

School of Physics and Astronomy

Flavour Model Building

Steve King, 13th May 2024, Mainz

Southampton HIDDev Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

Modular Invariance Approach to the Lepton and Quark Flavour Problems: from Bottom-up to Top-down May 13 - 17, 2024

https://indico.mitp.uni-mainz.de/event/350

C David Lowry-Duda

Mainz Institute for **Theoretical Physics**

The Standard Model

Left-handed

(Including three right-handed neutrinos)

Right-handed

The Flavour Problem

SM Yukawa couplings

Many undetermined free parameters

SM Yukawa couplings $y_{ij}H\overline{\psi}_{Li}\psi_{Rj}$

$\psi_{Li} \qquad \begin{array}{c} H \ \psi_{Rj} \ y_{ij} \end{array}$

Neutrino mass and mixing

- **Neutrinos mix a lot (unlike the quarks)**
- Origin of mass and mixing is unknown

Neutrinos have tiny masses (much less than electron) Up to 9 new params: 3 masses, 3 angles, 3 phases

CP violating Majorana phases

Solar Majorana **Atmospheric Reactor** $= \begin{pmatrix} c_{12}c_{13} & \mathbf{CP \ violating \ phase}_{s_{12}c_{13}} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 \\ 0 & 1 \\ -s_{13}e^{i\delta} & 0 \end{pmatrix}$$

PMNS mixing matrix

 $\begin{pmatrix} s_{13}e^{-i\delta} \\ 0 \\ c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$

Global Fits

$$3\sigma$$
 ranges
 $\theta_{23} = [39.6^{\circ}, 51.9^{\circ}]$ Octant?
 $\sin^2 \theta_{23} = \frac{1}{2}$? 45°? Max Mix?
 $\theta_{12} = [31.31^{\circ}, 35.74^{\circ}]$
 $\sin^2 \theta_{12} = \frac{1}{3}$? 35.26°? TBM?
 $\delta = [0^{\circ}, 44^{\circ}]$ & $[108^{\circ}, 360^{\circ}]$
 0° ? 180°? 270°?
CPC? Max CPV?

NuFIT 5.2 (2022)

		Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.3)$
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
_	$\sin^2 heta_{12}$	$0.303^{+0.012}_{-0.011}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$
c data	$ heta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$
heric	$\sin^2 heta_{23}$	$0.572^{+0.018}_{-0.023}$	0.406 ightarrow 0.620	$0.578^{+0.016}_{-0.021}$	0.412 ightarrow 0.623
lqson	$ heta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$	$49.5_{-1.2}^{+0.9}$	$39.9 \rightarrow 52.1$
t atm	$\sin^2 heta_{13}$	$0.02202^{+0.00056}_{-0.00059}$	$0.02029 \rightarrow 0.02391$	$0.02219\substack{+0.00060\\-0.00057}$	$0.02047 \rightarrow 0.02396$
t SK	$ heta_{13}/^{\circ}$	$8.54^{+0.11}_{-0.12}$	$8.19 \rightarrow 8.89$	$8.57_{-0.11}^{+0.12}$	$8.23 \rightarrow 8.90$
ithou	$\delta_{ m CP}$ /°	197^{+42}_{-25}	$108 \rightarrow 404$	286^{+27}_{-32}	$192 \rightarrow 360$
M	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.511^{+0.028}_{-0.027}$	$+2.428 \rightarrow +2.597$	$-2.498^{+0.032}_{-0.025}$	$-2.581 \rightarrow -2.408$
		Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 6.4)$
		Normal Ord bfp $\pm 1\sigma$	lering (best fit) 3σ range	Inverted Orde bfp $\pm 1\sigma$	ering $(\Delta \chi^2 = 6.4)$ 3σ range
	$\sin^2 heta_{12}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$	lering (best fit) 3σ range $0.270 \rightarrow 0.341$	Inverted Orde bfp $\pm 1\sigma$ 0.303^{+0.012}_{-0.011}	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$
lata	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$	lering (best fit) 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$	Inverted Orde bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$
sric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\sin^2 \theta_{23}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$ $0.451^{+0.019}_{-0.016}$	lering (best fit) 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.408 \rightarrow 0.603$	Inverted Orde bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$
spheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$ $0.451^{+0.019}_{-0.016}$ $42.2^{+1.1}_{-0.9}$	lering (best fit) 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.408 \rightarrow 0.603$ $39.7 \rightarrow 51.0$	Inverted Orde bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$ $49.0^{+1.0}_{-1.2}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$
atmospheric data	$ \sin^2 \theta_{12} \\ \theta_{12} / ^{\circ} \\ \sin^2 \theta_{23} \\ \theta_{23} / ^{\circ} \\ \sin^2 \theta_{13} $	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$ $0.451^{+0.019}_{-0.016}$ $42.2^{+1.1}_{-0.9}$ $0.02225^{+0.00056}_{-0.00059}$	lering (best fit) 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.408 \rightarrow 0.603$ $39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$	Inverted Order bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$ $49.0^{+1.0}_{-1.2}$ $0.02223^{+0.00058}_{-0.00058}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$
SK atmospheric data	$ \sin^2 \theta_{12} \\ \theta_{12} / \circ \\ \sin^2 \theta_{23} \\ \theta_{23} / \circ \\ \sin^2 \theta_{13} \\ \theta_{13} / \circ $	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$ $0.451^{+0.019}_{-0.016}$ $42.2^{+1.1}_{-0.9}$ $0.02225^{+0.00056}_{-0.00059}$ $8.58^{+0.11}_{-0.11}$	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.408 \rightarrow 0.603$ $39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$ $8.23 \rightarrow 8.91$	Inverted Order bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$ $49.0^{+1.0}_{-1.2}$ $0.02223^{+0.00058}_{-0.00058}$ $8.57^{+0.11}_{-0.11}$	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$
with SK atmospheric data	$ \sin^2 \theta_{12} \\ \theta_{12}/^{\circ} \\ \sin^2 \theta_{23} \\ \theta_{23}/^{\circ} \\ \sin^2 \theta_{13} \\ \theta_{13}/^{\circ} \\ \delta_{CP}/^{\circ} $	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$ $0.451^{+0.019}_{-0.016}$ $42.2^{+1.1}_{-0.9}$ $0.02225^{+0.00056}_{-0.00059}$ $8.58^{+0.11}_{-0.11}$ 232^{+36}_{-26}	$\frac{\text{lering (best fit)}}{3\sigma \text{ range}}$ $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.408 \rightarrow 0.603$ $39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$ $8.23 \rightarrow 8.91$ $144 \rightarrow 350$	Inverted Order bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$ $49.0^{+1.0}_{-1.2}$ $0.02223^{+0.00058}_{-0.00058}$ $8.57^{+0.11}_{-0.11}$ 276^{+22}_{-29}	ering $(\Delta \chi^2 = 6.4)$ 3σ range $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$ $194 \rightarrow 344$
with SK atmospheric data	$\frac{\sin^2 \theta_{12}}{\theta_{12}/^{\circ}}$ $\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$ $\frac{\sin^2 \theta_{13}}{\theta_{13}/^{\circ}}$ $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	Normal Ord bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.012}$ $33.41^{+0.75}_{-0.72}$ $0.451^{+0.019}_{-0.016}$ $42.2^{+1.1}_{-0.9}$ $0.02225^{+0.00056}_{-0.00059}$ $8.58^{+0.11}_{-0.11}$ 232^{+36}_{-26} $7.41^{+0.21}_{-0.20}$	$lering (best fit)$ $3\sigma range$ $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.408 \rightarrow 0.603$ $39.7 \rightarrow 51.0$ $0.02052 \rightarrow 0.02398$ $8.23 \rightarrow 8.91$ $144 \rightarrow 350$ $6.82 \rightarrow 8.03$	Inverted Order bfp $\pm 1\sigma$ $0.303^{+0.012}_{-0.011}$ $33.41^{+0.75}_{-0.72}$ $0.569^{+0.016}_{-0.021}$ $49.0^{+1.0}_{-1.2}$ $0.02223^{+0.00058}_{-0.00058}$ $8.57^{+0.11}_{-0.11}$ 276^{+22}_{-29} $7.41^{+0.21}_{-0.20}$	$\frac{\Delta \chi^2 = 6.4)}{3\sigma \text{ range}}$ $0.270 \rightarrow 0.341$ $31.31 \rightarrow 35.74$ $0.412 \rightarrow 0.613$ $39.9 \rightarrow 51.5$ $0.02048 \rightarrow 0.02416$ $8.23 \rightarrow 8.94$ $194 \rightarrow 344$ $6.82 \rightarrow 8.03$

$$\sin \theta_{23} = \frac{1}{\sqrt{2}}$$
$$\sin \theta_{13} = 0$$

Where large $|\sin \theta_{12}|$ can come from the same symmetry

Non-Abelian Family Symmetry SU(3) $\Sigma(168)$ N=7 (27) T_7

PSL(2, N)

• H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, 1003.3552 • S. F. K., A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, 1402.4271

VEV $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ preserves T in Ma basis preserves S,U in AF basis /1

Altarelli-Feruglio A₄ basis

_	$T^3 = U$	$U^2 = (ST)^3 = (SU$	$)^2 = (TU)^2 =$	$(STU)^4 = 1$
	A_4	S	T	U
/	1	1	1	± 1
,	$\begin{pmatrix} 1'' \\ 1' \end{pmatrix}$	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$	$\begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix} \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}$	$ \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 & 0 \\ 7 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} $
is as	s sis	VEV $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{P}$	reserves S reserves T	in Ma ba in AF ba

\0/

asis basis

Tri-bimaxim $\sin\theta_{12}$

- F. Harrison, D. H. Perkins, and W. G. Scott, hep-ph/0202074.
- Z.-z. Xing, hep-ph/0204049. P

- S. Davidson and S. F. K. hep-ph/9808296.

Why is θ_{13} predicted to be zero? Group G generators T,S,U S,U **G** Klein Diagonal Altarellineutrino charged Feruglio basis symmetry lepton

Why is θ_{13} predicted to be zero?

Group G Diagonal charged lepton generators $T^{\dagger}(M_e M_e^{\dagger})T = M_e M_e^{\dagger}$ T,S,U $T = \operatorname{diag}(1, \omega^2, \omega)$ $\omega = e^{i2\pi/N}$ Diagonal Altarellicharged Feruglio basis

lepton

S.F.K. and C.Luhn, 0908.1897, 1301.1340 Klein neutrino symmetry $M^{\nu} = S^{\dagger} M^{\nu} S^* \quad M^{\nu} = U^{\dagger} M^{\nu} U^*$

S, **U** $S = U_{\text{PMNS}} \operatorname{diag}(-1, +1, -1) U_{\text{PMNS}}^{\dagger}$ $U = U_{\text{PMNS}} \operatorname{diag}(-1, -1, +1) U_{\text{PMNS}}^{\dagger}$

G Klein neutrino symmetry

S₄ generators S,U enforce TB mixing

How to switch on θ_{13} ? **Group G** generators T,S,U Τ Diagonal charged lepton

- S. F. K., hep-ph/0506297; I. Masina, hep-ph/0508031
 - S. Antusch and S. F. K., hep-ph/0508044
 - S. Antusch, P. Huber, S. F. K. and T. Schwetz, hep-ph/0702286

- D. Marzocca, S. T. Petcov, A. Romanino, M. C. Sevilla, 1302.0423];
- I. Girardi, S. T. Petcov, A. V. Titov, 1410.8056

 $\frac{\tan \theta_{23} \sin \theta_{12}^2 + \sin \theta_{13}^2 \cos \theta_{12}^2}{\tan \theta_{23}} - (\sin \theta_{12}^v)^2 (\tan \theta_{23} + \sin \theta_{13}^2 / \tan \theta_{23})$ $\sin 2\theta_{12} \sin \theta_{13}$

P. Ballett, S. F. K., C. Luhn, S. Pascoli and M. A. Schmidt, 1410.7573 **Simple derivation** Charged lepton corrections (not s_{13}^e) $U = U_{12}^{e\dagger} U_{23}^{e\dagger} R_{23}^{\nu} R_{12}^{\nu} P^{\nu}$ S,U $U_{\tau 1} = s_{12}^{\nu} (s_{23}^{\nu} c_{23}^{e} - c_{23}^{\nu} s_{23}^{e} e^{i\delta_{23}^{e}}),$ **G** Klein $U_{\tau 2} = -c_{12}^{\nu} (s_{23}^{\nu} c_{23}^{e} - c_{23}^{\nu} s_{23}^{e} e^{i\delta_{23}^{e}})$ neutrino $\frac{|U_{\tau 1}|}{|U_{\tau 2}|} = \frac{|s_{23}s_{12} - s_{13}c_{23}c_{12}e^{i\delta}|}{|s_{23}c_{12} + s_{13}c_{23}s_{12}e^{i\delta}|} = t_{12}^{\nu}$ symmetry

- D. Marzocca, S. T. Petcov, A. Romanino, M. C. Sevilla, 1302.0423];
- I. Girardi, S. T. Petcov, A. V. Titov, 1410.8056

 $\frac{\tan \theta_{23} \sin \theta_{12}^2 + \sin \theta_{13}^2 \cos \theta_{12}^2}{\tan \theta_{23}} - (\sin \theta_{12}^v)^2 (\tan \theta_{23} + \sin \theta_{13}^2 / \tan \theta_{23})$ $\sin 2\theta_{12} \sin \theta_{13}$

Solar Sum Rule Predictions

 $\cos \delta$

 $\cos \delta$

How to switch on θ_{13} ? Group G generators T,S,U Diagonal charged lepton

- C. H. Albright and W. Rodejohann, 0812.0436
- C. Luhn, 1306.2358
- S. F. King and C. Luhn, 1107.5332
- P. Ballett, S. F. King, C. Luhn, S. Pascoli and M.A. Schmidt, 1308.4314

First or second PMNS column preserved

*s*₁₃ free parameter

SU preserved

Atmospheric Sum Rules

$$\begin{pmatrix} \sqrt{\frac{2}{3}} & - & -\\ -\frac{1}{\sqrt{6}} & - & -\\ \frac{1}{\sqrt{6}} & - & - \end{pmatrix} \qquad s_{12}^2 = \frac{(1 - 3s_{13}^2)}{3(1 - s_{13}^2)} \qquad \cos \delta = -\frac{\cot 2\theta_{23}(1 - 5s_{13}^2)}{2\sqrt{2}s_{13}\sqrt{1 - 3s_{13}^2}}$$

- C. H. Albright and W. Rodejohann, 0812.0436
- C. Luhn, 1306.2358
- S. F. King and C. Luhn, 1107.5332
- P. Ballett, S. F. King, C. Luhn, S. Pascoli and M.A. Schmidt, 1308.4314

First or second PMNS column preserved

*s*₁₃ free parameter

Survey of symmetry predictions

Gehrlein, S.Petcov, M.Spinrath and A.Titov 2203.06219

Future Prospects

 $\sin^2\theta_{23}$

P.Ballett, S.F.K., S.Pascoli, N.W.Prouse and T.Wang, 1612.07275

Will put flavour symmetry models to the test!

Consider type Ia seesaw models with a natural neutrino mass hierarchy $m_3 \gg m_2 \gg m_1 \approx 0$

Single RHN model (1998)

Just add a single RHN to the SM

$$(H_u/v_u)(d\overline{L}_e + e\overline{L}_\mu + f\overline{L}_\tau)\nu_R^{\text{atm}} + M_{\text{atm}}\overline{\nu_R^{\text{atm}}}(\nu_R^{\text{atm}})^c$$

To explain atmospheric neutrino oscillations assume

$$d \ll e \sim f$$

So that

$$\tan\theta_{23}\sim e/f\sim$$

Maximal atmospheric mixing

hep-ph/9806440

Assume charged lepton mass matrix is approximately diagonal (like the quarks)

$$\tan\theta_{13} \sim d/\sqrt{e^2 + f^2} \ll 1$$

Small reactor mixing

Two RHN Model (1999)

 $(H_u/v_u)(a\overline{L}_e + b\overline{L}_\mu + c\overline{L}_\tau)\nu_R^{\rm sol} + (H_u/v_u)(d\overline{L}_e + e\overline{L}_\mu) + M_{\rm sol}\overline{\nu_R^{\rm sol}}(\nu_R^{\rm sol})^c + M_{\rm atm}\overline{\nu_R^{\rm atm}}(\nu_R^{\rm atm})^c$ Solar **Simpler matrix** m^D notation

$$P = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix} \quad M_R =$$

Seesaw matrix

$$m^{\nu} = m^D M_R^{-1} (m^D)^T =$$

$$\begin{pmatrix} \frac{a^2}{M_{\text{sol}}} + \frac{d^2}{M_{\text{atm}}} \\ \frac{ab}{M_{\text{sol}}} + \frac{de}{M_{\text{atm}}} \\ \frac{ac}{M_{\text{sol}}} + \frac{df}{M_{\text{atm}}} \\ \frac{df}{M_{\text{sol}}} \end{pmatrix}$$

Atmospheric mixing from dominant RHN

$$\tan\theta_{23} \sim \frac{e}{f}, \quad t$$

hep-ph/9904210

Add a second RHN to the SM to account for solar neutrino oscillations as well

$$H_u/v_u)(d\overline{L}_e + e\overline{L}_\mu + f\overline{L}_\tau)\nu_R^{\text{atm}}$$

Atmospheric

$\begin{pmatrix} M_{\rm sol} & 0\\ 0 & M_{\rm atm} \end{pmatrix}$

Assume charged lepton mass matrix is approx diagonal

Assume diagonal M_R

Single RHN Dominance

Leads to natural hierarchy

 $\sqrt{2a}$ | Solar mixing from subdominant RHN

Constrained Sequential Dominance (2005) Recall $m^D = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$ **Assume charged lepton mass** matrix is exactly diagonal

We now add further constraints to enhance predictivity

$$d = 0$$
 $e = f$ tanda $a = b = -c$ tanda

It turns out that this gives exact tri-bimaximal mixing with Accidentally occurs due to orthogonality of two columns as in Form Dominance M.C.Chen, S.F.K., 0903.0125

hep-ph/0506297

- $an \theta_{23} \sim e/f \sim 1$ $an \theta_{12} \sim \sqrt{2}a/(b-c) \sim 1/\sqrt{2}$

CSD(n) (n=real number) (2013)

More generally assume the two columns of the Dirac matrix are proportional to

$$\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} n \\ n \end{pmatrix}$$

But still find approx TB mixing as before (since n cancels)

 $\tan\theta_{23} \sim e/f \sim 1$ $\tan \theta_{12} \sim \sqrt{2}a/(b-c) \sim 1/\sqrt{2}$

The case n = 1 corresponds to the exact TBM case previously with FD but for values of $n \neq 1$ find only approximate TBM

1304.6264

- $\begin{pmatrix} 1 \\ n \\ -2 \end{pmatrix} \quad \begin{array}{l} \text{For } n \neq 1 \text{ the two columns are no} \\ \text{longer orthogonal (violating FD)} \\ \text{so now expect } \theta_{13} \neq 0 \end{array}$

$$\theta_{13} \sim (n-1) \frac{\sqrt{2}}{3} \frac{m_2}{m_3}$$

Flipped CSD(n) $\tan\theta_{23}$ -Octant flipped

$$\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n \\ 2-n \end{pmatrix} \text{ or } \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ 2-n \\ n \end{pmatrix}$$

S.F.K., S.Molina Sedgwick and S.J.Rowley, 1808.01005 Normal Flipped (n= real number) $\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n-2 \\ n \end{pmatrix}$

The two predictions only differ in atmospheric angle and CP phase (solar angle, reactor angle and neutrino mass unchanged)

$$\rightarrow \cot \theta_{23} \qquad \qquad \delta \rightarrow \delta + \pi$$

Alternatively we could use the following (only differs by unphysical phases):

Results for Lou(n) (2014) Seesaw formula $m^{\nu} = m^{D} M_{R}^{-1} (m^{D})^{T}$ $m^{D} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} d \\ e \\ f \end{pmatrix}$ $\begin{pmatrix} d \\ e \\ f \end{pmatrix} \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \propto \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix}$ $m_{(n)}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & n & n-2 \\ n & n^2 & n(n-2) \\ n-2 & n(n-2) & (n-2)^2 \end{pmatrix}$ Three effective input parameters (for given n)

Bjorkeroth, SFK 1412.6996

N.B. TMI mixing \forall n

Charged leptons diagonal

m_2 (meV)	m_3 (meV)	χ^2	$m_1 = 0$	$\theta_{13} \sim (n-1)\frac{\sqrt{2}}{3}\frac{m}{m}$
8.66	49.6	485	CSD(I)=TBM	
8.85	48.8	95.1	CSD(2) Antusch et	al 1108.4278 Find best
8.69	49.5	3.98	CSD(3) 1304.6264	> for n~
8.61	49.8	8.82	CSD(4) 1305.4846	
8.53	50.0	33.8		
	m_2 (meV) 8.66 8.85 8.69 8.61 8.53	$\begin{array}{ccc} m_2 & m_3 \\ (meV) & (meV) \\ \hline 8.66 & 49.6 \\ 8.85 & 48.8 \\ \hline 8.69 & 49.5 \\ \hline 8.61 & 49.8 \\ 8.53 & 50.0 \\ \end{array}$	$\begin{array}{c ccc} m_2 & m_3 & & \chi^2 \\ (meV) & (meV) & & \chi^2 \\ \hline 8.66 & 49.6 & 485 \\ 8.85 & 48.8 & 95.1 \\ \hline 8.69 & 49.5 & 3.98 \\ \hline 8.61 & 49.8 & 8.82 \\ \hline 8.53 & 50.0 & 33.8 \\ \hline \end{array}$	m_2 m_3 χ^2 $m_1 = 0$ (meV)(meV) χ^2 $m_1 = 0$ 8.6649.6485CSD(1)=TBM8.8548.895.1CSD(2) Antusch et8.6949.53.98CSD(3) 1304.62648.6149.88.82CSD(4) 1305.48468.5350.033.8 χ^2

Highly predictive - 3 inputs for 9 observables (6 so far measured)

1512.07531 Littlest Seesaw CSD(~3) (2015) F.Costa, SFK 2307.13895 0.20 0.20 Fit these θ_{13} 0.15 0.15 0.15 $\underline{m_b}$ m_2^2 m_{3}^{2}

Predict the less well

 3σ

$\eta = 4.17 \pm 0.15$	Exp. range
$34.32^{+0.20}_{-0.25}$	31.31 - 35.74
$45.5^{+2.3}_{-2.4}$	39.6 - 51.9
$87.9^{+11.0}_{-9.6}$	0 - 44 & 108 - 360
$44.5^{+2.3}_{-2.4}$	39.6 - 51.9
$267.9^{+11.0}_{-9.6}$	0 - 44 & 108 - 360

measured solar, and atmospheric angles and CP phase δ N.B. not just $\cos \delta$

G.J.Ding, S.F.K., X.G.Liu and J.N.Lu, 1910.03460 Littlest Modular Seesaw (2019) **CSD(n)** $n = 1 + \sqrt{6} \approx 3.45$ $= \sin^2 \theta_{23} = \sin^2 \theta_{12} = \sin^2 \theta_{13} = m_2^2 / m_3^2$ 0.20日 Flipped modular Littlest seesaw $n = 1 - \sqrt{6}$ allowed ranges bf $\underline{m_b^{0.15}}$ [0.725, 0.806]0.742 η/π [0.0683, 0.0786]0.0758r $\sin^2 \theta_{13}$ [0.0205, 0.0240]0.0231 $\sin^2 \theta_{12}$ [0.317, 0.319]0.318 $\sin^2 \theta_{23}$ [0.517, 0.595]0.5350.05 -0.478, -0.354] -0.452 δ_{CP}/π -0.562, -0.409-0.441 β/π G.J.Ding,S.F.K. 2311.09282 m_2^2/m_3^2 0.0283 [0.0270, 0.0321]0뵤 0.5 1.0 2.0 1.5 0 η/π

How does $n = 1 + \sqrt{6}$ originate?

De Anda, SFK 2304.05958 Littlest Modular Seesaw from Orbifold

Field	S^A_A	S_A^B	S_A^C	$2k_A$	$2k_B$	$2k_C$	Loc	de Medeir	os V	arzi	elas	,5.+.	.K.,P	I.Le
	1	1	3	0	0	0	$\mathbb{T}^2_{\mathcal{O}}$	Yuk/Mass	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$
e^{c}	1	1	1	0	0	-6	\mathbb{T}^2_C	$Y_e(\tau_3)$	1	1	3	0	0	6
μ^{c}	1	1	1	0	0	-4	\mathbb{T}^2_C	$Y_{\mu}(au_3)$	1	1	3	0	0	4
τ^{c}	1	1	1	0	0	-2	\mathbb{T}_C^2	$Y_{ au}(au_3)$	1	1	3	0	0	2
N_a^c	1	1	1	0	-4	0	\mathbb{T}^2_B	$Y_a(au_2)$	1	3	1	0	4	0
N_s^c	1	1	1	-2	0	0	$\mathbb{T}^{\overline{2}}_A$	$Y_s(\tau_1)$	3	1	1	2	0	0
Φ_{BC}	1	3	3	0	0	0	Bulk	$M_a(\tau_2)$	1	1	1	0	8	0
Φ_{AC}	3	1	3	0	0	0	Bulk	$M_s(\tau_1)$	1	1	1	4	0	0

Fixed points of S_4

	au	$Y_{3}^{(2)}$	$(\tau), Y^{(6)}_{3,\mathbf{I}}(\tau)$	$Y_{3}^{(4)}(\tau)$
τ_1	i	(1, 1 -	$+\sqrt{6}, 1-\sqrt{6})$	(1, -
	i+1	$(1, -\frac{\omega}{3}(1+i$	$(\sqrt{2}), -\frac{\omega^2}{3}(1+i\sqrt{2}))$	(0,]
$ au_2$	i+2	$(1, \frac{1}{3}(-1+3))$	$i\sqrt{2}), \frac{1}{3}(-1+i\sqrt{2}))$	(0, 1)
	i+3	$(1, \omega(1 +$	$\sqrt{6}), \omega(1-\sqrt{6}))$	(1, -1)
	au	$Y^{(2)}_{3}(\tau)$	$Y_{3}^{(4)}(\tau), Y_{3'}^{(4)}(\tau)$	$Y^{(6)}_{{\bf 3},{f II}}(au$
$ au_3$	ω	(0,1,0)	(0, 0, 1)	(1,
	$\omega + 1$	$(1,1,-rac{1}{2})$	$(1,-rac{1}{2},1)$	(1, -
	$\omega + 2$	$(1,-rac{\omega^2}{2},\omega)$	$(1,\omega^2,-rac{\omega}{2})$	(1, -2a)
	$\omega + 3$	$(1,\omega,-\frac{\omega^2}{2})$	$(1, -\frac{\omega}{2}, \omega^2)$	(1, -2a)
	·	I		I

y 2211.00654

Also see Multiple moduli talk by Zhou

Yukawa couplings are modular forms evaluated at the fixed points of the moduli fields (the lattice vectors)

$$\begin{array}{c} Y_{\mathbf{3}'}^{(6)}(\tau) \\ \hline -\frac{1}{2}, -\frac{1}{2} \\ \hline 1, -\omega \\ 1, -1 \\ \hline \frac{\omega}{2}, -\frac{\omega^2}{2} \\ \hline Y_{\mathbf{3}'}^{(6)}(\tau) \\ \hline 0, 0 \\ \hline -2, -2 \\ \hline \omega^2, -2\omega \\ \hline \omega, -2\omega^2 \\ \hline \end{array}$$

$$\frac{1}{\Lambda} \begin{bmatrix} L\Phi_{BC}Y_a N_a^c + L\Phi_{AC}Y_s N_s^c \end{bmatrix} H_u \\
+ \begin{bmatrix} LY_e e^c + LY_\mu \mu^c + LY_\tau \tau^c \end{bmatrix} H_d \\
+ \frac{1}{2} M_a N_a^c N_a^c + \frac{1}{2} M_s N_s^c N_s^c . \\
\begin{pmatrix} y_e & 0 & 0 \\ 0 & y_\mu & 0 \\ 0 & 0 & y_\tau \end{pmatrix} \begin{pmatrix} 0 & b \\ a & b (1 - \sqrt{6}) \\ -a & b (1 + \sqrt{6}) \end{pmatrix} \begin{pmatrix} \text{CSD}(n) \\ n = 1 + \sqrt{6} \\ n \approx 3.45 \\
\text{Diagonal} \\
\text{Charged} \\
\text{leptons} \\
\text{matrix}
\end{bmatrix}$$

de Anda, SFK 2312.09010 Littlest Modular Seesaw from Orbifold GUTs

Field	SU(5)	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$	Loc
F	5	1	1	3	0	0	0	\mathbb{T}^2_C
T_1	10	1	1	1	0	0	1	\mathbb{T}^2_C
T_2	10	1	1	1	0	0	1/2	\mathbb{T}^2_C
T_3	10	1	1	1	0	0	0	\mathbb{T}^2_C
N_a^c	1	1	1	1	0	-4	0	\mathbb{T}_B^2
N_s^c	1	1	1	1	-2	0	0	\mathbb{T}^2_A
H_u	5	1	1	1	0	0	0	Bulk
H_d	$\overline{5}$	1	1	1	0	0	1/2	Bulk
H_{45}	45	1	1	1	0	0	1/2	Bulk
$H_{\overline{45}}$	$\overline{45}$	1	1	1	0	0	0	Bulk
Φ_{BC}	1	1	3	3	0	0	0	Bulk
Φ_{AC}	1	3	1	3	0	0	0	Bulk
ξ_F	1	1	1	1	0	0	-5/2	\mathbb{T}^2_C
ξ_T	1	1	1	1	0	0	-1/2	\mathbb{T}^2_C

				•	-	_/ _	
							-
Yuk/Mass	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$	
$Y_e(\tau_3)$	1	1	3	0	0	6	
$Y_{\mu}(au_3)$	1	1	3	0	0	4	
$Y_{ au}(au_3)$	1	1	3	0	0	2	
$Y_a(au_2)$	1	3	1	0	4	0	
$Y_s(au_1)$	3	1	1	2	0	0	
$M_a(\tau_2)$	1	1	1	0	8	0	

 $M_s(\tau_1)$

 10d orbifold B.C.s break SU(5) with DT splitting • Triangular form of M_d, M_e yields CKM mixing plus very suppressed charged lepton corrections • Two weightons ξ_F , ξ_T control the hierarchies

Summary

- Flavour problem motivates family/flavour symmetry
- Neutrino mass and mixing motivates non-Abelian
- \Box A4, S4, A5 can enforce TBM, BM, GR patterns via Z^T_N and Z^S₂xZ^U₂
- Reactor angle can be non-zero if only a subgroup is preserved
- \square Breaking $Z^{\intercal}{}_{N}$ leads to charged lepton corrections and solar sum rules
- □ Breaking Z^U₂ preserves 1st or 2nd columns, atmospheric sum rules
- Such symmetry predictions will be tested in coming years
- □ Type 1a seesaw: 2RHN + SRHND for natural hierarchy
 - $m_3 \gg m_2 \gg m_1 \approx 0$ (large mixing with no tuning)
- Predictivity motivates CSD(n) with n~3 a.k.a. Littlest Seesaw
- Littlest Modular Seesaw yields excellent predictions
- □ Can arise from 10d orbifold and may be combined with SU(5) GUTs

Back-up: our bottom-up Orbifold

For more details see: De Anda, SFK 2304.05958

Consider Two Extra Dimensions compactified on a torus, equivalent to a parallelogram

Adding the vectors together with arbitrary integers generates a lattice of points. Any two lattice points give a new torus.

Bottom-up Orbifolds Two dimensional twisted torus $z = z + \omega_1, \quad z = z + \omega_2$ Identify $\tau \equiv \omega_1 / \omega_2$ Define modulus field $\{1, \tau\}$ Basis vectors become $z \sim z + 1, \quad z \sim z + \tau$ **Then identify**

Consider 6d space with 3 factorisable tori

These are the complex structure moduli in string theory

SUSY preserving orbifolds $(\mathbb{T}^2)^3/(\mathbb{Z}_N \times \mathbb{Z}_M)$

 $\theta_N: (x, z_1, z_2, z_3) \sim (x, \alpha_N z_1, \beta_N z_2, \gamma_N z_3),$ $\theta_M: (x, z_1, z_2, z_3) \sim (x, \alpha_M z_1, \beta_M z_2, \gamma_M z_3)$

 $\alpha_{N,M}, \beta_{N,M}, \gamma_{N,M}$ are Nth, Mth roots of unity.

De Anda, SFK 2304.05958

Three twisted tori $z_i \sim z_i + 1$, $z_i \sim z_i + \tau_i$, with three moduli fields

Allowed SUSY preserving orbifolds $(\mathbb{T}^2)^3/(\mathbb{Z}_N \times \mathbb{Z}_M)$

$(\mathbb{T}^2)^3 / (\mathbb{Z}_4 \times \mathbb{Z}_2)$

 $\theta_4: (x, z_1, z_2, z_3) \sim (x, iz_1, -iz_2, z_3)$ $\theta_2: (x, z_1, z_2, z_3) \sim (x, z_1, -z_2, -z_3)$

Choose 6d invariant fixed branes

$$\mathbb{T}_{A}^{2} = (x, z_{1}, 0, 0), \qquad \mathbb{Z}_{4}$$
$$\mathbb{T}_{B}^{2} = (x, 0, z_{2}, 0), \qquad \mathbb{Z}_{4}$$
$$\mathbb{T}_{C}^{2} = (x, 0, 0, z_{3}), \qquad \mathbb{Z}_{2}$$

which all overlap the 6d origin

De Anda, SFK 2304.05958 Consider (N,M)= (4,2) example from table 6d SUSY orbifold

> Fixes $\tau_{1,2} = i + n_{1,2}$, $n_{1,2} \in \mathbb{Z}$, Assume $\tau_3 = \omega$ (stability)

Littlest Modular Seesaw from Orbifold

De Anda, SFK 2304.05958

