Southampion
School of Physics
and Astronomy

HIDDe®

Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

Flavour Model Building I

Steve King, 13th May 2024, Mainz

The Standard Model

Left-handed

Right-handed

(Including three right-handed neutrinos)

The Flavour Problem

Mixing

SMYukawa couplings

$$
\chi=-\frac{1}{q} F_{\mu \nu} F^{\alpha \nu}
$$

Many undetermined free parameters $+i \bar{Y} \not \subset+h . c$ $+Y_{i} y_{i j} x_{j} \phi+h$
$+\left(D_{m} \phi\right)^{2}-V(\phi)$

SMYukawa couplings

$$
y_{i j} H \bar{\psi}_{L i} \psi_{R j}
$$

Neutrino mass and mixing

\square Neutrinos have tiny masses (much less than electron)

- Neutrinos mix a lot (unlike the quarks)
- Up to 9 new params: 3 masses, 3 angles, 3 phases
\square Origin of mass and mixing is unknown

PMNS mixing matrix

$$
U_{P M N S}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{\alpha_{31}}{2}}
\end{array}\right)
$$

Atmospheric Reactor
 Solar
 Majorana

$=\left(\begin{array}{cc}c_{12} c_{13} & \text { CP violating phase } \\ s_{12} c_{13} \\ -s_{12} c_{23}-c_{12} s_{13} s_{23} e^{i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{i \delta} \\ c_{13} s_{23} \\ s_{12} s_{23}-c_{12} s_{13} c_{23} e^{i \delta} & -c_{12} s_{23}-s_{12} s_{13} c_{23} e^{i \delta} \\ c_{13} c_{23}\end{array}\right)$
CP violating Majorana phases
$\times \operatorname{diag}\left(1, e^{i \alpha_{21} / 2}, e^{i \alpha_{31} / 2}\right)$

Global Fits

3σ ranges

$$
\begin{aligned}
& \theta_{23}=\left[39.6^{\circ}, 51.9^{\circ}\right] \text { Octant? } \\
& \sin ^{2} \theta_{23}=\frac{1}{2} ? 45^{\circ} ? \text { Max Mix? }
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{12}=\left[31.31^{\circ}, 35.74^{\circ}\right] \\
& \sin ^{2} \theta_{12}=\frac{1}{3} ? 35.26^{\circ} ? \text { TBM? }
\end{aligned}
$$

$$
\begin{array}{ccc}
\delta=\left[0^{\circ}, 44^{\circ}\right] \& & {\left[108^{\circ}, 360^{\circ}\right]} \\
0^{\circ} ? \quad 180^{\circ} ? & 270^{\circ} ? \\
\text { CPC? } & \text { Max CPV? }
\end{array}
$$

$\begin{aligned} & \text { ت̛̃ } \\ & \underset{\sim}{\sigma} \end{aligned}$		Normal Ordering (best fit)		Inverted Ordering $\left(\Delta \chi^{2}=2.3\right)$	
		bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
	$\sin ^{2} \theta_{12}$	$0.303_{-0.011}^{+0.012}$	$0.270 \rightarrow 0.341$	$0.303_{-0.011}^{+0.012}$	$0.270 \rightarrow 0.341$
	$\theta_{12} /^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$
	$\sin ^{2} \theta_{23}$	$0.572_{-0.023}^{+0.018}$	$0.406 \rightarrow 0.620$	$0.5788_{-0.021}^{+0.016}$	$0.412 \rightarrow 0.623$
	$\theta_{23} /^{\circ}$	$49.1_{-1.3}^{+1.0}$	$39.6 \rightarrow 51.9$	$49.5{ }_{-1.2}^{+0.9}$	$39.9 \rightarrow 52.1$
	$\sin ^{2} \theta_{13}$	$\begin{gathered} 0.0220{ }^{-0.00059} \\ 8.54_{-0.12}^{+0.11} \end{gathered}$	$0.02029 \rightarrow 0.02391$	$0.02219_{-0.00057}^{+0.0060}$	$0.02047 \rightarrow 0.02396$
出			$8.19 \rightarrow 8.89$	$8.57_{-0.11}^{+0.12}$	$8.23 \rightarrow 8.90$
,	$\delta_{\mathrm{CP}} 10$	$197{ }_{-25}^{+42}$	$108 \rightarrow 404$	286_{-32}^{+27}	$192 \rightarrow 360$
	$\begin{gathered} \frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}} \\ \frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}} \end{gathered}$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$ $+2.428 \rightarrow+2.597$	$7.41_{-0.20}^{+0.21}$ $-2.498_{-0.025}^{+0.032}$	$6.82 \rightarrow 8.03$ $-2.581 \rightarrow-2.408$
		Normal Ordering (best fit)		Inverted Ordering $\left(\Delta \chi^{2}=6.4\right)$	
		bfp $\pm 1 \sigma$	3σ range	bfp $\pm 1 \sigma$	3σ range
	$\sin ^{2} \theta$	$0.303_{-0.012}^{+0.012}$	$0.270 \rightarrow 0.341$	$0.303_{-0.011}^{+0.012}$	$0.270 \rightarrow 0.341$
	$\theta_{12} /^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$
	$\sin ^{2} \theta_{23}$	$0.451_{-0.016}^{+0.019}$	$0.408 \rightarrow 0.603$	$0.569_{-0.021}^{+0.016}$	$0.412 \rightarrow 0.613$
	$\theta_{23} /^{\circ}$	$42.22_{-0.9}^{+1.1}$	$39.7 \rightarrow 51.0$	$49.0_{-1.2}^{+1.0}$	$39.9 \rightarrow 51.5$
	$\sin ^{2} \theta_{13}$	$0.02225_{-0.00059}^{+0.0056}$	$0.02052 \rightarrow 0.02398$	$0.02223_{-0.00058}^{+0.00058}$	$0.02048 \rightarrow 0.02416$
它	$\theta_{13} /^{\circ}$	$8.58{ }_{-0.11}^{+0.11}$	$8.23 \rightarrow 8.91$	$8.57_{-0.11}^{+0.11}$	$8.23 \rightarrow 8.94$
$\frac{7}{3}$	$\delta_{\mathrm{CP}} /{ }^{\circ}$	232_{-26}^{+36}	$144 \rightarrow 350$	2766_{-29}^{+22}	$194 \rightarrow 344$
	$\frac{\Delta m_{21}^{2}}{10^{-5} \mathrm{eV}^{2}}$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$	$7.41{ }_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m_{3 \ell}^{2}}{10^{-3} \mathrm{eV}^{2}}$	$+2.507_{-0.027}^{+0.026}$	$+2.427 \rightarrow+2.590$	$-2.486_{-0.028}^{+0.025}$	$-2.570 \rightarrow-2.406$

Is there a pattern in the matrix?

Symmetry
can enforce

$$
\begin{aligned}
& \sin \theta_{23}=\frac{1}{\sqrt{2}} \\
& \sin \theta_{13}=0
\end{aligned}
$$

$$
U_{0}=\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Where large $\sin \theta_{12}$ can come from the same symmetry

- H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, 1003.3552

Non-Abelian Family Symmetry

A_{4} and S_{4} Group Theory

Ma-Rajarsakaran A_{4} basis

$$
\begin{gathered}
A_{4} S^{2}=T^{3}=(S T)^{3}=\mathbb{I} \\
S=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) ; \quad T=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \\
3 \times 3=1+1^{\prime}+1^{\prime \prime}+3+3 \\
a=\left(a_{1}, a_{2}, a_{3}\right) \text { and } b=\left(b_{1}, b_{2}, b_{3}\right) \\
(a b)_{1}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
(a b)_{1^{\prime}}=a_{1} b_{1}+\omega a_{2} b_{2}+\omega^{2} a_{3} b_{3} \\
(a b)_{1^{\prime \prime}}=a_{1} b_{1}+\omega^{2} a_{2} b_{2}+\omega a_{3} b_{3} \\
(a b)_{3_{1}}=\left(a_{2} b_{3}, a_{3} b_{1}, a_{1} b_{2}\right) ; \omega^{3}=1 \\
(a b)_{3_{2}}=\left(a_{3} b_{2}, a_{1} b_{3}, a_{2} b_{1}\right)
\end{gathered}
$$

Altarelli-Feruglio A_{4} basis

$S^{2}=T^{3}=U^{2}=(S T)^{3}=(S U)^{2}=(T U)^{2}=(S T U)^{4}=1$				
S_{4}	A_{4}	S	T	U
$1,1^{\prime}$	1	1	1	± 1
2	$\binom{1^{\prime \prime}}{1^{\prime}}$	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{2}\end{array}\right)$	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
3, 3^{\prime}		$\frac{1}{3}\left(\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & \omega\end{array}\right)$	$\mp\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

$\operatorname{VEV}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \begin{aligned} & \text { preserves } \mathrm{T} \text { in Ma basis } \\ & \text { preserves } \mathrm{S}, \mathrm{U} \text { in AF basis }\end{aligned}$
$\operatorname{VEV}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \begin{aligned} & \text { preserves } \mathrm{S} \text { in Ma basis } \\ & \text { preserves } \mathrm{T} \text { in AF basis }\end{aligned}$

Some Simple Symmetrical Examples

Tri-bimaximal
Bimaximal
Golden Ratio

$$
\sin \theta_{12}=\frac{1}{\sqrt{2}}
$$

a) $\tan \theta_{12}=\frac{2}{1+\sqrt{5}}=\frac{1}{\phi}$

- F. Harrison, D. H. Perkins, and W. G. Scott, hep-ph/0202074
- Z.-z. Xing, hep-ph/0204049. P

- V. D. Barger, S. Pakvasa, T. J. Weiler, and K. Whisnant, hep-ph/9806387.
b) $\cos \theta_{12}=\phi / 2$
- A. Datta, F.-S. Ling, and P. Ramond, hep-ph/0306002
- Y. Kajiyama, M. Raidal, and A. Strumia, 0705.4559
- L. L. Everett and A. J. Stuart, 0812.1057
- W. Rodejohann, 0810.5239

All these patterns involve
S. Davidson and S. F. K. hep-ph/9808296.

so they need to be corrected

Why is θ_{13} predicted to be zero?

Why is θ_{13} predicted to be zero?

- Diagonal charged lepton $T^{\dagger}\left(M_{e} M_{e}^{\dagger}\right) T=M_{e} M_{e}^{\dagger}$ $T=\operatorname{diag}\left(1, \omega^{2}, \omega\right)$

$$
\omega=e^{i 2 \pi / N}
$$

AltarelliFeruglio basis

- Group G
generators
T,S,U
S.F.K. and C.Luhn, 0908.1897, 1301.1340 - Klein neutrino symmetry

$$
M^{\nu}=S^{\dagger} M^{\nu} S^{*} \quad M^{\nu}=U^{\dagger} M^{\nu} U^{*}
$$

$$
\mathbf{S} \|^{S}=U_{\text {PMNS }} \operatorname{diag}(-1,+1,-1) U_{\text {PMNS }}^{\dagger}
$$

$$
\mathbf{S}, \bigcup_{U=U_{\text {PMNS }}} \operatorname{diag}(-1,-1,+1) U_{\text {PMNS }}^{\dagger}
$$

S_{4} generators S, U enforce TB mixing

How to switch on θ_{13} ?

How to switch on θ_{13} ?

1. Break T

Charged Lepton Corrections

$$
\begin{array}{ll}
\theta_{12}^{e} \neq 0 & \text { Assume } \\
\theta_{23}^{e}=0 & \theta_{13}^{e}=0
\end{array}
$$

$U_{\mathrm{PMNS}}=U_{e} U_{\nu}$

$$
s_{13}=\frac{s_{12}^{e}}{\sqrt{2}}
$$

$$
\theta_{12}+\theta_{13} \cos (\delta-\pi) \approx \theta_{12}^{\nu}
$$

- S. F. K., hep-ph/0506297; I. Masina, hep-ph/0508031
- S. Antusch and S. F. K., hep-ph/0508044
- S. Antusch, P. Huber, S. F. K. and T. Schwetz, hep-ph/0702286

How to switch on θ_{13} ?

1. Break T

Charged Lepton Corrections

$$
\begin{array}{ll}
\theta_{12}^{e} \neq 0 & \text { Assume } \\
\theta_{23}^{e} \neq 0 & \theta_{13}^{e}=0
\end{array}
$$

$U_{\mathrm{PMNS}}=U_{e} U_{\nu}$

$$
s_{13}=\frac{s_{12}^{e}}{\sqrt{2}}
$$

More precise Solar Sum Rule

- D. Marzocca, S. T. Petcov, A. Romanino, M. C. Sevilla, 1302.0423];
- I. Girardi, S. T. Petcov, A. V. Titov, 1410.8056

$$
\cos \delta=\frac{\tan \theta_{23} \sin \theta_{12}^{2}+\sin \theta_{13}^{2} \cos \theta_{12}^{2} / \tan \theta_{23}-\left(\sin \theta_{12}^{\nu}\right)^{2}\left(\tan \theta_{23}+\sin \theta_{13}^{2} / \tan \theta_{23}\right)}{\sin 2 \theta_{12} \sin \theta_{13}}
$$

How to switch on θ_{13} ?

1. Break T

Charged Lepton Corrections

$$
\begin{array}{ll}
\theta_{12}^{e} \neq 0 & \text { Assume } \\
\theta_{23}^{e} \neq 0 & \theta_{13}^{e}=0
\end{array}
$$

$U_{\mathrm{PMNS}}=U_{e} U_{\nu}$

$$
s_{13}=\frac{s_{12}^{e}}{\sqrt{2}}
$$

- Group G

generators

 T,S,U
-Diagonal charged lepton

S,U

Klein
neutrino
symmetry

Simple derivation

- Charged lepton corrections (not s_{13}^{e})

$$
\begin{gathered}
U=U_{12}^{e \dagger} U_{23}^{e \dagger} R_{23}^{\nu} R_{12}^{\nu} P^{\nu} \\
U_{\tau 1}=s_{12}^{\nu}\left(s_{23}^{\nu} c_{23}^{e}-c_{23}^{\nu} s_{23}^{e} e^{i \delta_{23}^{e}}\right), \\
U_{\tau 2}=-c_{12}^{\nu}\left(s_{23}^{\nu} c_{23}^{e}-c_{23}^{\nu} s_{23}^{e} e^{i \delta_{23}^{e}}\right) \\
\frac{\left|U_{\tau 1}\right|}{\left|U_{\tau 2}\right|}=\frac{\left|s_{23} s_{12}-s_{13} c_{23} c_{12} e^{i \delta}\right|}{\left|s_{23} c_{12}+s_{13} c_{23} s_{12} e^{i \delta}\right|}=t_{12}^{\nu}
\end{gathered}
$$

More precise Solar Sum Rule

- D. Marzocca, S. T. Petcov, A. Romanino, M. C. Sevilla, 1302.0423];
- I. Girardi, S. T. Petcov, A. V. Titov, 1410.8056

$$
\cos \delta=\frac{\tan \theta_{23} \sin \theta_{12}^{2}+\sin \theta_{13}^{2} \cos \theta_{12}^{2} / \tan \theta_{23}-\left(\sin \theta_{12}^{v}\right)^{2}\left(\tan \theta_{23}+\sin \theta_{13}^{2} / \tan \theta_{23}\right)}{\sin 2 \theta_{12} \sin \theta_{13}}
$$

Solar Sum Rule Predictións

RG corrections to GRa solar sum rule

How to switch on θ_{13} ?

- C. H. Albright and W. Rodejohann, 0812.0436
- C. Luhn, 1306.2358
- S. F. King and C. Luhn, 1107.5332
- P. Ballett, S. F. King, C. Luhn, S. Pascoli and M. A. Schmidt, 1308.4314

2. Break U

First or second PMNS column preserved

$$
\left(\begin{array}{c}
\sqrt{\frac{2}{3}} \\
-- \\
-\frac{1}{\sqrt{\sqrt{6}}}-- \\
\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{l}
-\sqrt{\frac{1}{3}}- \\
-\sqrt{\frac{1}{3}}- \\
--\sqrt{\frac{1}{3}}-
\end{array}\right)
$$

s_{13} free parameter

How to switch on θ_{13} ?

SU preserved

Atmospheric Sum Rules

- C. H. Albright and W. Rodejohann, 0812.0436
- C. Luhn, 1306.2358
- S. F. King and C. Luhn, 1107.5332
- P. Ballett, S. F. King, C. Luhn, S. Pascoli and M. A. Schmidt, 1308.4314

2. Break U

First or second PMNS column preserved

$$
\left(\begin{array}{c}
\sqrt{\frac{2}{2}}-- \\
-\frac{1}{\sqrt{1}}- \\
\frac{\sqrt{1}}{\sqrt{6}}--
\end{array}\right)\left(\begin{array}{c}
-\sqrt{\frac{1}{3}}- \\
-\sqrt{\frac{1}{3}}- \\
--\sqrt{\frac{1}{3}}-
\end{array}\right)
$$

$\left(\begin{array}{cll}\sqrt{\frac{2}{3}} & -- \\ -\frac{1}{\sqrt{6}} & -- \\ \frac{1}{\sqrt{6}} & - & -\end{array}\right)$

$$
s_{12}^{2}=\frac{\left(1-3 s_{13}^{2}\right)}{3\left(1-s_{13}^{2}\right)} \quad \cos \delta=-\frac{\cot 2 \theta_{23}\left(1-5 s_{13}^{2}\right)}{2 \sqrt{2} s_{13} \sqrt{1-3 s_{13}^{2}}}
$$

$$
s_{12}^{2}=\frac{1}{3\left(1-s_{13}^{2}\right)}
$$

$$
\cos \delta=\frac{2 c_{13} \cot 2 \theta_{23} \cot 2 \theta_{13}}{\sqrt{2-3 s_{13}^{2}}}
$$

Atmospheric Sum Rule Predictions

Reactor angle $\sin ^{2}\left(\theta_{13}\right) \quad$ Atmospheric angle $\sin ^{2}\left(\theta_{23}\right)$

$$
\begin{aligned}
& \text { Only } \\
& \text { viable } \\
& \text { patterns } \\
& \text { TM1 }\left(\begin{array}{c|c}
\sqrt{\frac{2}{3}} & - \\
-\frac{1}{5} & - \\
\frac{1}{\sqrt{6}} & -
\end{array}\right) \\
& \begin{array}{l}
\text { TM2 }\left(\begin{array}{c}
-\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{3}} \\
-\sqrt{\frac{1}{2}} \\
-\sqrt{\frac{1}{3}}
\end{array}\right) \\
\text { disfavoured }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta_{12}^{\nu}=\frac{1}{\phi}
\end{aligned}
$$

Survey of symmetry predictions

- discrete symmetries w/ CP
- discrete symmetries w/o CP (NO)
- discrete symmetries w/o CP (IO)
- modular symmetries (NO)
\checkmark modular symmetries (IO)

- discrete symmetries w/ CP
- discrete symmetries w/o CP (NO)
- discrete symmetries w/o CP (IO)
- modular symmetries (NO)
\checkmark modular symmetries (IO)

Future Prospects

Will put flavour symmetry models to the test!

Consider type la seesaw models with a natural neutrino mass hierarchy $m_{3} \gg m_{2} \gg m_{1} \approx 0$

Single RHN model (1998)

Just add a single RHN to the SM

$$
\left(H_{u} / v_{u}\right)\left(d \bar{L}_{e}+e \bar{L}_{\mu}+f \bar{L}_{\tau}\right) \nu_{R}^{\mathrm{atm}}+M_{\mathrm{atm}} \overline{\nu_{R}^{\mathrm{atm}}}\left(\nu_{R}^{\mathrm{atm}}\right)^{c}
$$

To explain atmospheric neutrino oscillations assume

$$
d \ll e \sim f
$$

Assume charged lepton mass matrix is approximately diagonal (like the quarks)

So that
$\tan \theta_{23} \sim e / f \sim 1$
Maximal atmospheric mixing

$$
\tan \theta_{13} \sim d / \sqrt{e^{2}+f^{2}} \ll 1
$$

Two RHN Model (1999)

Add a second RHN to the SM to account for solar neutrino oscillations as well

Atmospheric

Assume charged lepton mass

 matrix is approx diagonalAssume diagonal M_{R}

Single RHN Dominance

Leads to natural hierarchy
Atmospheric mixing from dominant RHN

$\tan \theta_{12} \sim \frac{\sqrt{ } 2 a}{b-c}$
Solar mixing from subdominant RHN
$\theta_{13} \lesssim m_{2} / m_{3}$

Constrained Sequential Dominance (2005)

$$
m^{D}=\left(\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right)
$$

Assume charged lepton mass matrix is exactly diagonal

We now add further constraints to enhance predictivity

$$
\begin{array}{ll}
d=0 \quad e=f & \tan \theta_{23} \sim e / f \sim 1 \\
a=b=-c & \tan \theta_{12} \sim \sqrt{2} a /(b-c) \sim 1 / \sqrt{2}
\end{array}
$$

It turns out that this gives
exact tri-bimaximal mixing with
Accidentally occurs due to
orthogonality of two columns as in Form Dominance

Tri-bimaximal

$$
\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Excluded in 2012
M.C.Chen, S.F.K., 0903.0125

$\operatorname{CSD}(\mathrm{n})$

 (2013)

 (2013)}

More generally assume the two columns of the Dirac matrix are proportional to

$$
\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \propto\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text { and }\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \propto\left(\begin{array}{c}
1 \\
n \\
n-2
\end{array}\right) \begin{gathered}
\text { For } n \neq 1 \text { the two columns are no } \\
\text { longer orthogonal }(\text { violating FD) } \\
\text { so now expect } \theta_{13} \neq 0
\end{gathered}
$$

But still find approxTB mixing as before (since n cancels)

$$
\begin{aligned}
& \tan \theta_{23} \sim e / f \sim 1 \\
& \tan \theta_{12} \sim \sqrt{2} a /(b-c) \sim 1 / \sqrt{2}
\end{aligned} \quad \theta_{13} \sim(n-1) \frac{\sqrt{2}}{3} \frac{m_{2}}{m_{3}}
$$

The case $n=1$ corresponds to the exact TBM case previously with FD but for values of $n \neq 1$ find only approximate TBM

Flipped CSD(n)

Normal
Flipped ($\mathrm{n}=$ real number)

$$
\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \propto\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \propto\left(\begin{array}{c}
1 \\
n \\
n-2
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \propto\left(\begin{array}{c}
1 \\
n-2 \\
n
\end{array}\right)
$$

The two predictions only differ in atmospheric angle and CP phase (solar angle, reactor angle and neutrino mass unchanged)
Octant flipped $\quad \tan \theta_{23} \rightarrow \cot \theta_{23} \quad \delta \rightarrow \delta+\pi$
Alternatively we could use the following (only differs by unphysical phases):

$$
\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \propto\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \quad\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \propto\left(\begin{array}{c}
1 \\
n \\
2-n
\end{array}\right) \text { or }\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \propto\left(\begin{array}{c}
1 \\
2-n \\
n
\end{array}\right)
$$

Results for CSD(n) (2014)

Seesaw formula
$m^{\nu}=m^{D} M_{R}^{-1}\left(m^{D}\right)^{T} \quad m^{D}=\left(\left.\begin{array}{ll}a \\ b \\ c\end{array} \right\rvert\, \begin{array}{l}d \\ e \\ f\end{array}\right)$

$$
\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \propto\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \text { and }\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \propto\left(\begin{array}{c}
1 \\
n \\
n-2
\end{array}\right)
$$

$m_{(n)}^{\nu}=m_{a}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)+m_{b} e^{i \eta}\left(\begin{array}{ccc}1 & n & n-2 \\ n & n^{2} & n(n-2) \\ n-2 & n(n-2) & (n-2)^{2}\end{array}\right)$
Three effective input parameters (for given n) N.B. TMI mixing $\forall \mathrm{n}$

SRHND $m_{a} \sim \frac{(e, f)^{2}}{M_{\mathrm{atm}}} \gg \frac{(a, b, c)^{2}}{M_{\mathrm{sol}}} \sim m_{b}$ Charged leptons diagonal

Highly predictive - 3 inputs for 9 observables (6 so far measured)

1512.07531

Littlest Seesaw CSD(~3) (2015)

F.Costa, SFK 2307.13895

$\eta$$\theta_{13}$$\frac{m_{2}{ }^{2}}{m_{3}{ }^{2}}$

Fit these accurately measured parameters
3σ

Predict the less well measured solar, and atmospheric angles and CP phase δ N.B. not just $\cos \delta$
G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460

Littlest Modular Seesaw (2019)

$\square \sin ^{2} \theta_{23} \quad \sin ^{2} \theta_{12} \square \sin ^{2} \theta_{13} \square m_{2}^{2} / m_{3}^{2}$

$\operatorname{CSD}(\mathrm{n}) \quad n=1+\sqrt{6} \approx 3.45$

Flipped modular Littlest seesaw		
	bf	allowed ranges
η / π	0.742	$[0.725,0.806]$
r	0.0758	$[0.0683,0.0786]$
$\sin ^{2} \theta_{13}$	0.0231	$[0.0205,0.0240]$
$\sin ^{2} \theta_{12}$	0.318	$[0.317,0.319]$
$\sin ^{2} \theta_{23}$	0.535	$[0.517,0.595]$
$\delta_{C P} / \pi$	-0.452	$[-0.478,-0.354]$
β / π	-0.441	$[-0.562,-0.409]$
m_{2}^{2} / m_{3}^{2}	0.0283	$[0.0270,0.0321]$

How does $n=1+\sqrt{6}$ originate?

Littlest Modular Seesaw from Orbifold

bd SUSY orbifold S_{4} in each Id space IUd model with 3 factorisable tori $\left(\mathbb{T}^{2}\right)^{3} /\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right) \quad S_{4}^{A} \times S_{4}^{B} \times S_{4}^{C}$

Fix τ_{3} by stability
S_{4}^{C}
S.F.K. , X. Wang,

Lattice vectors for each torus are $\left(1, \tau_{i}\right)$

$$
\tau_{1}=i, \tau_{2}=i+2, \tau_{3}=\omega=e^{\frac{2 \pi i}{3}}
$$ which define 3 fixed moduli

Littlest Modular Seesaw from Orbifold

Field	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$	Loc
L	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0	\mathbb{T}_{C}^{2}
e^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	-6	\mathbb{T}_{C}^{2}
μ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	-4	\mathbb{T}_{C}^{2}
τ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	-2	\mathbb{T}_{C}^{2}
N_{a}^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	-4	0	\mathbb{T}_{B}^{2}
N_{s}^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-2	0	0	\mathbb{T}_{A}^{2}
$\Phi_{B C}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	0	0	0	Bulk
$\Phi_{A C}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0	Bulk

de Medeiros Varzielas,S.F.K.,M.Levy 2211.00654

Yuk/Mass	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
$Y_{e}\left(\tau_{3}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	6
$Y_{\mu}\left(\tau_{3}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	4
$Y_{\tau}\left(\tau_{3}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	2
$Y_{a}\left(\tau_{2}\right)$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	0	4	0
$Y_{s}\left(\tau_{1}\right)$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	2	0	0
$M_{a}\left(\tau_{2}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	8	0
$M_{s}\left(\tau_{1}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	4	0	0

Also see Multiple moduli talk by Zhou

Yukawa couplings are modular forms evaluated at the fixed points of the moduli fields (the lattice vectors)

Fixed points of S_{4}

	τ	$Y_{\mathbf{3}}^{(2)}(\tau), Y_{\mathbf{3}, \mathbf{I}}^{(6)}(\tau)$		$Y_{3}^{(4)}(\tau), Y_{3^{\prime}}^{(6)}(\tau)$
τ_{1}	i	(1,	$\sqrt{6}, 1-\sqrt{6})$	$\left(1,-\frac{1}{2},-\frac{1}{2}\right)$
τ_{2}	$i+1$	(1, - $\frac{\omega}{3}(1+$	$\sqrt{2}),-\frac{\omega^{2}}{3}(1+i \sqrt{2})$	$(0,1,-\omega)$
	$i+2$	(1, $\frac{1}{3}(-1+$	$\sqrt{2}), \frac{1}{3}(-1+i \sqrt{2})$	(0, 1, -1)
	$i+3$	(1, ω ($1+$	$\sqrt{6}), \omega(1-\sqrt{6}))$	(1, - $\left.\frac{\omega}{2},-\frac{\omega^{2}}{2}\right)$
	τ	$Y_{3}^{(2)}(\tau)$	$Y_{3}^{(4)}(\tau), Y_{3^{\prime}}^{(4)}(\tau)$	$Y_{\mathbf{3}, \mathbf{I I}}^{(6)}(\tau), Y_{\mathbf{3}^{\prime}}^{(6)}(\tau)$
τ_{3}	ω	$(0,1,0)$	$(0,0,1)$	$(1,0,0)$
	$\omega+1$	$\left(1,1,-\frac{1}{2}\right)$	$\left(1,-\frac{1}{2}, 1\right)$	(1, -2, -2)
	$\omega+2$	$\left(1,-\frac{\omega^{2}}{2}, \omega\right)$	$\left(1, \omega^{2},-\frac{\omega}{2}\right)$	$\left(1,-2 \omega^{2},-2 \omega\right)$
	$\omega+3$	$\left(1, \omega,-\frac{\omega^{2}}{2}\right)$	(1, - $\left.\frac{\omega}{2}, \omega^{2}\right)$	$\left(1,-2 \omega,-2 \omega^{2}\right)$

$\frac{1}{\Lambda}\left[L \Phi_{B C} Y_{a} N_{a}^{c}+L \Phi_{A C} Y_{s} N_{s}^{c}\right] H_{u}$
$+\left[L Y_{e} e^{c}+L Y_{\mu} \mu^{c}+L Y_{\tau} \tau^{c}\right] H_{d}$
$+\frac{1}{2} M_{a} N_{a}^{c} N_{a}^{c}+\frac{1}{2} M_{s} N_{s}^{c} N_{s}^{c}$.
Flipped
$\left(\begin{array}{ccc}y_{e} & 0 & 0 \\ 0 & y_{\mu} & 0 \\ 0 & 0 & y_{\tau}\end{array}\right)$
Diagonal Charged $\left(\begin{array}{cc}0 & b \\ a & b(1-\sqrt{6}) \\ -a & b(1+\sqrt{6})\end{array}\right)$
$\operatorname{CSD}(\mathrm{n})$
$n=1+\sqrt{6}$ leptons

Dirac
neutrino

Littlest Modular Seesaw from Orbifold GUTs

Field	$S U(5)$	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$	Loc
F	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0	\mathbb{T}_{C}^{2}
T_{1}	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	1	\mathbb{T}_{C}^{2}
T_{2}	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	$1 / 2$	\mathbb{T}_{C}^{2}
T_{3}	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	\mathbb{T}_{C}^{2}
N_{a}^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	-4	0	\mathbb{T}_{B}^{2}
N_{s}^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	-2	0	0	\mathbb{T}_{A}^{2}
H_{u}	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	Bulk
H_{d}	$\overline{\mathbf{5}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	$1 / 2$	Bulk
H_{45}	$\mathbf{4 5}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	$1 / 2$	Bulk
$H_{\overline{45}}$	$\overline{\mathbf{4 5}}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	Bulk
$\Phi_{B C}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	0	0	0	Bulk
$\Phi_{A C}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0	Bulk
ξ_{F}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	$-5 / 2$	\mathbb{T}_{C}^{2}
ξ_{T}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	$-1 / 2$	\mathbb{T}_{C}^{2}

- 10d orbifold B.C.s break SU(5) with DT splitting
- Triangular form of M_{d}, Me_{e} yields CKM mixing plus very suppressed charged lepton corrections
- Two weightons ξ_{F}, ξ_{T} control the hierarchies

Yuk/Mass	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
$Y_{e}\left(\tau_{3}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	6
$Y_{\mu}\left(\tau_{3}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	4
$Y_{\tau}\left(\tau_{3}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	2
$Y_{a}\left(\tau_{2}\right)$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{1}$	0	4	0
$Y_{s}\left(\tau_{1}\right)$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	2	0	0
$M_{a}\left(\tau_{2}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	8	0
$M_{s}\left(\tau_{1}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	4	0	0

Dirac
neutrino
matrix

y_{a} \tilde{\Phi}_{B C} \& y_{s} \tilde{\Phi}_{A C}(1-\sqrt{6})

-y_{a} \tilde{\Phi}_{B C} \& y_{s} \tilde{\Phi}_{A C}(1+\sqrt{6})\end{array}\right) v_{u}, \quad M_{N}=\left($$
\begin{array}{cc}M_{a} & 0 \\
0 & M_{s}\end{array}
$$\right)\)

Summary

- Flavour problem motivates family/flavour symmetry
- Neutrino mass and mixing motivates non-Abelian
- A4, S4, A5 can enforce TBM, BM, GR patterns via $Z^{\top} N$ and $Z^{\top} 2 \times Z U_{2}$
- Reactor angle can be non-zero if only a subgroup is preserved
- Breaking $Z^{\top}{ }_{N}$ leads to charged lepton corrections and solar sum rules
- Breaking ZU_{2} preserves 1st or 2 nd columns, atmospheric sum rules
- Such symmetry predictions will be tested in coming years
- Type 1a seesaw: 2RHN + SRHND for natural hierarchy $m_{3} \gg m_{2} \gg m_{1} \approx 0$ (large mixing with no tuning)
- Predictivity motivates CSD(n) with $\mathrm{n}^{\sim} 3$ a.k.a. Littlest Seesaw
- Littlest Modular Seesaw yields excellent predictions
- Can arise from 10d orbifold and may be combined with SU(5) GUTs

Back-up: our bottom-up Orbifold

For more details see:
De Anda, SFK 2304.05958

Consider Two Extra Dimensions compactified on a torus, equivalent to a parallelogram

Parallelogram is defined by two vectors

Adding the vectors together with arbitrary integers generates a lattice of points.
Any two lattice points give a new torus.

Bottom-up Orbifolds

Two dimensional twisted torus ${ }^{T} \mathbb{T}^{2} \quad z=x_{5}+i x_{6}$

$$
z=z+\omega_{1}, \quad z=z+\omega_{2}
$$

Define modulus field $\quad \tau \equiv \omega_{1} / \omega_{2}$
Basis vectors become $\{1, \tau\}$

Twisted torus

Then identify $\quad z \sim z+1, \quad z \sim z+\tau$
$\mathbb{T}^{2} / \mathbb{Z}_{N} \begin{gathered}\text { Orbifold } \\ \text { condition }\end{gathered} \quad z \sim e^{2 i \pi / N} z \quad$ Fixes $\tau\left\{\begin{array}{l}N=2, \quad \tau=z \in \mathbb{C}, \\ N=3, \quad \tau=\omega, \quad \omega=e^{2 i \pi / 3} \\ N=4, \quad \tau=i,\end{array}\right.$

Consider 6d space with 3 factorisable tori

Three twisted tori $z_{i} \sim z_{i}+1, \quad z_{i} \sim z_{i}+\tau_{i}$, with three moduli fields
These are the complex structure moduli in string theory
SUSY preserving orbifolds $\left(\mathbb{T}^{2}\right)^{3} /\left(\mathbb{Z}_{N} \times \mathbb{Z}_{M}\right)$

$$
\begin{gathered}
\theta_{N}:\left(x, z_{1}, z_{2}, z_{3}\right) \sim\left(x, \alpha_{N} z_{1}, \beta_{N} z_{2}, \gamma_{N} z_{3}\right) \\
\theta_{M}:\left(x, z_{1}, z_{2}, z_{3}\right) \sim\left(x, \alpha_{M} z_{1}, \beta_{M} z_{2}, \gamma_{M} z_{3}\right) \\
\alpha_{N, M}, \beta_{N, M}, \gamma_{N, M} \text { are Nth, Mth roots of unity. }
\end{gathered}
$$

Allowed SUSY preserving orbifolds $\left(\mathbb{T}^{2}\right)^{3} /\left(\mathbb{Z}_{N} \times \mathbb{Z}_{M}\right)$

(N, M)	$\left(\alpha_{N}, \beta_{N}, \gamma_{N}\right)$	$\left(\alpha_{M}, \beta_{M}, \gamma_{M}\right)$	$\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$	M. Fischer, M.Ratz, J.Torrado, P.K.S.Vaudrevange 1209.3906	
			Fixes		
$(3,1)$	(ω, ω, ω)	$(1,1,1)$	(ω, ω, ω)	$\omega=e^{2 i \pi / 3}$	
$(4,1)$	$(i, i,-1)$	$(1,1,1)$	(i, i, z)		
$(6,1)_{I}$	$\left(-\omega^{2},-\omega^{2}, \omega^{2}\right)$	$(1,1,1)$	$(\{\omega, \rho / \sqrt{3}\},\{\omega, \rho / \sqrt{3}\}, \omega)$	$\rho=e^{i \pi / 6}$	
$(6,1)_{I I}$	$\left(-\omega^{2}, \omega,-1\right)$	$(1,1,1)$	$(\{\omega, \rho / \sqrt{3}\}, \omega, z)$		
$(2,2)$	$(1,-1,-1)$	$(-1,1,-1)$	(z, z, z)	$Z \in \mathbb{C}$	
$(4,2)$	$(i,-i, 1) \mathbb{Z}_{4}$	$(1,-1,-1) \mathbb{Z}_{2}$	(i, i, z)	$\left(\mathbb{T}^{2}\right)^{3} /\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)$	
$(6,2)_{I}$	$\left(-\omega^{2}, 1,-\omega\right)$	$(1,-1,-1)$	$(\{\omega, \rho / \sqrt{3}\}, z,\{\omega, \rho / \sqrt{3}\})$	Now consider	
$(6,2)_{I I}$	$\left(\omega^{2},-\omega^{2},-\omega^{2}\right)$	$(1,-1,-1)$	$(\omega,\{\omega, \rho / \sqrt{3}\},\{\omega, \rho / \sqrt{3}\})$	this example	
$(3,3)$	$\left(1, \omega, \omega^{2}\right)$	$\left(\omega, 1, \omega^{2}\right)$	(ω, ω, ω)		
$(6,3)$	$\left(-\omega^{2}, 1,-\omega\right)$	$\left(1, \omega, \omega^{2}\right)$	$(\{\omega, \rho / \sqrt{3}\},\{\omega, \rho / \sqrt{3}\}, \omega)$		
$(4,4)$	$(1, i,-i)$	$(i, 1,-i)$	(i, i, i)		
$(6,6)$	$\left(1,-\omega^{2},-\omega\right)$	$\left(-\omega^{2}, 1,-\omega\right)$	$(\{\omega, \rho / \sqrt{3}\},\{\omega, \rho / \sqrt{3}\},\{\omega, \rho / \sqrt{3}\})$		

Consider $(N, M)=(4,2)$ example from table
$\theta_{4}:\left(x, z_{1}, z_{2}, z_{3}\right) \sim\left(x, i z_{1},-i z_{2}, z_{3}\right)$
$\theta_{2}:\left(x, z_{1}, z_{2}, z_{3}\right) \sim\left(x, z_{1},-z_{2},-z_{3}\right)$
Choose 6d invariant fixed branes

$$
\begin{aligned}
\mathbb{T}_{A}^{2} & =\left(x, z_{1}, 0,0\right), & & \mathbb{Z}_{4} \\
\mathbb{T}_{B}^{2} & =\left(x, 0, z_{2}, 0\right), & & \mathbb{Z}_{4} \\
\mathbb{T}_{C}^{2} & =\left(x, 0,0, z_{3}\right), & & \mathbb{Z}_{2}
\end{aligned}
$$

which all overlap the 6d origin
Fixes $\quad \tau_{1,2}=i+n_{1,2}, \quad \mid \quad n_{1,2} \in \mathbb{Z}$,
Assume $\tau_{3}=\omega$ (stability)

Littlest Modular Seesaw from Orbifold

Assume modular S_{4} in each 2 d space

$$
S_{4}^{A} \times S_{4}^{B} \times S_{4}^{C}
$$

