$\begin{pmatrix} -1 \\ 2\omega^2 \\ 2\omega \end{pmatrix}$	0
$\begin{pmatrix} 0\\1 \end{pmatrix}$	$ au_{STS}$	$ \left \begin{array}{c} 2\\ 2\\ -1 \end{array} \right $	$\begin{pmatrix} 2\\ -1\\ 2 \end{pmatrix}$	$\begin{pmatrix} 2\\ -1\\ 2 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\2 \end{pmatrix}$	$\begin{pmatrix} -1\\2\\2 \end{pmatrix}$	0

Stabilisers and residual symmetries

 $\Gamma_N \simeq \overline{\Gamma} / \overline{\Gamma} (N)$

Full list of stabilisers for each element of finite modular groups for Γ_N with N = 2,3,4,5 in the fundamental domain of $\overline{\Gamma}(N)$

For A_4 , S_4 , see also Ding, King, Liu, Lu, 1910.03460

Scanning for all stabilisers in two modular A_4

Case A:
$$\begin{cases} \tau_{l} = \tau_{T1}, & Y = (1,0,0)^{\mathrm{T}}, & M_{l} = M_{l}^{T}, \\ \tau_{l} = \tau_{STS1}, & Y \propto (-\frac{1}{3}, \frac{2}{3}, \frac{2}{3})^{\mathrm{T}}, & M_{l} = SM_{l}^{T}, \\ \tau_{l} = \tau_{ST1}, & Y \propto (-\frac{1}{3}, \frac{2}{3}\omega, \frac{2}{3}\omega^{2})^{\mathrm{T}}, & M_{l} = TST^{2}M_{l}^{T}, \\ \tau_{l} = \tau_{TS1}, & Y \propto (-\frac{1}{3}, \frac{2}{3}\omega^{2}, \frac{2}{3}\omega)^{\mathrm{T}}, & M_{l} = T^{2}STM_{l}^{T}; \end{cases}$$

Table 2. Stabilizers and residual symmetries at stabilizers, where $\omega = (-1 + \sqrt{3}i)/2 = e^{2\pi i/3}$.

abilizers $ au_\gamma$		Residual modular symmetry at τ_γ
$i_1=i\infty,$	$\tau_{T2} = -\frac{1}{\omega - 1} + 1$	$Z_3^T = \{1, T, T^2\}$
$_{TS1}=0,$	$\tau_{STS2}=\omega-1$	$Z_3^{STS} = \{1, STS, ST^2S\}$
$_{T1}=1,$	$ au_{ST2}=\omega$	$Z_3^{ST} = \{1, ST, T^2S\}$
$_{S1} = -1,$	$ au_{TS2} = \omega + 1$	$Z_3^{TS} = \{1, TS, ST^2\}$
$i_1 = i,$	$ au_{S2}=rac{3}{2}+rac{i}{2}$	$Z_2^S = \{1, S\}$
$_{ST^{2}1}=1+i,$	$ au_{TST^22}=-rac{1}{2}+rac{i}{2}$	$Z_2^{TST^2} = \{1, TST^2\}$
$T_{2ST1} = -1 + i,$	$ au_{T^2ST2}=rac{1}{2}+rac{i}{2}$	${Z}_{2}^{T^{2}ST}=\{1,T^{2}ST\}$

$$\begin{array}{l} \text{Case B}: \\ \left\{ \begin{array}{l} \tau_{l} = \tau_{T2}, \quad Y \propto (0,0,1)^{\mathrm{T}}, \qquad M_{l} = P^{2}M_{l}^{T}, \\ \tau_{l} = \tau_{STS2}, \quad Y \propto (\frac{2}{3}, \frac{2}{3}, -\frac{1}{3})^{\mathrm{T}}, \qquad M_{l} = SP^{2}M_{l}^{T}, \\ \tau_{l} = \tau_{ST2}, \quad Y \propto (\frac{2}{3}, \frac{2}{3}\omega, -\frac{1}{3}\omega^{2})^{\mathrm{T}}, \quad M_{l} = TST^{2}P^{2}M_{l}^{T}, \\ \tau_{l} = \tau_{TS2}, \quad Y \propto (\frac{2}{3}, \frac{2}{3}\omega^{2}, -\frac{1}{3}\omega)^{\mathrm{T}}, \quad M_{l} = T^{2}STP^{2}M_{l}^{T}. \\ \end{array} \right. \\ \left. \begin{array}{l} \text{Case C}: \\ \left(2k_{l} = 4\right) \end{array} \left\{ \begin{array}{l} \tau_{l} = \tau_{T2}, \quad Z \propto (0, 1, 0)^{\mathrm{T}}, \qquad M_{l} = PM_{l}^{T}, \\ \tau_{l} = \tau_{ST2}, \quad Z \propto (\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})^{\mathrm{T}}, \qquad M_{l} = SPM_{l}^{T}, \\ \tau_{l} = \tau_{ST2}, \quad Z \propto (\frac{2}{3}, -\frac{1}{3}\omega, \frac{2}{3}\omega^{2})^{\mathrm{T}}, \quad M_{l} = TST^{2}PM_{l}^{T}, \\ \tau_{l} = \tau_{TS2}, \quad Z \propto (\frac{2}{3}, -\frac{1}{3}\omega^{2}, \frac{2}{3}\omega)^{\mathrm{T}}, \quad M_{l} = TST^{2}PM_{l}^{T}. \end{array} \right. \end{array} \right.$$

Scanning for all stabilisers in two modular A_A

$$(2k_{\nu} = 4) \qquad \begin{cases} \tau_{\nu} = \tau_{S1}, \tau_{S2}, & M_R = M_R^S, \\ \tau_{\nu} = \tau_{TST^21}, \tau_{TST^22}, & M_R = TM_R^S, \\ \tau_{\nu} = \tau_{T^2ST1}, \tau_{T^2ST2}, & M_R = T^2M_R^S, \end{cases}$$

In flavour basis,

$$\begin{split} \widetilde{M}_{\nu}^{A} &= m_{0}T^{m} \left[\pm \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \frac{3 - g^{2}}{g + g'} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{3 - g'^{2}}{g + g'} \right] \\ \widetilde{M}_{\nu}^{B} &= m_{0}T^{m} \left[\pm \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \frac{3 - g^{2}}{g + g'} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \frac{3 - g'^{2}}{g + g'} \right] \\ \widetilde{M}_{\nu}^{C} &= m_{0}T^{m} \left[\pm \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} + \frac{3 - g^{2}}{g + g'} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{3 - g'^{2}}{g + g'} \right] \end{split}$$

de Medeiros Varzielas, Lourenco, 2107.04042

Zhang, YLZ, 2401.17810

Summary

If Framework of multiple modular symmetries as origin of lepton mixing Trimaximal TM₁ mixing realised in two S₄ in Approach I ... and applied to SU(5) GUT **I** Trimaximal TM₁ mixing realised in three S₄ in Approach II Trimaximal TM₂ mixing realised in two A₄ in Approach I More mixing patterns are expected in the framework of multiple modular symmetries

Thank you for your listening!

