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The Flavour Problem



Mixing

New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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Neutrino mass 
and mixing

   Neutrinos have tiny masses (much less than electron) 
   Neutrinos mix a lot (unlike the quarks) 
   Up to 9 new params: 3 masses, 3 angles, 3 phases 
   Origin of mass and mixing is unknown                  
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Figure 1: The probability that a particular neutrino mass state ⌫i with mass mi contains a particular charged
lepton mass basis state (⌫e, ⌫µ, ⌫⌧ ) is represented by colours. The left and right panels of the figure are referred
to as normal or inverted mass squared ordering, respectively, referred to as NO or IO. The value of the lightest
neutrino mass is presently unknown but there is a cosmological limit: m1 + m2 + m3 < 0.23 eV [33]. For
example, if m1 = 0, then NO would give m2 = 0.0086 eV and m3 = 0.050 eV, hence m1 + m2 + m3 ⇡ 0.06 eV.
While for IO with m3 = 0, we would find m2 ⇡ m1 = 0.050 eV, hence m1 + m2 + m3 ⇡ 0.10 eV. Prospects for
future cosmological limits approaching this value are discussed in [34].

by a product of Euler rotations: (⌫e, ⌫µ, ⌫⌧ )T = R23R13R12(⌫1, ⌫2, ⌫3)T where Rij is a real orthogonal
rotation matrix in the ij plane, as shown in Eq.4 (with the phase set to zero) and depicted in Fig.2.

The measured mixing angles depend on whether the neutrino masses are in the NO or the IO pattern
as shown in Fig.3. Tri-bimaximal mixing would correspond to sin2 ✓23 = 1/2 and sin2 ✓13 = 1/3, and
indicated by the dashed lines in Fig.3, which translates into ✓23 = 45�, ✓12 = 35.26�. The current best
lepton mixing angle one sigma ranges are displayed in Table 1 for the NO case: ✓23 ⇡ 41.4�

± 1.6�,
✓12 ⇡ 33.2�

± 1.2�, ✓13 ⇡ 8.45�
± 0.15�. These values are extracted from the two recently updated global

fits of [38, 39]. The non-zero reactor angle excludes the original version of tri-bimaximal mixing with
a zero reactor angle. The alternative tri-bimaximal-reactor mixing is evidently excluded by about two
sigma. In addition, there is weak evidence for a non-zero CP violating phase. Present data (slightly)
prefers a normal ordered (NO) neutrino mass pattern, with a CP phase � = �100�

± 50�, and (more
significantly) non-maximal atmospheric mixing. The meaning of the CP phase � is discussed below.

The PDG [41] advocates CKM and the PMNS mixing matrices being parameterised by unitary
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8 Chapter 1 Introduction

In the PDG parametrisation, UPMNS is described by three mixing angles ✓`ij and three

phases �`, ↵21 and ↵31. With cij = cos ✓`ij and sij = sin ✓`ij ,

UPMNS =

0

B@
1 0 0

0 c23 s23

0 �s23 c23

1

CA

0

B@
c13 0 s13e�i�`

0 1 0

�s13ei�
`

0 c13

1

CA

0

B@
c12 s12 0

�s12 c12 0

0 0 1

1

CA

⇥ diag(1, ei↵21/2, ei↵31/2).

(1.23)

If neutrinos are Dirac particles, the phases ↵21 and ↵31 become unphysical, and the

PMNS matrix is exactly analogous to the CKM matrix. In shorthand, we may write the

above as UPMNS = R`
23
U `
13
R`

12
P .

Neutrino oscillation experiments do not measure the neutrino masses directly, and can

only constrain the mass squared di↵erences �m2

ij = m2

i � m2

j . The absolute scale of

neutrino mass, characterised by the lightest neutrino mass m1, is not known. Moreover,

the ordering of neutrino masses is not yet fixed. While it is known that the first and

second neutrinos obey m1 < m2 (equivalent to �m2

21
> 0), at current experimental

precision it is not known whether the third neutrino with mass m3 is the heaviest, so-

called normal ordering (NO), or the lightest, dubbed inverted ordering (IO). In other

words, the sign of �m2

31
is undetermined, although global fits to data show a mild

preference for normal ordering [36]. For normal ordering, the strongest hierarchy occurs

when m1 is small: for m1 . 5 meV, m2/m3 ⇠ 0.2 meV. Meanwhile an inverted ordering

requires the first and second neutrinos to be similar, i.e. m1 . m2, while the third

neutrino is lighter. Observations of the cosmic microwave background (CMB) puts an

upper bound on the sum of neutrino masses
P

mi < 0.23 eV [37]. Bounds on the

neutrino masses are also given by searches for neutrinoless double beta (0⌫2�) decay.

Specifically, the 0⌫2� decay rate is proportional to the square of the e↵ective Majorana

mass |m�� | = |
P

i U
2

eimi|. Future experiments may be able to place upper bounds on

|m�� | which is in tension with oscillation data for an inverted hierarchy (or conversely,

confirm it).

In Table 1.3 we present the current best fit values for normal ordering to the three

lepton mixing angles ✓`ij , Dirac charge-parity (CP ) phase �` and neutrino mass-squared

di↵erences�m2

ij , taken from the NuFit collaboration [36], as well as the measured masses

of the electron, muon and tau [23].

1.3 The flavour puzzle

The flavour puzzle can be approached in a number of equivalent ways. For instance, we

may ask

thus not only confirmed solar neutrino oscillations, but has also uniquely specified the LMA

solar solution, heralding a new era in neutrino physics.

2.4 Reactor neutrino mixing

Until recently, the reactor angle θ13 was not measured, only limited by CHOOZ, a reactor

experiment that failed to see any signal of neutrino oscillations over the Super-Kamiokande

mass range. CHOOZ data from ν̄e → ν̄e disappearance not being observed provided a

significant constraint on θ13 over the Super-Kamiokande preferred range of ∆m2
32 [11]:

sin2 2θ13 < 0.2. (2.10)

Direct evidence for θ13 was first provided by T2K, MINOS and Double Chooz [12]. Re-

cently the Daya Bay [13], RENO [14], and Double Chooz [15] collaborations have measured

sin2(2θ13):

Daya Bay : sin2(2θ13) = 0.084 ± 0.005(stat. & syst.) ,

RENO : sin2(2θ13) = 0.082 ± 0.009(stat.) ± 0.006(syst.) ,

Double Chooz : sin2(2θ13) = 0.090+0.032
−0.029(syst. & stat.) .

(2.11)

This corresponds to

|Ue3| = sin θ13 ≈ 0.15, (2.12)

or a reactor angle θ13 ≈ 8.5◦.

2.5 Three neutrino mixing including phases

If the reactor angle were zero then there would be no CP violation in neutrino oscillations.

The measurement of the reactor angle means that we cannot ignore the presence of phases

any more. Including the phases, assuming the light neutrinos are Majorana, UPMNS can

be parameterised in terms of three mixing angles θij, a Dirac phase δ, together with two

Majorana phases β1,β2, as follows [5],

UPMNS = R23U13R12P12, (2.13)

where

U13 =

⎛

⎜⎝
c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

⎞

⎟⎠ , P12 =

⎛

⎜⎝
eiβ1 0 0

0 eiβ2 0

0 0 1

⎞

⎟⎠ , (2.14)

and R23 and R12 were defined below Eq. (2.1), giving,

UPMNS =

⎛

⎜⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

⎞

⎟⎠P12. (2.15)

Alternatively the lepton mixing matrix may be expressed as a product of three complex

Euler rotations [57],

UPMNS = U23U13U12, (2.16)

– 18 –

CP violating 
Majorana phases

CP violating phase

PMNS mixing matrix



Global Fits

where ⌫e, ⌫µ, ⌫⌧ are the SU(2)L partners to the left-handed charged lepton mass eigenstates

and ⌫1,2,3 are the neutrinos in their mass basis. Following the standard convention we can

describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases

UPMNS =

0

B@
1 0 0

0 c23 s23

0 �s23 c23

1

CA

0

B@
c13 0 s13e

�i�

0 1 0

�s13e
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1

CA

0
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0 0 1

1

CAP, (2.5)
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i�
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s12s23 � c12s13c23e
i� �c12s23 � s12s13c23e

i�
c13c23

1

CAP, (2.6)

where P contains the Majorana phases

P = diag
⇣
1, ei↵21/2, e

i↵31/2
⌘
, (2.7)

The current 3� parameters intervals coming from the global fit of the neutrino oscillation

data by the nuFIT collaboration [32] are

✓12 = [31.31�, 35.74�], ✓23 = [39.6�, 51.9�], ✓13 = [8.19�, 8.89�], (2.8)

� = [0�, 44�] & [108�, 360�],
�2

21

10�5eV2 = [6.82, 8.03],
�2

3l

10�3eV2 = [2.428, 2.597].

(2.9)

The PMNS matrix reads

|U |w/o SK-atm
3� =

0

B@
0.803 ! 0.845 0.514 ! 0.578 0.142 ! 0.155

0.233 ! 0.505 0.460 ! 0.693 0.630 ! 0.779

0.262 ! 0.525 0.473 ! 0.702 0.610 ! 0.762

1

CA . (2.10)

These results are obtained considering normal ordering, which is the current best fit, and

without including the Super-Kamiokande (SK) data. Simple mixing patter such TB, BM

or GR could explain the first neutrino oscillation data. These patterns can be enforced via

symmetries of the mass matrices. Let us take a basis where the charged lepton Me mass

matrix is diagonal and we notice that for 3 generations we have that ZT
3 is a symmetry of

the Lagrangian

T
†
⇣
M

†
eMe

⌘
T = M

†
eMe, (2.11)

where T = diag
�
1,!2

,!
�
and ! = e

i2⇡/3. The light Majorana neutrino mass matrix is

invariant under the Klein symmetry: Z
U
2 ⇥ Z

S
2 . This can be seen taking the diagonal

neutrino mass matrix and performing the transformations

– 5 –
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where ⌫e, ⌫µ, ⌫⌧ are the SU(2)L partners to the left-handed charged lepton mass eigenstates

and ⌫1,2,3 are the neutrinos in their mass basis. Following the standard convention we can

describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases

UPMNS =

0
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i�
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CAP, (2.6)

where P contains the Majorana phases

P = diag
⇣
1, ei↵21/2, e

i↵31/2
⌘
, (2.7)

The current 3� parameters intervals coming from the global fit of the neutrino oscillation

data by the nuFIT collaboration [32] are

✓12 = [31.31�, 35.74�], ✓23 = [39.6�, 51.9�], ✓13 = [8.19�, 8.89�], (2.8)

� = [0�, 44�] & [108�, 360�],
�2

21

10�5eV2 = [6.82, 8.03],
�2

3l

10�3eV2 = [2.428, 2.597].

(2.9)

The PMNS matrix reads

|U |w/o SK-atm
3� =

0

B@
0.803 ! 0.845 0.514 ! 0.578 0.142 ! 0.155

0.233 ! 0.505 0.460 ! 0.693 0.630 ! 0.779

0.262 ! 0.525 0.473 ! 0.702 0.610 ! 0.762

1

CA . (2.10)

These results are obtained considering normal ordering, which is the current best fit, and

without including the Super-Kamiokande (SK) data. Simple mixing patter such TB, BM

or GR could explain the first neutrino oscillation data. These patterns can be enforced via

symmetries of the mass matrices. Let us take a basis where the charged lepton Me mass

matrix is diagonal and we notice that for 3 generations we have that ZT
3 is a symmetry of

the Lagrangian

T
†
⇣
M

†
eMe

⌘
T = M

†
eMe, (2.11)

where T = diag
�
1,!2

,!
�
and ! = e

i2⇡/3. The light Majorana neutrino mass matrix is

invariant under the Klein symmetry: Z
U
2 ⇥ Z

S
2 . This can be seen taking the diagonal

neutrino mass matrix and performing the transformations

– 5 –

sin2 ✓12 = 1
3? 35.26�? TBM?

Octant?

where ⌫e, ⌫µ, ⌫⌧ are the SU(2)L partners to the left-handed charged lepton mass eigenstates

and ⌫1,2,3 are the neutrinos in their mass basis. Following the standard convention we can

describe UPMNS in terms of three angles, one CP violation phase and two Majorana phases
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P = diag
⇣
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i↵31/2
⌘
, (2.7)

The current 3� parameters intervals coming from the global fit of the neutrino oscillation

data by the nuFIT collaboration [32] are

✓12 = [31.31�, 35.74�], ✓23 = [39.6�, 51.9�], ✓13 = [8.19�, 8.89�], (2.8)
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1

CA . (2.10)

These results are obtained considering normal ordering, which is the current best fit, and

without including the Super-Kamiokande (SK) data. Simple mixing patter such TB, BM

or GR could explain the first neutrino oscillation data. These patterns can be enforced via

symmetries of the mass matrices. Let us take a basis where the charged lepton Me mass

matrix is diagonal and we notice that for 3 generations we have that ZT
3 is a symmetry of

the Lagrangian

T
†
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†
eMe

⌘
T = M

†
eMe, (2.11)
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and ! = e
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1 Introduction

Neutrino mass and mixing represents the first and so far only new physics beyond the

Standard Model (SM) of particle physics. We know it must be new physics because its

origin is unknown and it is not predicted by the SM. Independently of the whatever the new

(or nu) SM is, we do know that the minimal paradigm involves three active neutrinos, the

weak eigenstates ⌫e, ⌫µ, ⌫⌧ (the SU(2)L partners to the left-handed charged lepton mass

eigenstates) which are related to the three mass eigenstates m1,2,3 by a unitary PMNS

mixing matrix [1].

The PMNS matrix is similar to the CKM matrix which describes quark mixing, but in-

volves three independent leptonic mixing angles ✓23, ✓13, ✓12 (or s23 = sin ✓23, s13 = sin ✓13,

s12 = sin ✓12), one leptonic CP violating Dirac phase � which a↵ects neutrino oscillations,

and possibly two Majorana phases which do not enter into neutrino oscillation formu-

las. Furthermore neutrino oscillations only depend on the two mass squared di↵erences

�m
2
21 = m

2
2 � m

2
1, which is constrained by data to be positive, and �m

2
31 = m

2
3 � m

2
1,

which current data allows to take a positive (normal) or negative (inverted) value. In 1998,

the angle ✓23 was first measured to be roughly 45o (consistent with equal bi-maximal ⌫µ�⌫⌧

mixing) by atmospheric neutrino oscillations, while ✓12 was determined to be roughly 35o

(consistent with equal tri-maximal ⌫e�⌫µ�⌫⌧ mixing) in 2002 by solar neutrino oscillation

experiments, while ✓13 was first accurately found to be 8.5o in 2012 by reactor oscillation

experiments.

Various simple ansatzes for the PMNS matrix were proposed, the most simple ones

involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and s23 = c23 =

1/
p
2, leading to a PMNS matrix of the form,

U0 =

0

B@
c12 s12 0

� s12p
2

c12p
2

1p
2

s12p
2

� c12p
2

1p
2

1

CA , (1.1)

– 1 –

|U |w/o SK-atm
3‡ =

Q

ca
0.803 æ 0.845 0.514 æ 0.578 0.142 æ 0.155

0.233 æ 0.505 0.460 æ 0.693 0.630 æ 0.779

0.262 æ 0.525 0.473 æ 0.702 0.610 æ 0.762

R

db

|U |with SK-atm
3‡ =

Q

ca
0.803 æ 0.845 0.514 æ 0.578 0.143 æ 0.155

0.244 æ 0.498 0.502 æ 0.693 0.632 æ 0.768

0.272 æ 0.517 0.473 æ 0.672 0.623 æ 0.761

R

db

Small

Large

sin ✓23 = 1p
2

sin ✓13 = 0

Symmetry 
can enforce

Where large sin ✓12 can come from the same symmetry

NuFit 5.2
Large
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A4 and S4 Group Theory

h�⌫
30i =

0

@
1
1
1

1

A
preserves S,U in AF basis preserves T in AF basis

Ma-Rajarsakaran A4 basis

preserves S in Ma basispreserves T in Ma basis
VEV VEV

that there exists only one more irreducible representation, namely the doublet 2. Its

matrix representation is presented, together with the other irreducible representations in

the following table.

S4 A4 S T U

1,1′ 1 1 1 ±1

2

(
1′′

1′

) (
1 0

0 1

) (
ω 0

0 ω2

) (
0 1

1 0

)

3,3′ 3 1
3

⎛

⎜⎝
−1 2 2

2 −1 2

2 2 −1

⎞

⎟⎠

⎛

⎜⎝
1 0 0

0 ω2 0

0 0 ω

⎞

⎟⎠ ∓

⎛

⎜⎝
1 0 0

0 0 1

0 1 0

⎞

⎟⎠

The same table also shows the representations of the S4 subgroup A4, generated by S and

T only. Dropping the U generator, it is clear that both triplets of S4 coincide with the

single A4 triplet. Likewise, the two S4 singlets correspond to the trivial singlet of A4. The

S4 doublet, on the other hand, becomes reducible once the U generator is removed. Hence,

it decomposes into two separate non-trivial irreducible representations of A4, 1′′ and 1′.

The non-trivial S4 product rules in the T -diagonal basis are listed below, where we use

the number of primes within the expression

α(′) ⊗ β(′) → γ(′) , (C.2)

to classify the results. We denote this number by n, e.g. in 3⊗ 3′ → 3′ we get n = 2.

1(′) ⊗ 1(′) → 1(′)

⎧
⎪⎨

⎪⎩
n = even

1 ⊗ 1 → 1

1′ ⊗ 1′ → 1

1 ⊗ 1′ → 1′

⎫
⎪⎬

⎪⎭
αβ ,

1(′) ⊗ 2 → 2

{
n = even

n = odd

1 ⊗ 2 → 2

1′ ⊗ 2 → 2

}

α

(
β1

(−1)nβ2

)

,

1(′) ⊗ 3(′) → 3(′)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
n = even

1 ⊗ 3 → 3

1′ ⊗ 3′ → 3

1 ⊗ 3′ → 3′

1′ ⊗ 3 → 3′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
α

⎛

⎜⎝
β1
β2
β3

⎞

⎟⎠ ,

2 ⊗ 2 → 1(′)

{
n = even

n = odd

2⊗ 2 → 1

2⊗ 2 → 1′

}

α1β2 + (−1)nα2β1 ,

2 ⊗ 2 → 2

{
n = even 2⊗ 2 → 2

} (
α2β2
α1β1

)

,
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Pµµ = 1− (1− 4a2) sin2∆+
2

3
(1− s)α∆ sin 2∆

−
4

9
α2 sin

2A∆

A2
−

4

9
α2∆2 cos 2∆

+
4

9
α2 1

A

(
sin∆

sinA∆

A
cos(A− 1)∆ −

∆

2
sin 2∆

)

− r2
sin2(A− 1)∆

(A− 1)2

−
1

A− 1
r2
(
sin∆ cosA∆

sin(A− 1)∆

(A− 1)
−

A

2
∆ sin 2∆

)

−
4

3
rα cos δ cos∆

sinA∆

A

sin(A− 1)∆

(A− 1)
, (B.9)

Pµτ = (1− 4a2) sin2∆−
2

3
(1− s)α∆ sin 2∆+

4

9
α2∆2 cos 2∆

−
4

9
α2 1

A

(
sin∆

sinA∆

A
cos(A− 1)∆ −

∆

2
sin 2∆

)

+
1

A− 1
r2
(
sin∆ cosA∆

sin(A− 1)∆

(A− 1)
−

A

2
∆ sin 2∆

)

+
4

3
rα sin δ sin∆

sinA∆

A

sin(A− 1)∆

(A− 1)
. (B.10)

C. Generators and Clebsch-Gordan coefficients of S4, A4 and T7

In this section we list the generators of the groups S4, A4 and T7 in the basis where the

order three generator is diagonal. As this basis is particularly convenient for model building

purposes, we state the corresponding (basis dependent) Clebsch-Gordan coefficients for all

non-trivial Kronecker products. We first consider the two intimately linked groups S4 and

A4, before discussing the group T7.

C.1 The groups S4 and A4

The permutation group S4 can be defined in terms of three generators S, T and U satisfying

the presentation rules [146]

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 . (C.1)

Dropping the generator U and with it all relations involving U , we obtain the presentation

of the alternating group A4.

The triplet matrix representations of the three S4 generators in the T -diagonal basis

can be obtained from Eq. (5.9). Noticing that the b generator (corresponding to U) in

Eq. (5.7) occurs only quadratically, we immediately find another triplet representation

by changing the overall sign of U . The obtained irreducible representations are called 3

and 3′, respectively. Likewise we find the two singlet representations 1 and 1′. Summing

up the square of the dimensions of these representations, 12 + 12 + 32 + 32 = 20, shows
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Altarelli-Feruglio A4 basis

h�l
30i =

0

@
1
0
0

1

A

8

where S is real diagonal,

S =

0

B@
1 0 0

0 �1 0

0 0 �1

1

CA ; T =

0

B@
0 1 0

0 0 1

1 0 0

1

CA ; (A1)

The products of singlets are:

1⌦ 1 = 1 10 ⌦ 100 = 1 10 ⌦ 10 = 100 100 ⌦ 100 = 10 (A2)

one has the following triplet multiplication rules,

(ab)1 = a1b1 + a2b2 + a3b3 ;

(ab)10 = a1b1 + !a2b2 + !2a3b3 ;

(ab)100 = a1b1 + !2a2b2 + !a3b3 ;

(ab)31 = (a2b3, a3b1, a1b2) ;

(ab)32 = (a3b2, a1b3, a2b1) ,

(A3)

where !3 = 1, a = (a1, a2, a3) and b = (b1, b2, b3).
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where S is real diagonal,

S =

0

B@
1 0 0

0 �1 0

0 0 �1

1

CA ; T =

0

B@
0 1 0

0 0 1

1 0 0

1

CA ; (A1)

The products of singlets are:

1⌦ 1 = 1 10 ⌦ 100 = 1 10 ⌦ 10 = 100 100 ⌦ 100 = 10 (A2)

one has the following triplet multiplication rules,

(ab)1 = a1b1 + a2b2 + a3b3 ;

(ab)10 = a1b1 + !a2b2 + !2a3b3 ;

(ab)100 = a1b1 + !2a2b2 + !a3b3 ;

(ab)31 = (a2b3, a3b1, a1b2) ;

(ab)32 = (a3b2, a1b3, a2b1) ,

(A3)

where !3 = 1, a = (a1, a2, a3) and b = (b1, b2, b3).
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The Lagrangian for quarks and charged leptons in our model is given by

L =
yd
↵↵0

M
(QdR)↵H'd↵0 +

yl
↵↵0

M
(L lR)↵H'd↵0 +

yu
�

M
(Q'u)�H̃uR�0 +H.c., (4)

where ↵, ↵0 label A4 triplets. We remind that the product of two A4 triplets is given by 3⇥3 = 1+10+100+3+3 where
the two triplet contractions can be written as the symmetric and the antisymmetric ones and denoted as 31, 32 3.
Thus we have that ↵ = 31, 32 while ↵0 = 3, implying that yd,l

↵↵0 gives only two couplings yd,l1 ⌘ yd,l31 3 and yd,l2 ⌘ yd,l32 3.
On the other hand � and �0 can be 1, 10, 100 in such a way that �⇥�0 = 1. Note that, while the A4 flavour symmetry
holds in the (non-renormalizable) Yukawa terms leading to charged fermion masses, we assume it to be completely
broken in the scalar potential. Indeed, we assume that the scalar flavon multiplets get vacuum expectation values
(vevs) in an arbitrary direction of A4, preserving none of its subgroups. This can be easily achieved just by including
terms in the scalar potential which are SO(3) invariant as discussed in [15]. In this case the flavon scalar fields get
vevs in arbitrary directions of A4, that is

h'f i / (vf1 , v
f

2 , v
f

3 ) (5)

where vf1 6= vf2 6= vf3 and f = u, d, ⌫. To complete the model we need also to specify the mechanism of neutrino mass
generation, see Sec. V, below.

III. THE CHARGED LEPTON-QUARK MASS RELATION

From the A4 contraction rules (see appendix A) and the fact that the charged leptons and down-type quarks are
in the same A4 representations, one sees that the charged leptons and down-type quark mass matrices have the form

Mf =

0

B@
0 yf1 v

f

3 yf2 v
f

2

yf2 v
f

3 0 yf1 v
f

1

yf1 v
f

2 yf2 v
f

1 0

1

CA , (6)

where f = d, l. This special form is the same as obtained in Ref. [11, 16]. With the redefinition of variables:

yf1 = af/vf2 , yf2 = bf/vf2 , ↵f = vf3 /v
f

2 , rf = vf1 /v
f

2 , (7)

the mass matrix for the mass matrix in Eq. (6) takes the form

Mf =

0

B@
0 af↵f bf

bf↵f 0 afrf

af bfrf 0

1

CA . (8)

Let us now consider the system given by the following three invariants

detSf = (mf

1m
f

2m
f

3 )
2 (9)

TrSf = mf

1

2
+mf

2

2
+mf

3

2
(10)

(TrSf )2 � TrSfSf = (mf

1

2
+mf

2

2
)mf

3

2
+mf

1

2
mf

2

2
(11)

where Sf = Mf M
†
f
. This system can be solved and we find

rf ⇡
mf

3q
mf

1m
f

2

p

↵f , (12)

3
In A4 there is only one triplet irreducible representation, here 31 and 32 are not di↵erent irreducible representations, but simply a way

to indicate di↵erent contractions.

S2 = T 3 = (ST )3 = IA4
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1 Introduction

Neutrino mass and mixing represents the first and so far only new physics beyond the

Standard Model (SM) of particle physics. We know it must be new physics because its

origin is unknown and it is not predicted by the SM. Independently of the whatever the new

(or nu) SM is, we do know that the minimal paradigm involves three active neutrinos, the

weak eigenstates ⌫e, ⌫µ, ⌫⌧ (the SU(2)L partners to the left-handed charged lepton mass

eigenstates) which are related to the three mass eigenstates m1,2,3 by a unitary PMNS

mixing matrix [1].

The PMNS matrix is similar to the CKM matrix which describes quark mixing, but in-

volves three independent leptonic mixing angles ✓23, ✓13, ✓12 (or s23 = sin ✓23, s13 = sin ✓13,

s12 = sin ✓12), one leptonic CP violating Dirac phase � which a↵ects neutrino oscillations,

and possibly two Majorana phases which do not enter into neutrino oscillation formu-

las. Furthermore neutrino oscillations only depend on the two mass squared di↵erences

�m
2
21 = m

2
2 � m

2
1, which is constrained by data to be positive, and �m

2
31 = m

2
3 � m

2
1,

which current data allows to take a positive (normal) or negative (inverted) value. In 1998,

the angle ✓23 was first measured to be roughly 45o (consistent with equal bi-maximal ⌫µ�⌫⌧

mixing) by atmospheric neutrino oscillations, while ✓12 was determined to be roughly 35o

(consistent with equal tri-maximal ⌫e�⌫µ�⌫⌧ mixing) in 2002 by solar neutrino oscillation

experiments, while ✓13 was first accurately found to be 8.5o in 2012 by reactor oscillation

experiments.

Various simple ansatzes for the PMNS matrix were proposed, the most simple ones

involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and s23 = c23 =

1/
p
2, leading to a PMNS matrix of the form,

U0 =

0

B@
c12 s12 0

� s12p
2

c12p
2

1p
2

s12p
2

� c12p
2

1p
2

1

CA , (1.1)
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Bimaximal Tri-bimaximal Golden Ratio 

For bimaximal (BM) mixing (see e.g. [95–98] and references therein), one has s12 =

c12 = 1/
p

2 (✓12 = 45�) into Eq. (2.1),

UBM =

0

B@

1p
2

1p
2

0

�1
2

1
2

1p
2

1
2 �1

2
1p
2

1

CA . (2.3)

For golden ratio (GRa) mixing [99–103], the solar angle is given by tan ✓12 = 1/�, where
� = (1 +

p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [104] which we refer to as GRb mixing, and
GRc where cos ✓12 = �/

p
3 and ✓12 ⇡ 20.9�.

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the
hexagonal mixing (HEX) where ✓12 = ⇡/6 [105, 106].

As we discuss in the next subsection, these simple patterns may be enforced by discrete
non-Abelian family symmetry. Although these simple patterns are excluded by current
data, mainly because of the non-zero reactor angle, it is possible that some relic of these
patterns may survive, either due to charged lepton mixing corrections, or due to the first or
second column of these matrices surviving, where these situations correspond to a controlled
symmetry breaking as discussed in the next subsection.

2.2 Symmetry of the lepton mass matrices

The starting point for family symmetry models is to consider the symmetry of the mass
matrices. In a basis where the charged lepton mass matrix Me is diagonal, the symmetry
is,

T †(MeM
†
e )T = MeM

†
e (2.4)

where T = diag(1, !2, !) and ! = ei2⇡/n. For example for n = 3 clearly T generates a cyclic
group ZT

3 .
In the diagonal charged lepton mass basis, assuming UeL

= I,

U †
PMNSM

⌫U⇤
PMNS = diag(m1, m2, m3) (2.5)

and the neutrino mass matrix in this basis may be expressed as

M⌫ = UPMNS diag(m1, m2, m3)U
T

PMNS = m1G1 + m2G2 + m3G3 (2.6)

where Gi = GT

i
= �i�T

i
and �i are the three columns of UPMNS ⌘ (�1, �2, �3) with

�†
i
�j = �ij .

The Klein symmetry ZS

2 ⇥ ZU

2 of the light Majorana neutrino mass matrix defined in
Eq. (1.26) is given by the four element group (I, S, U, SU) [107],

M⌫ = S†M⌫S⇤, M⌫ = U †M⌫U⇤, M⌫ = (SU)†M⌫(SU)⇤ (2.7)

where

S = UPMNS diag(�1, +1,�1) U †
PMNS = �G0

1 + G0
2 � G0

3 (2.8)
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where the zero subscript reminds us that this form has ✓13 = 0 (and ✓23 = 45�).

For golden ratio (GRa) mixing [2], the solar angle is given by tan ✓12 = 1/�, where

� = (1 +
p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [3] which we refer to as GRb mixing, and GRc

where cos ✓12 = �/
p
3 and ✓12 ⇡ 20.9�.

For bimaximal (BM) mixing (see e.g. [4–6] and references therein), we insert s12 =

c12 = 1/
p
2 (✓12 = 45�) into Eq. (1.1),

UBM =

0

B@

1p
2

1p
2

0

�1
2

1
2

1p
2

1
2 �1

2
1p
2

1

CA . (1.2)

For tri-bimaximal (TB) mixing [7], alternatively we use s12 = 1/
p
3, c12 =

p
2/3

(✓12 = 35.26�) in Eq. (1.1),

UTB =

0

BB@

q
2
3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2

1

CCA . (1.3)

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the

hexagonal mixing (HEX) where ✓12 = ⇡/6.

These proposals are typically by finite discrete symmetries such as A4, S4, S5 (for a

review see e.g. [8]). After the reactor angle was measured, which excluded all these ansatze,

there were various proposals to rescue them and hence to maintain the notion of predictivity

of the leptonic mixing parameters, in particular the Dirac CP phase �, which is not directly

measured so far and remains poorly determined even indirectly. Two approaches have been

developed, in which some finite symmetry (typically a subgroup of A4, S4, S5) can enforce a

particular structure of the PMNS matrix consistent with a non-zero reactor angle, leading

to solar and atmospheric sum rules, as we now discuss.

The first approach, which leads to solar sum rules, is to assume that the above patterns

of mixing still apply to the neutrino sector, but receive charged lepton mixing corrections

due to the PMNS matrix being the product of two unitary matrices, which in our convention

is written as VeLV
†
⌫L , where V

†
⌫L is assumed to take the BM, TB or GR form, while VeL

di↵ers from the unit matrix. If VeL involves negligible 13 charged lepton mixing, then it

is possible to generate a non-zero 13 PMNS mixing angle, while leading to correlations

amongst the physical PMNS parameters, known as solar mixing sum rules [9–12]. This

scenario may be enforced by a subgroup of A4, S4, S5 which enforces the V⌫ structure [8]

while allowing charged lepton corrections.

In the second approach, which leads to atmospheric sum rules, it is assumed that

the physical PMNS mixing matrix takes the BM, TB or GR form but only in its first or

second column, while the third column necessarily departs from these structures due to the

non-zero 13 angle. Such patterns again lead to correlations amongst the physical PMNS

parameters, known as atmospheric mixing sum rules. This scenario may be enforced by

– 2 –

Tri

Bi

Z2

sin ✓12 = 1p
3

sin ✓12 = 1p
2 tan ✓12 = 2

1+
p
5
= 1

�

sin ✓13 = 0All these patterns involve so they need to be corrected

Bi

Z2

Bi

Z2

BiZ2
GR

Z3 Z5

where the zero subscript reminds us that this form has ✓13 = 0 (and ✓23 = 45�).

For golden ratio (GRa) mixing [2], the solar angle is given by tan ✓12 = 1/�, where

� = (1 +
p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [3] which we refer to as GRb mixing, and GRc

where cos ✓12 = �/
p
3 and ✓12 ⇡ 20.9�.

For bimaximal (BM) mixing (see e.g. [4–6] and references therein), we insert s12 =

c12 = 1/
p
2 (✓12 = 45�) into Eq. (1.1),

UBM =

0

B@

1p
2

1p
2

0

�1
2

1
2

1p
2

1
2 �1

2
1p
2

1

CA . (1.2)

For tri-bimaximal (TB) mixing [7], alternatively we use s12 = 1/
p
3, c12 =

p
2/3

(✓12 = 35.26�) in Eq. (1.1),

UTB =

0

BB@

q
2
3

1p
3

0

� 1p
6

1p
3
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3
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Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the

hexagonal mixing (HEX) where ✓12 = ⇡/6.

These proposals are typically by finite discrete symmetries such as A4, S4, S5 (for a

review see e.g. [8]). After the reactor angle was measured, which excluded all these ansatze,

there were various proposals to rescue them and hence to maintain the notion of predictivity

of the leptonic mixing parameters, in particular the Dirac CP phase �, which is not directly

measured so far and remains poorly determined even indirectly. Two approaches have been

developed, in which some finite symmetry (typically a subgroup of A4, S4, S5) can enforce a

particular structure of the PMNS matrix consistent with a non-zero reactor angle, leading

to solar and atmospheric sum rules, as we now discuss.

The first approach, which leads to solar sum rules, is to assume that the above patterns

of mixing still apply to the neutrino sector, but receive charged lepton mixing corrections

due to the PMNS matrix being the product of two unitary matrices, which in our convention

is written as VeLV
†
⌫L , where V

†
⌫L is assumed to take the BM, TB or GR form, while VeL

di↵ers from the unit matrix. If VeL involves negligible 13 charged lepton mixing, then it

is possible to generate a non-zero 13 PMNS mixing angle, while leading to correlations

amongst the physical PMNS parameters, known as solar mixing sum rules [9–12]. This

scenario may be enforced by a subgroup of A4, S4, S5 which enforces the V⌫ structure [8]

while allowing charged lepton corrections.

In the second approach, which leads to atmospheric sum rules, it is assumed that

the physical PMNS mixing matrix takes the BM, TB or GR form but only in its first or

second column, while the third column necessarily departs from these structures due to the

non-zero 13 angle. Such patterns again lead to correlations amongst the physical PMNS

parameters, known as atmospheric mixing sum rules. This scenario may be enforced by

– 2 –
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For bimaximal (BM) mixing (see e.g. [95–98] and references therein), one has s12 =
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p

2 (✓12 = 45�) into Eq. (2.1),
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For golden ratio (GRa) mixing [99–103], the solar angle is given by tan ✓12 = 1/�, where
� = (1 +

p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [104] which we refer to as GRb mixing, and
GRc where cos ✓12 = �/

p
3 and ✓12 ⇡ 20.9�.

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the
hexagonal mixing (HEX) where ✓12 = ⇡/6 [105, 106].

As we discuss in the next subsection, these simple patterns may be enforced by discrete
non-Abelian family symmetry. Although these simple patterns are excluded by current
data, mainly because of the non-zero reactor angle, it is possible that some relic of these
patterns may survive, either due to charged lepton mixing corrections, or due to the first or
second column of these matrices surviving, where these situations correspond to a controlled
symmetry breaking as discussed in the next subsection.

2.2 Symmetry of the lepton mass matrices

The starting point for family symmetry models is to consider the symmetry of the mass
matrices. In a basis where the charged lepton mass matrix Me is diagonal, the symmetry
is,

T †(MeM
†
e )T = MeM

†
e (2.4)

where T = diag(1, !2, !) and ! = ei2⇡/n. For example for n = 3 clearly T generates a cyclic
group ZT

3 .
In the diagonal charged lepton mass basis, assuming UeL

= I,

U †
PMNSM

⌫U⇤
PMNS = diag(m1, m2, m3) (2.5)

and the neutrino mass matrix in this basis may be expressed as

M⌫ = UPMNS diag(m1, m2, m3)U
T

PMNS = m1G1 + m2G2 + m3G3 (2.6)

where Gi = GT

i
= �i�T

i
and �i are the three columns of UPMNS ⌘ (�1, �2, �3) with

�†
i
�j = �ij .

The Klein symmetry ZS

2 ⇥ ZU

2 of the light Majorana neutrino mass matrix defined in
Eq. (1.26) is given by the four element group (I, S, U, SU) [107],

M⌫ = S†M⌫S⇤, M⌫ = U †M⌫U⇤, M⌫ = (SU)†M⌫(SU)⇤ (2.7)

where

S = UPMNS diag(�1, +1,�1) U †
PMNS = �G0

1 + G0
2 � G0

3 (2.8)
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For golden ratio (GRa) mixing [99–103], the solar angle is given by tan ✓12 = 1/�, where
� = (1 +

p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [104] which we refer to as GRb mixing, and
GRc where cos ✓12 = �/

p
3 and ✓12 ⇡ 20.9�.

Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the
hexagonal mixing (HEX) where ✓12 = ⇡/6 [105, 106].

As we discuss in the next subsection, these simple patterns may be enforced by discrete
non-Abelian family symmetry. Although these simple patterns are excluded by current
data, mainly because of the non-zero reactor angle, it is possible that some relic of these
patterns may survive, either due to charged lepton mixing corrections, or due to the first or
second column of these matrices surviving, where these situations correspond to a controlled
symmetry breaking as discussed in the next subsection.

2.2 Symmetry of the lepton mass matrices

The starting point for family symmetry models is to consider the symmetry of the mass
matrices. In a basis where the charged lepton mass matrix Me is diagonal, the symmetry
is,

T †(MeM
†
e )T = MeM

†
e (2.4)

where T = diag(1, !2, !) and ! = ei2⇡/n. For example for n = 3 clearly T generates a cyclic
group ZT
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In the diagonal charged lepton mass basis, assuming UeL
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U †
PMNSM

⌫U⇤
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and the neutrino mass matrix in this basis may be expressed as
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U = UPMNS diag(�1,�1, +1) U †
PMNS = �G0

1 � G0
2 + G0

3 (2.9)
SU = UPMNS diag(+1,�1,�1) U †

PMNS = G0
1 � G0

2 � G0
3 (2.10)

with G0
i
= G0†

i
= �i�

†
i

and G0
i
G0

j
= �ijG0

i
. Note that we have Gi = G0

i
in the limit that the

lepton mixing matrix UPMNS is real. One can check that S and U generate a Klein four
group and they satisfy the following identities:

S2 = U2 = 1, SU = US . (2.11)

If the generators S, U, T are identified with the generators of S4, then the Klein symmetry
enforces TB mixing. Note also that the S4 subgroups ZS

2 and ZSU

2 enforce TM2 and TM1

mixing, respectively, where the preserved column of the TB matrix in each case is given by
the eigenvector associated with the +1 eigenvalue which preserves the symmetry.

2.3 Direct Models

Charged 
Lepton Sector

Neutrino 
Sector

S,U  preserved 

G
T preserved   

�l �⌫

Family 
symmetry 

Generators 
S,T,U

Figure 5. The diagram illustrates the so called direct approach to models of lepton mixing. For
example, for the flavor symmetry group G = S4, this structure leads to tri-bimaximal mixing. To
avoid the bad prediction that ✓13 = 0, one or more of the generators S, T, U must be broken, as
discussed in the main text.

The idea of “direct models” [83], illustrated in figure 5, is that the three generators
S, T, U introduced above are embedded into a discrete family symmetry G which is broken
by new Higgs fields called “flavons” of two types: �l whose VEVs preserve T and �⌫ whose
VEVs preserve S, U . These flavons are segregated such that �l only appears in the charged
lepton sector and �⌫ only appears in the neutrino sector, thereby enforcing the symmetries
of the mass matrices. Note that the full Klein symmetry ZS

2 ⇥ ZU

2 of the neutrino mass
matrix is enforced by symmetry in the direct approach.

There are many choices of the group G, with some examples given in figure 6, with
each choice leading to different lepton mixing being predicted. For example, consider the
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Leading order 
solar sum rule

complementarity in its simple form is seen to be disfavored in the presence of
leptonic CP violation (i.e. δ ̸= π). Tri-bimaximal complementarity gives testable
predictions, which however require a measurement of δ in addition to a more pre-
cise measurement of θ12. In the context of tri-bimaximal complementarity [5], the
relation of Eq. (1) with the specific prediction for θν12 ≈ 35.26◦ has been found in a
specific model. Discussions of charged lepton contributions to neutrino mixings in
other specific scenarios, such as for instance bi-maximal neutrino mixing, can be
found in Refs. [3]. However, as we will show, the general relation of Eq. (1) holds
model-independently, as long as θν13 and θe13 are small.

For small θν13 and θe13, the total lepton mixing θ13 is induced from the charged
lepton correction θe12, which leads to the relation

θ13 =
1√
2
θe12 , (2)

independent of CP phases. This means that if the charged lepton mixing θe12 is
related to the Cabibbo angle θC in any form, this would show up more directly in
θ13 than in the solar angle θ12.

Combining these results leads to a model-independent sum rule:

θ12 + θ13 cos(δ − π) ≈ θν12 (3)

where θν12 = 45◦ in the case of bimaximal neutrino mixing, or θν12 = 35.26◦ in
the case of tri-bimaximal neutrino mixing, for example. It is worth emphasizing
that under the generic assumption of small θν13 and θe13 the combined measurement
of the lepton mixings θ12, θ13 and of the MNS CP phase δ in future precision
experiments on neutrino oscillations has the potential to reveal if there are any
symmetries determining the neutrino mixing θν12.

In the most general case, if we relax the condition of small θν13 and θe13, charged
lepton CP phases still modify the charged lepton corrections to the solar mixing
angle, however the relevant CP phase is then not related to the low energy CP
phase δ observable (in principle) in future neutrino oscillation experiments. Then
the situation is similar to the charged lepton correction to θ23: Since it depends on
charged lepton CP phases which are not related to δ and just marginally contribute
to one of the Majorana CP phases, we conclude that it is not realistic to expect any
generic complementarity relation for θ23. The maximal charged lepton correction
to θ23 is |∆θ23| ! θe23, which is nevertheless interesting with respect to future
precision neutrino experiments.

2 Preliminaries on the Mixing Formalism

Before we discuss charged lepton corrections, it is necessary to specify the definition
of lepton mixings and our conventions for the charged lepton and neutrino mass

2

✓e23 = 0
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More precise Solar Sum Rule

Neutrino physics Stephen F. King

matrix in Eq.3.1, while U
e corresponds to small but unknown charged lepton corrections. This

was first discussed in [30, 31, 32, 33] for the case of TB neutrino mixing where the following
sum rule involving the lepton mixing parameters, including crucially the CP phase d , was first
derived [30, 31, 32, 33] :

q12 ⇡ 35.26o +q13 cosd . (4.1)

For trimaximal mixing q12 ⇡ 35.26o (where 35.26o = sin�1 1p
3
) this sum rule predicts cosd ⇡ 0

consistent with d ⇡ 90o or 270o, with the former being disfavoured by the global fits.
To derive this sum rule, let us consider the case of the charged lepton mixing corrections

involving only (1,2) mixing, so that the PMNS matrix is given by [33],
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Comparing Eq. 4.2 to the PMNS parametrisation in Eq.2.1, we identify the exact sum rule re-
lations [33], in terms of the elements |Ue3|, |Ut1|, |Ut2|, |Ut3| identified above. The first element
|Ue3| = s

e

12p
2

implies a reactor angle q13 ⇡ 9� if qe ⇡ qC (see e.g. the models in [12]). The second
and third elements, |Ut1|, |Ut2| after eliminating q23, yield a new relation between the PMNS pa-
rameters, q12, q13 and d . Expanding to first order, such charged lepton mixing corrections to TB
neutrino mixing gives the approximate solar sum rule relations in Eq.4.1 [30].

The above derivation assumes only q e

12 charged lepton corrections. However it is possible to
derive an accurate sum rule which is valid for both q e

12 and q e

23 charged lepton corrections (while
keeping q e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above
leads to the exact results [34]

Ut1 = s
n
12(s

n
23c

e

23 � c
n
23s

e

23e
id e

23), Ut2 =�c
n
12(s

n
23c

e
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n
23s

e

23e
id e

23),
|Ut1|
|Ut2|

=
s

n
12

c
n
12

= t
n
12. (4.3)

This relation is easy to understand if we consider only one charged lepton angle q e

12 to be non-zero,
then the third row of the PMS matrix in Eq. (4.2) is unchanged, so the elements Uti are uncorrected.
However, the last relation in Eq. 4.3 clearly holds even if both q e

12 and q e

23 are non-zero due to a
cancellation in the ratio Ut1

Ut2
. However it fails if q e

13 6= 0 [35].
The last relation in Eq. 4.3 can be translated into a prediction for cosd as [34]2

cosd =
tanq23 sinq 2

12 + sinq 2
13 cosq 2

12/ tanq23 � (sinq n
12)

2 �tanq23 + sinq 2
13/ tanq23

�

sin2q12 sinq13
, (4.4)

where only the parameter sinq n
12 is model dependent and we have respectively sinq n

12 = 1/
p

3,
sinq n

12 = 1/
p

2, tanq n
12 = 1/j and q n

12 = p/5, cosq n
12 = j/

p
3 and q n

12 = p/6 for mixing based on
TBM, BM, GRa, GRb, GRc and HEX where j = (1+

p
5)/2.

To leading order in q13, Eq.4.4 for the case of TB neutrino mixing returns the sum rule in
Eq.4.1. There has been much activity in exploring the phenomenology of various such solar mixing

sum rules (see e.g. [34, 37]). On the other hand, for a GUT example with q e

12 ⇠ qC/3 and q e

13 ⇠ qC

which violates the solar mixing sum rules see [38].
2For an alternative derivation of an equivalent sum rule see [36].
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matrix in Eq.3.1, while U
e corresponds to small but unknown charged lepton corrections. This

was first discussed in [30, 31, 32, 33] for the case of TB neutrino mixing where the following
sum rule involving the lepton mixing parameters, including crucially the CP phase d , was first
derived [30, 31, 32, 33] :

q12 ⇡ 35.26o +q13 cosd . (4.1)

For trimaximal mixing q12 ⇡ 35.26o (where 35.26o = sin�1 1p
3
) this sum rule predicts cosd ⇡ 0

consistent with d ⇡ 90o or 270o, with the former being disfavoured by the global fits.
To derive this sum rule, let us consider the case of the charged lepton mixing corrections

involving only (1,2) mixing, so that the PMNS matrix is given by [33],
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Comparing Eq. 4.2 to the PMNS parametrisation in Eq.2.1, we identify the exact sum rule re-
lations [33], in terms of the elements |Ue3|, |Ut1|, |Ut2|, |Ut3| identified above. The first element
|Ue3| = s

e

12p
2

implies a reactor angle q13 ⇡ 9� if qe ⇡ qC (see e.g. the models in [12]). The second
and third elements, |Ut1|, |Ut2| after eliminating q23, yield a new relation between the PMNS pa-
rameters, q12, q13 and d . Expanding to first order, such charged lepton mixing corrections to TB
neutrino mixing gives the approximate solar sum rule relations in Eq.4.1 [30].

The above derivation assumes only q e

12 charged lepton corrections. However it is possible to
derive an accurate sum rule which is valid for both q e

12 and q e

23 charged lepton corrections (while
keeping q e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above
leads to the exact results [34]

Ut1 = s
n
12(s

n
23c

e

23 � c
n
23s

e

23e
id e

23), Ut2 =�c
n
12(s

n
23c

e

23 � c
n
23s

e

23e
id e

23),
|Ut1|
|Ut2|

=
s

n
12

c
n
12

= t
n
12. (4.3)

This relation is easy to understand if we consider only one charged lepton angle q e

12 to be non-zero,
then the third row of the PMS matrix in Eq. (4.2) is unchanged, so the elements Uti are uncorrected.
However, the last relation in Eq. 4.3 clearly holds even if both q e

12 and q e

23 are non-zero due to a
cancellation in the ratio Ut1

Ut2
. However it fails if q e

13 6= 0 [35].
The last relation in Eq. 4.3 can be translated into a prediction for cosd as [34]2

cosd =
tanq23 sinq 2

12 + sinq 2
13 cosq 2

12/ tanq23 � (sinq n
12)

2 �tanq23 + sinq 2
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�

sin2q12 sinq13
, (4.4)

where only the parameter sinq n
12 is model dependent and we have respectively sinq n

12 = 1/
p

3,
sinq n

12 = 1/
p

2, tanq n
12 = 1/j and q n

12 = p/5, cosq n
12 = j/

p
3 and q n

12 = p/6 for mixing based on
TBM, BM, GRa, GRb, GRc and HEX where j = (1+

p
5)/2.

To leading order in q13, Eq.4.4 for the case of TB neutrino mixing returns the sum rule in
Eq.4.1. There has been much activity in exploring the phenomenology of various such solar mixing

sum rules (see e.g. [34, 37]). On the other hand, for a GUT example with q e

12 ⇠ qC/3 and q e

13 ⇠ qC

which violates the solar mixing sum rules see [38].
2For an alternative derivation of an equivalent sum rule see [36].
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to highlight its relationship to the earlier solar sum rules. Secondly, we systematically derive
the possible leading-order mixing patterns from considerations of residual symmetry, finding a
small well-motivated set. Thirdly, we present the results of simulations assessing the potential
to constrain the solar sum rules from two upcoming complementary oscillation experiments: a
superbeam and a reactor facility.
The layout of the remainder of the paper is as follows: in Section 2, we present a simple
derivation of the correlations induced by charged-lepton corrections. We then systematically
identify the viable leading-order neutrino mixing matrices, and comment on their relation to
the underlying flavour symmetry. Section 3 is devoted to our numerical study. We first consider
the currently allowed parameter spaces of these correlations, then we present the details and
results of our simulations of a superbeam and reactor experiment, showing how these can be
used to test these relations. We comment on the case where ✓⌫13 6= 0 in Section 4, and discuss
renormalisation group e↵ects in Section 5. Finally, Section 6 concludes the paper.

2 Mixing sum rules from charged-lepton corrections

In the first subsection, we present a simple derivation of the solar sum rule of Eq. (6). Then
in later subsections we discuss the leading-order mixing patterns which one encounters in the
considered class of models. We shall find that there are only four well-motivated patterns of
interest, whose relation to model building will be discussed.

2.1 A simple derivation

In the equations that follow, superscripts are attached to quantities which are naturally asso-
ciated with the neutrinos or the charged leptons (e.g. ✓⌫ and ✓e), whilst physical parameters
go without.
Assuming2 ✓⌫13 = ✓e13 = 0, the PMNS matrix is given by the product of five unitary matrices

U = U e†
12U

e†
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12P

⌫ , (7)

the three right-most matrices describe the neutrino sector, and are parameterised by
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and P ⌫ is a diagonal matrix of uni-modular complex numbers. The two unitary matrices on
the left of Eq. (7) characterise the charged-lepton corrections, and will be allowed to include

2It is possible to derive sum rules with ✓⌫13 6= 0. We comment on one example in Section 4.
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With these definitions, it is simple enough to compute the explicit form of the PMNS matrix.
However, our derivation focuses only on the first two elements of the bottom row of the physical
PMNS matrix, which are found to be
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By comparing Eq. (8) to the PDG parameterisation of U [42], we find the relations between
the physical parameters and our internal parameters,

|U⌧1| = |s23s12 � s13c23c12e
i�
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As the ratio of these two equations is independent of the values of the parameters in U e
23 and

U e
12, we are left with a correlation between observable parameters and the value of the neutrino

mixing parameter ✓⌫12,
|U⌧1|

|U⌧2|
=

|s23s12 � s13c23c12ei�|

|s23c12 + s13c23s12ei�|
= t⌫12. (9)

This correlation will be referred to as the solar mixing sum rule. It can be viewed as a predictive
statement about the physical CPV phase: squaring both sides of Eq. (9) and solving for cos �
leads us to the expression in Eq. (6), which we repeat below,

cos � =
t23s212 + s213c

2
12/t23 � s⌫212(t23 + s213/t23)

sin 2✓12s13
. (10)

An equivalent correlation has been derived previously using a lengthier argument in Refs. [21]
and [22]. Understanding its application to specific models, its compatibility with global data
and its potential use as a signature of new physics will be the focus of the rest of this article.
The correlation in Eq. (6) is in fact the full non-linear version of a more familiar first-order
relation. We collect a number of phenomenologically interesting approximations in Appendix A.
If we expand Eq. (6) in a small parameter ", assumed to control the deviation from a leading-
order neutrino mixing pattern with maximal atmospheric mixing,

✓13 ⇠ |✓12 � ✓⌫12| ⇠

���✓23 �
⇡

4

��� ⇠ ", (11)

we find the well-known first-order relation [7, 18, 19],

✓12 = ✓⌫12 + ✓13 cos � +O("2). (12)
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Figure 6: Summary of exact solar sum rule predictions for di↵erent types of neutrino mixing. In
the top left hand panel we present with the di↵erent colored band the sum rule prediction for TB
for cos � letting sin ✓12 vary in its 3� range, the di↵erent color denoted di↵erent choice of sin ✓23
given in the legend, in its 3� range and the width of the band is given by the 3� range in sin ✓13.
The green and yellow band are the 1� range for respectively cos � and sin ✓23. Similar plots for BM,
GRa, GRb, GRc and HEX are presented respectively on the top right, center right, center left,
bottom left, bottom right panels. The exact sum rules for the di↵erent models are derived from
Eq. (3.3).

is almost excluded by the data. The approximated expression for the sum rules can help

us understand its behaviour and the dependence of cos � on the other parameters that are

in general non-linear and assess the deviation from the non-corrected PMNS mixing. We

then expect for the exact sum rules a first order linear dependence on s.

In Figure 6 we present the exact sum rules prediction from Eq. (3.3) for TB, BM, GRa,

GRb, GRc and HEX and the constraints from the fit of the neutrino oscillation data [35].

We require cos � to fall in the physical range �1 < cos � < 1 and we present it in the y-axis.
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Figure 1: Results for the predicted value of cos � from the sum rule in eq. (2.9) for the GRA
mixing scheme in the case where ✓e12 6= 0, ✓e23 6= 0 and ✓e13 = 0. The black dashed lines represent
the tree level result. The blue points are our scan points. For the angles and the mass squared
di↵erences we took the best fit values from Table 1. We let the parameters run between the
high-scale MS ⇡ 1013 GeV and the low-scale MZ . The Majorana phases are chosen randomly
between 0 and 2⇡. The plots on the left (right) side correspond to normal (inverted) mass
ordering.

6

RG corrections to GRa solar sum rule
J.Gehrlein, S.T.Petcov, 
M.Spinrath and 
A.V.Titov, 1608.08409

1013 GeV ! MZFigure 1: Results for the predicted value of cos � from the sum rule in eq. (2.9) for the GRA
mixing scheme in the case where ✓e12 6= 0, ✓e23 6= 0 and ✓e13 = 0. The black dashed lines represent
the tree level result. The blue points are our scan points. For the angles and the mass squared
di↵erences we took the best fit values from Table 1. We let the parameters run between the
high-scale MS ⇡ 1013 GeV and the low-scale MZ . The Majorana phases are chosen randomly
between 0 and 2⇡. The plots on the left (right) side correspond to normal (inverted) mass
ordering.
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]

UTM1 ⇡

0

BB@

q
2
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� 1p
6

� �
1p
6

� �

1

CCA , (5.1)

For TM1 where the first column of TB matrix is conserved we have

|Ue1|=
r

2
3
,
��Uµ1

��= |Ut1|=
1p
6
, (5.2)

and given the parametrisation in Equation (2.1) we have

|Ue1|= |c12c13|,
��Uµ1

��= |s12c23 � c12s13s23e
id |, |Ut1|= |s12s23 � c12s13c23e

id |. (5.3)
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as

c
2
12 =

2
3c

2
13
, s

2
12 =

(1�3s
2
13)

3(1� s
2
13)

(5.4)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is . 1
3 . The second atmospheric sum rule for TM1 [40] yields, after

eliminating q12,

cosd =� cot2q23(1�5s
2
13)

2
p

2s13

q
1�3s

2
13

. (5.5)

If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]

UTM2 ⇡

0

BBB@

�
q

1
3 �

�
q

1
3 �

� �
q

1
3 �

1

CCCA
. (5.6)

For TM2 where the second column of TB matrix is conserved we have

|Ue2|=
��Uµ2

��= |Ut2|=
1p
3
, (5.7)

and given the parametrisation in Equation (2.1) we have

|Ue2|= |s12c13|,
��Uµ2

��= |c12c23 � s12s13s23e
id |, |Ut2|= |� c12s23 � s12s13c23e

id |. (5.8)

By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for
example, s12c13 =

q
1
3 and |c12c23 � s12s13s23e

id |= 1p
3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
data. For example, the first atmospheric sum rule for TM2 can be expressed as

s
2
12 =

1
3c

2
13

=
1

3(1� s
2
13)

, (5.9)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is & 1
3 . The second atmospheric sum rule for TM2 [40] yields, after

eliminating q12,

cosd =
2c13 cot2q23 cot2q13q

2�3s
2
13

. (5.10)
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as
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which predicts sin
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is easy to understand why it is . 1
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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For TM2 where the second column of TB matrix is conserved we have
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and given the parametrisation in Equation (2.1) we have
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By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for
example, s12c13 =

q
1
3 and |c12c23 � s12s13s23e

id |= 1p
3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
data. For example, the first atmospheric sum rule for TM2 can be expressed as
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
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If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]
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Figure 4: Summary of exact atmospheric sum rule predictions which predict the solar angle for different
types of lepton mixing corresponding to a preserved column of the PMNS matrix, with only a mild depen-
dence on the reactor angle. The pink, blue, red, orange and black curves are respectively the predictions for
the surviving TM1, TM2, GRa1, GRa2 and GRb1 mixing patterns (with GRa1 just outside and TM2 just
inside the 3s allowed region in green). Other possibilities not plotted are further outside the allowed region.
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Figure 5: Summary of exact atmospheric sum rule predictions which predict cosd in terms of the other
mixing angles for different types of lepton mixing corresponding to a preserved column of the PMNS matrix.
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sampled in the allowed sin2 q23 region. The width of the band is given by allowing sin2 q13 to vary
in its 3s range. The yellow and green bands are the 1s range respectively of sin2 q12 and cosd .

For TBM mixing (top-left panel), where sinq n
12 = 1/

p
3 in the neutrino sector, the charged

lepton corrections lead to consistent results in all parameter space, with the prediction for cosd
being consistent with the leading order prediction in Eq. 4.1 cosd ⇡ 0 for trimaximal mixing
sin2 q12 ⇡ 0.33. For BM mixing (top-right panel), where q n

12 = 45�, the sum rule predicts cosd
almost outside the physical range and so is close to being excluded at 3s and only low values of
sin2 q12 and high values of sin2 q12 are still viable. Similarly for GRc mixing (bottom-left panel),
with cosq n

12 = j/3, the viable parameter space is very tight, only for maximal values of sinq13 and
minimal values of sinq12 and sinq23 we can obtain physical results for the CP phase. The yellow
and green bands 1s ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosd are in the negative plane. For GRa (center-left panel), with
tanq n

12 = 1/j , the whole parameter space leads to physical prediction of cosd . For GRb (center-
right panel), with q n

12 = p/5 mixing, larger values sinq23 are excluded for small values of sin2 q12.
We finally notice that TBM and HEX are the only models predicting positive values of cosd and
HEX (bottom-right panel), with q n

12 = p/6 in particular the only predicting values of cosd & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1s

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosd | ⇡ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column U

n

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]

UTM1 ⇡

0

BB@

q
2
3 � �

� 1p
6

� �
1p
6

� �

1

CCA , (5.1)

For TM1 where the first column of TB matrix is conserved we have

|Ue1|=
r

2
3
,
��Uµ1

��= |Ut1|=
1p
6
, (5.2)

and given the parametrisation in Equation (2.1) we have

|Ue1|= |c12c13|,
��Uµ1

��= |s12c23 � c12s13s23e
id |, |Ut1|= |s12s23 � c12s13c23e

id |. (5.3)
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for
example, c12c13 =

q
2
3 and |s12c23 � c12s13s23e

id |= 1p
6
. The first equation predicts q12 in terms of

the accurately measured q13. The second equation can be expanded to yield a prediction for cosd
in terms of the other parameters. The corresponding equation for |Ut1| yields equivalent results.

The above atmospheric sum rules give powerful constraints on the mixing parameters which
may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as

c
2
12 =

2
3c

2
13
, s

2
12 =

(1�3s
2
13)

3(1� s
2
13)

(5.4)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is . 1
3 . The second atmospheric sum rule for TM1 [40] yields, after

eliminating q12,

cosd =� cot2q23(1�5s
2
13)

2
p

2s13

q
1�3s

2
13

. (5.5)

If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]

UTM2 ⇡

0

BBB@

�
q

1
3 �

�
q

1
3 �

� �
q

1
3 �

1

CCCA
. (5.6)

For TM2 where the second column of TB matrix is conserved we have

|Ue2|=
��Uµ2

��= |Ut2|=
1p
3
, (5.7)

and given the parametrisation in Equation (2.1) we have

|Ue2|= |s12c13|,
��Uµ2

��= |c12c23 � s12s13s23e
id |, |Ut2|= |� c12s23 � s12s13c23e

id |. (5.8)

By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for
example, s12c13 =

q
1
3 and |c12c23 � s12s13s23e

id |= 1p
3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
data. For example, the first atmospheric sum rule for TM2 can be expressed as

s
2
12 =

1
3c

2
13

=
1

3(1� s
2
13)

, (5.9)

which predicts sin
2q12 in terms of the accurately measured sin2 q13, as shown in Fig. 4, where it

is easy to understand why it is & 1
3 . The second atmospheric sum rule for TM2 [40] yields, after

eliminating q12,

cosd =
2c13 cot2q23 cot2q13q

2�3s
2
13

. (5.10)
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FIG. 1. Best-fit predictions of the models based on discrete symmetries broken to certain residual symmetries
of the lepton mass matrices [28, 35], and the models based on modular symmetries discussed in [47, 73, 74].
The gray regions are the current 3� ranges for normal ordering (NO) of neutrino masses from [1] (the
ranges for inverted ordering (IO) are very similar). The dashed line is the current best fit value. The red
region is the prospective 3� range after 6 years of JUNO running [77]. The assumed future best fit value
is sin2 ✓12 = 0.307. The sensitivity of DUNE to ✓13 after 15 years of running [76] will not improve current
bounds.

FIG. 2. Best-fit predictions of the models based on discrete symmetries broken to certain residual symmetries
of the lepton mass matrices [28, 35], and the models based on modular symmetries discussed in [47, 73, 74].
The gray regions are the current 3� ranges for NO from [1] (the ranges for IO are very similar). The dashed
line is the current best fit value for NO. The red regions are the prospective 3� ranges after 15 years of
DUNE running [76]. The assumed future best fit value is sin2 ✓23 = 0.58. The current 3� range for cos �
extends over the whole parameter range. For the prospective 3� ranges we show the sensitivities for assumed
true values � = 0 and � = �⇡/2.

to the data, cf. Eq. (3). This is why in all the cases considered, a value of sin2 ✓13 lying very
close to its experimental best-fit value is realized. We compare the model predictions with the
current constraints [1] and projections from upcoming neutrino experiments like DUNE [76] and
JUNO [77].

We see that a precise measurement of the mixing parameters will be crucial to probe and dis-
entangle flavor models. However, the required sensitivity to distinguish between di↵erent models
depends on the true value of the parameter, as there are classes of models which have very sim-
ilar predictions such that an isolated measurement of one angle cannot distinguish these models.
Therefore the correlations between the mixing parameters should be probed, these can be even
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Figure 11: The attainable 1� precision on sin2 ✓23 and � for DUNE, T2HK, and their

combination. In each case, the contours enclose the assumed true values for ✓23 and �,

marked with a point. This plot assumes the “fixed run time” configurations in Table 1 and

the true oscillation parameters, apart from ✓23, specified in Table 2.

number varies with �, and so the e↵ective run time has been modified for each value of

� to keep the observed events constant. In the left-hand panel of Fig. 13, we have fixed

the number of appearance events to be 5411 for each configuration, which is the average

number of events expected for the combination of DUNE and T2HK running for 20 years

cumulative run time. We see that events at DUNE are more valuable than events at

T2HK around maximally CP violating values; however, around CP conserving values, the

opposite is true and T2HK has more valuable events. We quantitatively assess this e↵ect in

the right-hand panel of Fig. 13. This plot compares the performance of DUNE and T2HK

with a fixed 5411 events, with the same experiments assuming double the number of events.

The figure shows that for DUNE to consistently outperform T2HK, it needs at least twice

as many events. The same is true to T2HK: it can only lead to better performance for all

values of � once its has more than twice the exposure.

Our second normalization scheme is designed to include the e↵ect of the probability

from the comparison with fixed event rates. The number of appearance channel events, S,

is to a good approximation proportional to the oscillation probability,

S / P (⌫µ ! ⌫e; hEi),

where hEi denotes the average energy of the flux, and we introduce a quantity N denoting

– 28 –
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Single RHN model (1998)
Just add a single RHN to the SM

4.2 See-saw mechanism with two right-handed neutrinos

In this subsection we consider the high scale (classic) see-saw neutrino model involving just two

right-handed neutrinos. We follow the notation of [4], where the first phenomenologically viable
model with two right-handed neutrinos was proposed. Subsequently two right-handed neutrino
models with two texture zeros were discussed in [16], however such two texture zero models are
now phenomenologically excluded [17] for the case of a normal neutrino mass hierarchy considered
here. However the original one texture zero case with two right-handed neutrinos [4] remains viable.

The two right-handed neutrinos ⌫
sol
R and ⌫

atm
R have Yukawa couplings [4],

Lyuk = (Hu/vu)(aLe + bLµ + cL⌧ )⌫
sol
R + (Hu/vu)(dLe + eLµ + fL⌧ )⌫

atm
R + H.c., (11)

where Hu is a Higgs doublet and vu its vacuum expectation value (VEV). The heavy right-handed
Majorana masses are,

LRR
⌫ = Msol⌫

sol
R (⌫sol

R )c + Matm⌫
atm
R (⌫atm

R )c + H.c.. (12)

In the basis, with rows (⌫eL, ⌫µL, ⌫⌧L) and columns ⌫
atm
R , ⌫

sol
R , the resulting Dirac mass matrix is,

m
D =

0

@
d a

e b

f c

1

A , (mD)T =

✓
d e f

a b c

◆
(13)

The (diagonal) right-handed neutrino heavy Majorana mass matrix MR with rows (⌫atm
R , ⌫

sol
R )T and

columns (⌫atm
R , ⌫

sol
R ) is,

MR =

✓
Matm 0

0 Msol

◆
, M

�1
R =

✓
M

�1
atm 0
0 M

�1
sol

◆
(14)

The see-saw formula in Eq.10 [2] is now interpreted in a matrix sense,

m
⌫ = �m

D
M

�1
R (mD)T , (15)

where m
⌫ is the the light e↵ective left-handed Majorana neutrino mass matrix (i.e. the physical

neutrino mass matrix), m
D is the Dirac mass matrix in LR convention and MR is the (heavy)

Majorana mass matrix. Using the see-saw formula dropping the overall minus sign which is physi-
cally irrelevant, the light e↵ective left-handed Majorana neutrino mass matrix m

⌫ (i.e. the physical
neutrino mass matrix) is, by multiplying the matrices in Eqs.13,14,

m
⌫ = m

D
M

�1
R (mD)T =

0

B@
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Msol
+ d2

Matm
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+ de
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+ df
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+ de
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b2
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+ e2
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bc
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+ ef
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+ df
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bc
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+ ef
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c2

Msol
+ f2

Matm

1
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Two RHN Model (1999)
Add a second RHN to the SM to account for solar neutrino oscillations as well
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Figure 4: The Standard Model with three right-handed neutrinos defined as (⌫
atm
R , ⌫

sol
R , ⌫

dec
R ) which in

sequential dominance are mainly responsible for the m3,m2,m1 physical neutrino masses, respectively.

4.3 Seesaw with three right-handed neutrinos and sequential dominance

More generally there may be three right-handed neutrinos, ⌫
sol
R , ⌫

atm
R and ⌫

dec
R , as shown in Fig.4.

However, according to sequential dominance [3, 4], the third right-handed neutrino ⌫
dec
R makes a

negligible contribution to the seesaw mechanism, either due to its high mass or its small Yukawa
couplings or both, and so is approximately decoupled. We are then left with only two right-handed
neutrinos ⌫

sol
R and ⌫

atm
R as in the two right-handed neutrino model above.

Motivated by the desire to implement the seesaw mechanism in a natural way, sequential dominance
(SD) [3,4] goes further and assumes that the two right-handed neutrinos ⌫

sol
R and ⌫

atm
R have couplings

d ⌧ e, f and
(e, f)2

Matm
� (a, b, c)2

Msol
. (17)

By explicit calculation, using Eq.16, one can check that in the two right-handed neutrino limit
det m

⌫ = 0. Since the determinant of a Hermitian matrix is the product of mass eigenvalues

det(m⌫
m

⌫†) = m
2
1m

2
2m

2
3,

one may deduce that one of the mass eigenvalues of the complex symmetric matrix above is zero,
which under the SD assumption is the lightest one m1 = 0 with m3 � m2 since the model
approximates to a single right-handed neutrino model [3]. Hence we see that SD implies a normal

neutrino mass hierarchy. Including the solar right-handed neutrino as a perturbation, it can be
shown that, for d = 0, together with the assumption of a dominant atmospheric right-handed
neutrino in Eq.17, leads to the approximate results for the solar and atmospheric angles [3, 4],

tan ✓23 ⇠ e

f
, tan ✓12 ⇠

p
2a

b � c
. (18)

Under the above SD assumption, each of the right-handed neutrinos contributes uniquely to a
particular physical neutrino mass. The SD framework above with d = 0 leads to the relations in
Eq.18 together with the reactor angle bound [4],

✓13 . m2/m3 (19)
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couplings or both, and so is approximately decoupled. We are then left with only two right-handed
neutrinos ⌫

sol
R and ⌫

atm
R as in the two right-handed neutrino model above.

Motivated by the desire to implement the seesaw mechanism in a natural way, sequential dominance
(SD) [3,4] goes further and assumes that the two right-handed neutrinos ⌫

sol
R and ⌫

atm
R have couplings
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By explicit calculation, using Eq.16, one can check that in the two right-handed neutrino limit
det m

⌫ = 0. Since the determinant of a Hermitian matrix is the product of mass eigenvalues

det(m⌫
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⌫†) = m
2
1m

2
2m

2
3,

one may deduce that one of the mass eigenvalues of the complex symmetric matrix above is zero,
which under the SD assumption is the lightest one m1 = 0 with m3 � m2 since the model
approximates to a single right-handed neutrino model [3]. Hence we see that SD implies a normal

neutrino mass hierarchy. Including the solar right-handed neutrino as a perturbation, it can be
shown that, for d = 0, together with the assumption of a dominant atmospheric right-handed
neutrino in Eq.17, leads to the approximate results for the solar and atmospheric angles [3, 4],
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Under the above SD assumption, each of the right-handed neutrinos contributes uniquely to a
particular physical neutrino mass. The SD framework above with d = 0 leads to the relations in
Eq.18 together with the reactor angle bound [4],
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Under the above SD assumption, each of the right-handed neutrinos contributes uniquely to a
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4.2 See-saw mechanism with two right-handed neutrinos

In this subsection we consider the high scale (classic) see-saw neutrino model involving just two

right-handed neutrinos. We follow the notation of [4], where the first phenomenologically viable
model with two right-handed neutrinos was proposed. Subsequently two right-handed neutrino
models with two texture zeros were discussed in [16], however such two texture zero models are
now phenomenologically excluded [17] for the case of a normal neutrino mass hierarchy considered
here. However the original one texture zero case with two right-handed neutrinos [4] remains viable.
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The see-saw formula in Eq.10 [2] is now interpreted in a matrix sense,
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approximates to a single right-handed neutrino model [3]. Hence we see that SD implies a normal

neutrino mass hierarchy. Including the solar right-handed neutrino as a perturbation, it can be
shown that, for d = 0, together with the assumption of a dominant atmospheric right-handed
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Under the above SD assumption, each of the right-handed neutrinos contributes uniquely to a
particular physical neutrino mass. The SD framework above with d = 0 leads to the relations in
Eq.18 together with the reactor angle bound [4],

✓13 . m2/m3 (19)

7

Assume charged lepton mass 
matrix is exactly diagonal

where the zero subscript reminds us that this form has ✓13 = 0 (and ✓23 = 45�).

For golden ratio (GRa) mixing [2], the solar angle is given by tan ✓12 = 1/�, where

� = (1 +
p
5)/2 is the golden ratio which implies ✓12 = 31.7�. There are two alternative

versions where cos ✓12 = �/2 and ✓12 = 36� [3] which we refer to as GRb mixing, and GRc

where cos ✓12 = �/
p
3 and ✓12 ⇡ 20.9�.

For bimaximal (BM) mixing (see e.g. [4–6] and references therein), we insert s12 =

c12 = 1/
p
2 (✓12 = 45�) into Eq. (1.1),

UBM =

0

B@

1p
2

1p
2

0

�1
2

1
2

1p
2

1
2 �1

2
1p
2

1

CA . (1.2)

For tri-bimaximal (TB) mixing [7], alternatively we use s12 = 1/
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Finally another pattern studied in the literature with ✓13 = 0 (and ✓23 = 45�) is the

hexagonal mixing (HEX) where ✓12 = ⇡/6.

These proposals are typically by finite discrete symmetries such as A4, S4, S5 (for a

review see e.g. [8]). After the reactor angle was measured, which excluded all these ansatze,

there were various proposals to rescue them and hence to maintain the notion of predictivity

of the leptonic mixing parameters, in particular the Dirac CP phase �, which is not directly

measured so far and remains poorly determined even indirectly. Two approaches have been

developed, in which some finite symmetry (typically a subgroup of A4, S4, S5) can enforce a

particular structure of the PMNS matrix consistent with a non-zero reactor angle, leading

to solar and atmospheric sum rules, as we now discuss.

The first approach, which leads to solar sum rules, is to assume that the above patterns

of mixing still apply to the neutrino sector, but receive charged lepton mixing corrections

due to the PMNS matrix being the product of two unitary matrices, which in our convention

is written as VeLV
†
⌫L , where V

†
⌫L is assumed to take the BM, TB or GR form, while VeL

di↵ers from the unit matrix. If VeL involves negligible 13 charged lepton mixing, then it

is possible to generate a non-zero 13 PMNS mixing angle, while leading to correlations

amongst the physical PMNS parameters, known as solar mixing sum rules [9–12]. This

scenario may be enforced by a subgroup of A4, S4, S5 which enforces the V⌫ structure [8]

while allowing charged lepton corrections.

In the second approach, which leads to atmospheric sum rules, it is assumed that

the physical PMNS mixing matrix takes the BM, TB or GR form but only in its first or

second column, while the third column necessarily departs from these structures due to the

non-zero 13 angle. Such patterns again lead to correlations amongst the physical PMNS

parameters, known as atmospheric mixing sum rules. This scenario may be enforced by
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where the RH neutrino mass matrix MR is a 2⇥ 2 diagonal matrix
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that comes from the Lagrangian term
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The Dirac mass matrix is instead a 3⇥ 2 matrix with arbitrary entries
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where the entries are the coupling between the Majorana RH neutrinos and the SM neutri-

nos. The first column describe the interaction of the neutrinos in the flavour basis with the

atmospheric RH neutrino and the second with the solar RH neutrino. The SD assumptions

are that d = 0, d ⌧ e, f , and

(e, f)2

Matm
� (a, b, c)2

Msol
, (5.5)

these, together with the choice that of the almost massless neutrino to be the first mass

eigenstate m1, leads to m3 � m2 and therefore a normal mass hierarchy. This description

can be further constrained choosing exactly e = f , b = na and c = (n � 2)a giving a

simplified Dirac matrix

m
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e (n� 2)a
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that is called constrained dominance sequence (CSD) for positive integer n [9, 17, 18].

Following the literature we will refer to models with n real as LS models [19]. It has been

shown that the reactor angle is [19]
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p
2

3

m2

m3
, (5.7)
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5.1. CSD(n) with two right-handed neutrinos

Models with only two right-handed neutrinos are compelling as they are typically highly
predictive. In a CSD(n) framework, the neutrino mass matrix in Eq. 2.4 simplifies in the
two right-handed neutrino case to

m⌫
(n) = ma
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where we have defined ⌘ = � � ↵ and removed an overall unphysical phase ↵. This case
immediately predicts the lightest physical neutrino mass to be zero, m1 = 0. For a given
choice of alignment n, there are three real input parameters ma, mb and ⌘ from which
two light physical neutrino masses m2, m3, three lepton mixing angles, the CP-violating
phase �CP and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and �CP is only tentatively constrained by experiment, this leaves five
presently measured observables, namely the two neutrino mass squared di↵erences and
the three lepton mixing angles, from only three input parameters.

n
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(meV)
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⌘
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1 24.8 2.89 3.14 35.3 0 45.0 0 8.66 49.6 485

2 19.7 3.66 0 34.5 7.65 56.0 0 8.85 48.8 95.1

3 27.3 2.62 2.17 34.4 8.39 44.5 92.2 8.69 49.5 3.98

4 36.6 1.95 2.63 34.3 8.72 38.4 120 8.61 49.8 8.82

5 45.9 1.55 2.88 34.2 9.03 34.4 142 8.53 50.0 33.8

6 55.0 1.29 3.13 34.2 9.30 31.6 179 8.46 50.2 65.2

7 63.0 1.12 3.14 34.1 9.68 31.0 180 8.35 50.6 100

8 71.0 0.984 3.14 34.0 9.96 30.6 180 8.25 50.8 135

9 79.0 0.880 3.14 33.9 10.2 30.3 180 8.17 51.0 168

Table 2: Table of best fit parameters for two right-handed neutrino CSD(n) model for
1  n  9. The fitted three input parameters ma, mb and ⌘ yield nine physi-
cal predictions, but only six physical outputs are shown. The undisplayed outputs
are m1 = 0 in each case and the two Majorana phases which are di�cult to measure
for a normal hierarchy.

Table 2 shows all fitted parameters with respect to n. Fig. 2 shows the best fit values
of �2 with respect to vacuum alignment n. Both CSD(3) and CSD(4) have �2 < 10,
while all others have significantly higher values, generally increasing with n. With five
values N fitted to three input parameters NI , this gives us two excess degrees of freedom,
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4.3 Seesaw with three right-handed neutrinos and sequential dominance

More generally there may be three right-handed neutrinos, ⌫
sol
R , ⌫

atm
R and ⌫

dec
R , as shown in Fig.4.

However, according to sequential dominance [3, 4], the third right-handed neutrino ⌫
dec
R makes a

negligible contribution to the seesaw mechanism, either due to its high mass or its small Yukawa
couplings or both, and so is approximately decoupled. We are then left with only two right-handed
neutrinos ⌫

sol
R and ⌫

atm
R as in the two right-handed neutrino model above.

Motivated by the desire to implement the seesaw mechanism in a natural way, sequential dominance
(SD) [3,4] goes further and assumes that the two right-handed neutrinos ⌫

sol
R and ⌫

atm
R have couplings

d ⌧ e, f and
(e, f)2

Matm
� (a, b, c)2

Msol
. (17)

By explicit calculation, using Eq.16, one can check that in the two right-handed neutrino limit
det m

⌫ = 0. Since the determinant of a Hermitian matrix is the product of mass eigenvalues

det(m⌫
m

⌫†) = m
2
1m

2
2m

2
3,

one may deduce that one of the mass eigenvalues of the complex symmetric matrix above is zero,
which under the SD assumption is the lightest one m1 = 0 with m3 � m2 since the model
approximates to a single right-handed neutrino model [3]. Hence we see that SD implies a normal

neutrino mass hierarchy. Including the solar right-handed neutrino as a perturbation, it can be
shown that, for d = 0, together with the assumption of a dominant atmospheric right-handed
neutrino in Eq.17, leads to the approximate results for the solar and atmospheric angles [3, 4],

tan ✓23 ⇠ e

f
, tan ✓12 ⇠

p
2a

b � c
. (18)

Under the above SD assumption, each of the right-handed neutrinos contributes uniquely to a
particular physical neutrino mass. The SD framework above with d = 0 leads to the relations in
Eq.18 together with the reactor angle bound [4],

✓13 . m2/m3 (19)
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ma ⇠ ⇠ mb Charged leptons diagonal

Three effective input 
parameters (for given n)  

N.B.  TM1 mixing  n∀

m
⌫ = �m

D
M

�1
R m

DT
, (5.1)

where the RH neutrino mass matrix MR is a 2⇥ 2 diagonal matrix

MR =

 
Matm 0

0 Msol

!
, M

�1
R =

 
M

�1
atm 0

0 M
�1
sol

!
, (5.2)

that comes from the Lagrangian term

LLS � �1

2
MatmN̄

atm
R N

atm
R � 1

2
MsolN̄

sol
R N

sol
R + h.c. . (5.3)

The Dirac mass matrix is instead a 3⇥ 2 matrix with arbitrary entries

m
D =

0

B@
d a

e b

f c

1

CA ,
�
m

D
�T

=

 
d e f

a b c

!
, (5.4)

where the entries are the coupling between the Majorana RH neutrinos and the SM neutri-

nos. The first column describe the interaction of the neutrinos in the flavour basis with the

atmospheric RH neutrino and the second with the solar RH neutrino. The SD assumptions

are that d = 0, d ⌧ e, f , and

(e, f)2

Matm
� (a, b, c)2

Msol
, (5.5)

these, together with the choice that of the almost massless neutrino to be the first mass

eigenstate m1, leads to m3 � m2 and therefore a normal mass hierarchy. This description

can be further constrained choosing exactly e = f , b = na and c = (n � 2)a giving a

simplified Dirac matrix

m
D =

0

B@
0 a

e na

e (n� 2)a

1

CA , (5.6)

that is called constrained dominance sequence (CSD) for positive integer n [9, 17, 18].

Following the literature we will refer to models with n real as LS models [19]. It has been

shown that the reactor angle is [19]

✓13 ⇠ (n� 1)

p
2

3

m2

m3
, (5.7)
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4.2 See-saw mechanism with two right-handed neutrinos

In this subsection we consider the high scale (classic) see-saw neutrino model involving just two

right-handed neutrinos. We follow the notation of [4], where the first phenomenologically viable
model with two right-handed neutrinos was proposed. Subsequently two right-handed neutrino
models with two texture zeros were discussed in [16], however such two texture zero models are
now phenomenologically excluded [17] for the case of a normal neutrino mass hierarchy considered
here. However the original one texture zero case with two right-handed neutrinos [4] remains viable.

The two right-handed neutrinos ⌫
sol
R and ⌫

atm
R have Yukawa couplings [4],

Lyuk = (Hu/vu)(aLe + bLµ + cL⌧ )⌫
sol
R + (Hu/vu)(dLe + eLµ + fL⌧ )⌫

atm
R + H.c., (11)

where Hu is a Higgs doublet and vu its vacuum expectation value (VEV). The heavy right-handed
Majorana masses are,

LRR
⌫ = Msol⌫

sol
R (⌫sol

R )c + Matm⌫
atm
R (⌫atm

R )c + H.c.. (12)

In the basis, with rows (⌫eL, ⌫µL, ⌫⌧L) and columns ⌫
atm
R , ⌫

sol
R , the resulting Dirac mass matrix is,

m
D =

0

@
d a

e b

f c

1

A , (mD)T =

✓
d e f

a b c

◆
(13)

The (diagonal) right-handed neutrino heavy Majorana mass matrix MR with rows (⌫atm
R , ⌫

sol
R )T and

columns (⌫atm
R , ⌫

sol
R ) is,

MR =

✓
Matm 0

0 Msol

◆
, M

�1
R =

✓
M

�1
atm 0
0 M

�1
sol

◆
(14)

The see-saw formula in Eq.10 [2] is now interpreted in a matrix sense,

m
⌫ = �m

D
M

�1
R (mD)T , (15)

where m
⌫ is the the light e↵ective left-handed Majorana neutrino mass matrix (i.e. the physical

neutrino mass matrix), m
D is the Dirac mass matrix in LR convention and MR is the (heavy)

Majorana mass matrix. Using the see-saw formula dropping the overall minus sign which is physi-
cally irrelevant, the light e↵ective left-handed Majorana neutrino mass matrix m

⌫ (i.e. the physical
neutrino mass matrix) is, by multiplying the matrices in Eqs.13,14,

m
⌫ = m

D
M

�1
R (mD)T =

0

B@

a2

Msol
+ d2

Matm

ab
Msol

+ de
Matm

ac
Msol

+ df
Matm

ab
Msol

+ de
Matm

b2

Msol
+ e2

Matm

bc
Msol

+ ef
Matm

ac
Msol

+ df
Matm

bc
Msol

+ ef
Matm

c2

Msol
+ f2

Matm

1

CA (16)
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Figure 11: The results for the LS models with n ⇡ 3. The input parameters ⌘ and r =

mb/ma are constrained to a good degree of accuracy by only two experimental observables,

namely ✓13 and the mass ratio m
2
2/m

2
3. The 3� allowed region for ✓13 and the mass ratio are

respectively the blue and orange band. The area of intersection is the allowed parameter

space for ⌘ and r. From the left to the right we assume, n = 2.5, 3 and 1 +
p
6 ⇡ 3.45.

n = 3 ⌘ = 2.11± 0.15 ⌘ = 4.17± 0.15 Exp. range

✓12 [�] 34.32+0.20
�0.24 34.32+0.20

�0.25 31.31� 35.74

normal ✓23 [�] 45.5+2.3
�2.4 45.5+2.3

�2.4 39.6� 51.9

normal � [�] 272.2+9.6
�11.0 87.9+11.0

�9.6 0� 44 & 108� 360

flipped ✓23 [�] 44.5+2.3
�2.4 44.5+2.3

�2.4 39.6� 51.9

flipped � [�] 92.2+9.6
�11.0 267.9+11.0

�9.6 0� 44 & 108� 360

Table 3: The LS predictions for n = 3 where the two most accurately measured observ-

ables, ✓13 and the mass squared ratio m
2
2/m

2
3, are used to accurately determine the two

input parameters r = mb/ma = 0.100±0.008 for two ⌘ ranges as shown above, correspond-

ing to the centre panel of Fig. 11. This then leads to highly constrained predictions for

the less accurately determined observables ✓12, ✓23 and �, which may be compared to the

current experimental ranges as shown in the table. All results are given to 3� accuracy.

predictivity of the model we can derive all the physical parameters and we can test them

against the observed values. We do this for each value of n = 3, 1 +
p
6 ⇡ 3.45 and 2.5 in

Tables 3 to 5. We do not present the plot for the flipped cases since they are exactly the

same. In fact they involve only the mass ratio and ✓13.

In Table 3 we focus on the originally studied n = 3 and its flipped case. We present

the theoretical prediction and its uncertainty coming from the allowed region in Figure 11

(centre panel) and the experimental bound. Since the theoretical prediction is exact given

⌘ and r we are allowing two significant figure for the theoretical errors. We notice that ✓12
and ✓23 fall well within the experimental range for all the cases and that even if � is still

not measured very precisely it allows us to exclude one of the two possible ⌘ both in the

normal and flipped case. In fact only the ⌘ = 2.11 normal case and ⌘ = 4.17 flipped case
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n = 1 +
p
6 ⌘ = 2.42± 0.16 ⌘ = 3.87± 0.16 Exp. range

✓12 [�] 34.36+0.18
�0.21 34.36+0.18

�0.21 31.31� 35.74

normal ✓23 [�] 41.4+2.6
�2.6 41.5+2.6

�2.6 39.6� 51.9

normal � [�] 253.8+11.7
�13.8 105.7+13.7

�11.6 0� 44 & 108� 360

flipped ✓23 [�] 48.6+2.6
�2.6 48.5+2.6

�2.6 39.6� 51.9

flipped � [�] 74.8+11.7
�13.8 285.8+13.7

�11.6 0� 44 & 108� 360

Table 4: The LS predictions for n = 1 +
p
6 ⇡ 3.45 where the two most accurately

measured observables, ✓13 and the mass squared ratio m
2
2/m

2
3, are used to accurately

determine the two input parameters r = mb/ma = 0.072± 0.004 for two ⌘ ranges as shown

above, corresponding to the right panel of Fig. 11. This then leads to highly constrained

predictions for the less accurately determined observables ✓12, ✓23 and �, which may be

compared to the current experimental ranges as shown in the table. All results are given

to 3� accuracy.

n = 2.5 ⌘ = 1.5± 0.2 ⌘ = 4.7± 0.2 Exp. range w/o SK

✓12 [�] 34.31+0.16
�0.20 34.28+0.17

�0.21 31.31� 35.74

normal ✓23 [�] 51.5+1.9
�2.2 51.0+2.0

�2.3 39.6� 51.9

normal � [�] 299.9+9.2
�9.9 63.6+10.1

�9.3 0� 44 & 108� 360

flipped ✓23 [�] 38.5+1.9
�2.2 39.0+2.0

�2.3 39.6� 51.9

flipped � [�] 119.9+9.2
�9.9 243.6+10.1

�9.3 0� 44 & 108� 360

Table 5: The LS predictions for n = 2.5 where the two most accurately measured observ-

ables, ✓13 and the mass squared ratio m
2
2/m

2
3, are used to accurately determine the two

input parameters r = mb/ma = 0.15±0.01 for two ⌘ ranges as shown above, corresponding

to the left panel of Fig. 11. This then leads to highly constrained predictions for the less

accurately determined observables ✓12, ✓23 and �, which may be compared to the current

experimental ranges as shown in the table. All results are given to 3� accuracy.

are within the 3� experimental range.

In Table 4 we focus on n = 1 +
p
6 ⇡ 3.45, which can be realised with a modular

symmetry [33], we notice that for the normal case both ⌘ values are still allowed but with

the � prediction for ⌘ = 3.87 that lie at the edge of the allowed experimental range. For

the flipped case instead ⌘ = 2.42 is excluded, thanks again to the bound on �. As before,

in going from n = 1 +
p
6 to the flipped only changes the sign of t in Eq. (5.21). The

prediction for the mass ratio, ✓13 and ✓12 are independent of this sign while ✓23 and � are

a↵ected by it, as we can see in Eqs. (5.26) and as discussed above for �. The predictions

are thus related by tan ✓23 ! cot ✓23 (or ✓23 ! ⇡ � ✓23) and � ! � + ⇡.

In Table 5 we focus on n = 2.5 and notice that, given the � values, ⌘ = 4.7 is excluded

for the normal case while for the flipped both ⌘ values are allowed. Finally, ✓23 lies in the

higher and lower end of the experimental range respectively for the normal and flipped

case making the n = 2.5 disfavoured given the current data. This case is also known in
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Table 4: The LS predictions for n = 1 +
p
6 ⇡ 3.45 where the two most accurately

measured observables, ✓13 and the mass squared ratio m
2
2/m

2
3, are used to accurately

determine the two input parameters r = mb/ma = 0.072± 0.004 for two ⌘ ranges as shown

above, corresponding to the right panel of Fig. 11. This then leads to highly constrained

predictions for the less accurately determined observables ✓12, ✓23 and �, which may be

compared to the current experimental ranges as shown in the table. All results are given

to 3� accuracy.

n = 2.5 ⌘ = 1.5± 0.2 ⌘ = 4.7± 0.2 Exp. range w/o SK
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Table 5: The LS predictions for n = 2.5 where the two most accurately measured observ-

ables, ✓13 and the mass squared ratio m
2
2/m

2
3, are used to accurately determine the two

input parameters r = mb/ma = 0.15±0.01 for two ⌘ ranges as shown above, corresponding

to the left panel of Fig. 11. This then leads to highly constrained predictions for the less

accurately determined observables ✓12, ✓23 and �, which may be compared to the current

experimental ranges as shown in the table. All results are given to 3� accuracy.

are within the 3� experimental range.

In Table 4 we focus on n = 1 +
p
6 ⇡ 3.45, which can be realised with a modular

symmetry [33], we notice that for the normal case both ⌘ values are still allowed but with

the � prediction for ⌘ = 3.87 that lie at the edge of the allowed experimental range. For

the flipped case instead ⌘ = 2.42 is excluded, thanks again to the bound on �. As before,

in going from n = 1 +
p
6 to the flipped only changes the sign of t in Eq. (5.21). The

prediction for the mass ratio, ✓13 and ✓12 are independent of this sign while ✓23 and � are

a↵ected by it, as we can see in Eqs. (5.26) and as discussed above for �. The predictions

are thus related by tan ✓23 ! cot ✓23 (or ✓23 ! ⇡ � ✓23) and � ! � + ⇡.

In Table 5 we focus on n = 2.5 and notice that, given the � values, ⌘ = 4.7 is excluded

for the normal case while for the flipped both ⌘ values are allowed. Finally, ✓23 lies in the

higher and lower end of the experimental range respectively for the normal and flipped

case making the n = 2.5 disfavoured given the current data. This case is also known in
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Figure 11: The parameters ⌘ and r are constrained to a good degree by only two experi-

mental observables, namely ✓13 and the mass ratio m
2
2/m

2
3. The 3� allowed region for ✓13

and the mass ratio are respectively the blue and orange band. The area of intersection is

the allowed parameter space for ⌘ and r. From the left to the right we present, n = 2.5, 3

and 1 +
p
6.

n = 3 ⌘ = 2.11± 0.15 ⌘ = 4.17± 0.15 Exp. range

✓12 [�] 34.33± 0.07 34.33± 0.07 31.27� 35.86

normal ✓23 [�] 45.5+1.6
�1.9 45.5+1.6

�1.9 39.5� 52.0

normal � [�] 93+12
�13 255+12

�13 0� 44 & 108� 360

flipped ✓23 [�] 44.5+1.6
�1.9 44.5+1.6

�1.9 39.5� 52.0

flipped � [�] 273+12
�13 75+12

�13 0� 44 & 108� 360

Table 3: 3� ranges of the predicted parameters and experimental ranges for n = 3. With

r = 0.100± 0.008.

can be understood easily studying the parameter t for example in the case n = 1 +
p
6

and the flipped. In this case going from n to the flipped changes sign of t in Equation

(5.22). The prediction for the mass ratio, ✓13, ✓12 are independent of this sign while ✓23

and � are a↵ected by it, we can see this in Equations (5.26) and (5.31). The predictions as

anticipated before are related by tan ✓23 ! cot ✓23 and � ! � + ⇡.

In Table 3 we studied the n = 3 and its flipped case. We present the theoretical

prediction and its uncertainty coming from the allowed region in Figure 11 and the ex-

perimental bound. We notice that ⌘ = 2.1 is still allowed only in the lower part of the �

parameter space for the normal case and similarly ⌘ = 4.2 for the flipped case. In Table 4

for n = 1 +
p
6, which can be realised with a modular symmetry [29], we notice that the

region with ⌘ = 2.40 is excluded thanks to the experimental bounds on � while the one

with ⌘ = 3.88 is well within the 3� range. For the flipped case instead ⌘ = 3.88 is close

the lower boundary of the 3� region in �. For n = 2.5 in Table 5 we notice that ⌘ = 4.7

is excluded for normal case while for the flipped both values are allowed in the 3� range.

This case is also known in the literature as n = �1/2 using the convention in Equation
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Figure 11: The results for the LS models with n ⇡ 3. The input parameters ⌘ and r =

mb/ma are constrained to a good degree of accuracy by only two experimental observables,

namely ✓13 and the mass ratio m
2
2/m

2
3. The 3� allowed region for ✓13 and the mass ratio are

respectively the blue and orange band. The area of intersection is the allowed parameter

space for ⌘ and r. From the left to the right we assume, n = 2.5, 3 and 1 +
p
6 ⇡ 3.45.

n = 3 ⌘ = 2.11± 0.15 ⌘ = 4.17± 0.15 Exp. range
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Table 3: The LS predictions for n = 3 where the two most accurately measured observ-

ables, ✓13 and the mass squared ratio m
2
2/m

2
3, are used to accurately determine the two

input parameters r = mb/ma = 0.100±0.008 for two ⌘ ranges as shown above, correspond-

ing to the centre panel of Fig. 11. This then leads to highly constrained predictions for

the less accurately determined observables ✓12, ✓23 and �, which may be compared to the

current experimental ranges as shown in the table. All results are given to 3� accuracy.

predictivity of the model we can derive all the physical parameters and we can test them

against the observed values. We do this for each value of n = 3, 1 +
p
6 ⇡ 3.45 and 2.5 in

Tables 3 to 5. We do not present the plot for the flipped cases since they are exactly the

same. In fact they involve only the mass ratio and ✓13.

In Table 3 we focus on the originally studied n = 3 and its flipped case. We present

the theoretical prediction and its uncertainty coming from the allowed region in Figure 11

(centre panel) and the experimental bound. Since the theoretical prediction is exact given

⌘ and r we are allowing two significant figure for the theoretical errors. We notice that ✓12
and ✓23 fall well within the experimental range for all the cases and that even if � is still

not measured very precisely it allows us to exclude one of the two possible ⌘ both in the

normal and flipped case. In fact only the ⌘ = 2.11 normal case and ⌘ = 4.17 flipped case
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can be understood easily studying the parameter t for example in the case n = 1 +
p
6

and the flipped. In this case going from n to the flipped changes sign of t in Equation

(5.22). The prediction for the mass ratio, ✓13, ✓12 are independent of this sign while ✓23

and � are a↵ected by it, we can see this in Equations (5.26) and (5.31). The predictions as

anticipated before are related by tan ✓23 ! cot ✓23 and � ! � + ⇡.

In Table 3 we studied the n = 3 and its flipped case. We present the theoretical

prediction and its uncertainty coming from the allowed region in Figure 11 and the ex-

perimental bound. We notice that ⌘ = 2.1 is still allowed only in the lower part of the �

parameter space for the normal case and similarly ⌘ = 4.2 for the flipped case. In Table 4

for n = 1 +
p
6, which can be realised with a modular symmetry [29], we notice that the

region with ⌘ = 2.40 is excluded thanks to the experimental bounds on � while the one

with ⌘ = 3.88 is well within the 3� range. For the flipped case instead ⌘ = 3.88 is close

the lower boundary of the 3� region in �. For n = 2.5 in Table 5 we notice that ⌘ = 4.7

is excluded for normal case while for the flipped both values are allowed in the 3� range.
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2

Figure 12. The contour plots of sin2 ✓12, sin2 ✓13, sin2 ✓23 and m2
2/m2

3 in the ⌘/⇡ � r plane for
the modular Littlest seesaw (left) and the flipped version (right) with n = 1 +

p
6. The cyan, red,

green and blue areas denote the 3� regions of sin2 ✓23, sin2 ✓13 and m2
2/m2

3 respectively. The solid
lines denote the 3� upper bounds, the thin lines denote the 3� lower bounds and the dashed lines
refer to their best fit values, as adopted from NuFIT 5.2 with SK data [82]. The red circle indicates
the best fit region.

Modular Littlest seesaw Flipped modular Littlest seesaw
bf allowed ranges bf allowed ranges

⌘/⇡ 1.240 [1.197, 1.276] ⌘/⇡ 0.742 [0.725, 0.806]

r 0.0734 [0.0684, 0.0786] r 0.0758 [0.0683, 0.0786]

sin2 ✓13 0.0223 [0.0205, 0.0240] sin2 ✓13 0.0231 [0.0205, 0.0240]
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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10d model with 3 factorisable tori 

Littlest Modular Seesaw from Orbifold

Lattice vectors for 
each torus are 

description of the neutrino and charged lepton masses and lepton mixing based on a type
of littlest seesaw [16].

In the 10d framework considered here, the desired moduli fields ⌧i for such model are
in principle consistent with the orbifold divisors Z2 ⇥Z2, Z4, Z4 ⇥Z2. However Z2 ⇥Z2

does not fix any of the ⌧i, so is not so restrictive. The Z4 orbifold divisor fixes the ⌧i as
needed by the model, but does not have the necessary fixed branes to build consistent
interactions. We are then left with the only viable and predictive choice being the orbifold
divisor Z4 ⇥ Z2, which can lead to the desired fixed points, as we discuss below.

We assume, then, a 10d spacetime where the 6 extra dimensions are factorisable into
3 torii, each defined by one complex coordinate zi with i = 1, 2, 3, and compactified as in
Eq. 9

zi ⇠ zi + 1, zi ⇠ zi + ⌧i, (12)

The orbifold (T2)3/Z4⇥Z2 as defined by the orbifolding actions in Eq. 10, using Table 1
with (N,M) = (4, 2) then implies,

✓4 : (x, z1, z2, z3) ⇠ (x, iz1,�iz2, z3),

✓2 : (x, z1, z2, z3) ⇠ (x, z1,�z2,�z3).
(13)

In the orbifold approach, (1, ⌧i) define the twist and the basis vectors of each torus.
For the orbifold to be consistent, the orbifolding actions ✓2,4 must not change the lattice,
i.e. its action over the lattice basis vectors (1, ⌧i) must be a linear combination of the
original lattice vectors, with integer coefficients. Therefore there must exist integers
a1,2,3, b1,2,3, c1,2,3, d1,2,3 2 Z such that, as in Eq. 11

(i, i⌧1,2) = (a1,2 + b1,2⌧1,2, c1,2 + d⌧1,2),

(�1,�⌧3) = (a3 + b3⌧3, c3 + d⌧3),
(14)

In the present example, solving Eq. 14 gives,

⌧1,2 = i+ n1,2, | n1,2 2 Z,
⌧3 2 C.

(15)

which corresponds to the result given in Table 1 with (N,M) = (4, 2). We emphasise
that the twists ⌧i are fixed geometrically by the orbifold actions. Therefore in the orbifold
approach to modular symmetries, the moduli fields are not a completely free choice, but
are constrained as in Table 1.

Each orbifold action in Eq. 13, leaves some invariant subspaces which are called fixed

7

which define 3 fixed moduli  

(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [19].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)

where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
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and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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Solar RHN lives here
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together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
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The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [19].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)

where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
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and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [19].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)

where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
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and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
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involves two right-handed neutrinos plus two additional singlets, is given by:

M⌫ =

0

@
03⇥3 mD 03⇥2

m
T

D
02⇥2 M

02⇥3 M
T

µ

1

A , (1)

where 0n⇥m are n⇥m dimensional submatrices consisting of all zeroes and the other submatrices in the flavour basis
have the structure:

mD ⇠

0

@
0 b

a 3b
a b

1

A , M ⇠

✓
1 0
0 1

◆
, µ ⇠

✓
1 0
0 !

◆
, ! = e

2⇡i
3 . (2)

The light active neutrino mass matrix arising from the inverse seesaw formula m⌫ = �mD(MT )�1
µM

�1
m

T

D
takes

the same form as the usual LS model [17–24]:

m⌫ = m⌫a

0

@
0 0 0
0 1 1
0 1 1

1

A+m⌫b!

0

@
1 3 1
3 9 3
1 3 1

1

A (3)

The above mass matrix structures are motivated by the phenomenological success of the low energy mass matrix in
Eq. 3 which is identical to that of the usual LS model, involving two right-handed neutrinos, but in this case arising
from the inverse seesaw model, including the two additional singlets. Such an extension allows CLFV decays, such as
µ ! e�, at observable rates, since in the inverse seesaw model small neutrino masses are explained by the smallness
of the µ matrix 1, which allows Dirac masses to be large even for TeV scale values of M . This is the first low scale
seesaw model leading to a successful fit of the 6 physical observables of the neutrino sector with only 2 e↵ective
free parameters. In our model the small masses for the light active neutrinos are generated from an inverse seesaw
mechanism. In order to achieve the above mass matrices, we appeal to standard approaches to the flavour puzzle
based on symmetries, as follows.

The flavour puzzle of the SM indicates that New Physics has to be advocated to explain the observed SM fermion mass
and mixing pattern. This is the so called flavour puzzle, which is not explained by the SM and provides motivation
for building models with additional scalars and fermions in their particle spectrum and with extended symmetries
which can be continuous or discrete and their breaking produces the observed pattern of SM fermion mass and mixing
pattern. Several discrete groups have been employed in extensions of the SM to tackle SM fermion flavor puzzle. In
particular the discrete group S4 [34–47], together with the groups A4 [48–78], T7 [79–88], �(27) [89–111] and T

0 [112–
127], is the smallest group containing an irreducible triplet representation that can accommodate the three fermion
families of the Standard model (SM). These groups have been widely used in several extensions of the SM since they
are particular promising in providing a viable and predictive description of the observed SM fermion mass spectrum
and mixing parameters. In the present article, we shall employ S4, together with other auxiliary symmetries, in order
to achieve the above mass matrices of the LIS model, together with a diagonal charged lepton mass matrix.

The current article is organized as follows. In section II we explain our model. In section III we present our results
in terms of neutrino masses and mixing. The implications of our model in the lepton flavor violating decays µ ! e�,
⌧ ! µ� and ⌧ ! e� are studied in section III. We conclude in section V. A description of the S4 discrete group is
presented in Appendix A. The superpotential that determines the vacuum configuration for the S4 doublet and triplet
scalars of our model is presented in Appendix B.

II. THE MODEL

We consider an S4 flavour model for leptons where the masses for the light active neutrinos are generated from an
inverse seesaw mechanism. The implementation of the inverse seesaw mechanism in our model relies in the inclusion
of four gauge singlets right handed Majorana neutrinos, which is the minimal amount of gauge singlet right handed
Majorana neutrinos needed to implement a realistic inverse seesaw mechanism as pointed out for the first time in Ref.

1 An example of a dynamical explanation for the smallness of the µ parameter of the inverse seesaw and its connection with Dark matter
is provided in Ref. [128]
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We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
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The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [16].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)

where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
Plugging in the specific shapes of the modular forms given in Eq. 33 we arrive at a

diagonal charged-lepton mass matrix for ⌧C = !, including the dimensionless coupling
coefficients:

Ml = vd

0

B@
ye 0 0

0 yµ 0

0 0 y⌧

1

CA . (35)

The Dirac neutrino mass matrix is then given by:

MD = vu

0

B@
(Ya)1 (Ys)1
(Ya)3 (Ys)3
(Ya)2 (Ys)2

1

CA , (36)

where, as usual, vu denotes the Hu VEV, and the 2⇥3 structure comes from the CSD with
just two RH neutrinos. We have ignored the dimensionless coupling coefficients. Choos-
ing specific stabilisers for the two remaining moduli fields, we can achieve a CSD(3.45)
structure with n = 1�

p
6:

MD = vu

0

B@
0 b

a b
�
1 +

p
6
�

�a b
�
1�

p
6
�

1

CA . (37)

The type-I seesaw mechanism will lead to an effective mass matrix for the light neu-
trinos:

m⌫ = MD ·M�1
R ·MT

D = v2u

0

BBBBBBB@

b2

Ms

b2n

Ms

b2(2� n)

Ms

.
a2

Ma
+

b2n2

Ms
� a2

Ma
+

b2n(2� n)

Ms

. .
a2

Ma
+

b2(2� n)2

Ms

1

CCCCCCCA

, (38)

where n = 1 �
p
6 ⇡ �1.45. This can be rewritten in terms of 3 independent physical

parameters

m⌫ = ma

0

B@
0 0 0

0 1 �1

0 �1 1

1

CA+mbe
i⌘

0

B@
1 n 2� n

n n2 n(2� n)

2� n n(2� n) (2� n)2

1

CA , (39)
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Finally, we need to check the shape of the Dirac mass matrices. Given the VEVs for the bi-triplets

�AC ,�BC , the tensor products after SSB will mimic those of the usual S4 (the diagonal S4 preserved

by the bi-triplets symmetry breaking), as explained in [10–13]. This feature is preserved also in the

weighton versions of the model, that are using S
0
4. The Dirac mass matrix is then given by:

MD = vu

0

B@
(YA)1 (YB)1
(YA)3 (YB)3
(YA)2 (YB)2

1

CA , (11)

where, as usual, vu denotes the Hu VEV, and the 2 ⇥ 3 structure comes from the CSD with just two

RH neutrinos. Choosing specific stabilisers for the two remaining moduli fields, we can achieve a new

CSD(3.45) structure with n = 1 +
p
6:

MD = vu
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a b
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p
6
�

�a b
�
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p
6
�

1

CA , ⌧A = �
3

2
+

i

2
, ⌧B =

3

2
+

i

2
. (12)

We can similarly achieve the case CSD(�1.45) with n = 1�
p
6 already discussed in [8]:

MD = vu

0
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0 b

a b
�
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p
6
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�a b
�
1 +

p
6
�

1

CA , ⌧A = �
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+
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2
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i

2
. (13)

The type-I seesaw mechanism will lead to an e↵ective mass matrix for the light neutrinos:

m⌫ = MD ·M
�1
R ·M

T
D = v

2
u
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b
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b
2
n
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b
2(2� n)
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a
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n(2� n)
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a
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b
2(2� n)2

MB
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CCCCCCCCA

, (14)

where n = 1 +
p
6 ⇡ 3.45 or n = 1�

p
6 ⇡ �1.45.

2.4 Analytic results

The e↵ective mass matrix for the light neutrinos can be split into two contributions,

m⌫ =
v
2
u

MA
|a|

2

0

B@
0 0 0

0 1 �1

0 �1 1

1

CA+
v
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u
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e
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1 n 2� n

n n
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n(2� n)

2� n n(2� n) (2� n)2
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CA . (15)

It is worth noting that the above neutrino mass matrix in the diagonal charged lepton mass basis is

determined e↵ectively by two real parameters, ma = v
2
u
|a|2
MA

, mb = v
2
u
|b|2
MB

, one phase � and a discrete

choice of n = 1 ±
p
6. For a given choice of n, the remaining three real parameters determine all the

parameters in the neutrino sector, namely all the neutrino masses and the entire PMNS matrix.

These two terms above can be simultaneously block-diagonalized by the following Tri-bimaximal

mixing matrix,

UTBM =
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! + 3 (1,!,�!2

2 ) (1,�!
2 ,!

2) (1,�2!,�2!2)

⇢/
p
3 (1,�!

2 ,!
2) (1,!,�!2

2 ) (1,�2!,�2!2)

⇢/
p
3 + 1 (0, 0, 1) (0, 1, 0) (1, 0, 0)

⇢/
p
3 + 2 (1,�1

2 , 1) (1, 1,�1
2) (1,�2,�2)

⇢/
p
3 + 3 (1,!2,�!

2 ) (1,�!2

2 ,!) (1,�2!2,�2!)

Table 3: The alignments of triplet modular forms Y3,30(⌧) of level 4 up to weight 6 with the available
fixed moduli in orbifolds. We have ignored the overall constant appearing in each alignment.

3.2 S4 Remnant Symmetry

The orbifold Z2, associated with the third torus T2
C , does not fix ⌧ . However, supposing

that the twist angle is ⌧ = ! = e2i⇡/3 would leave a remnant S4 symmetry (which is a
subgroup of the extra dimensional Poincaré group) after compactification [29, 30]. We
shall assume that there is a remnant S4 after compactification, therefore fixing uniquely

⌧3 = !. (28)

We focus on the branes of the fixus torus TC [30–32],

z̄ = {0, 1/2, !/2, !2/2}, (29)

which are naturally invariant under the orbifold transformations

T1 : z̄ ! z̄ + 1, T2 : z̄ ! z̄ + !, Z : z̄ ! �z̄. (30)

The set of branes is invariant under the permutation set of them. However not all
permutations are Poincaré transformations.

These fixed branes and are permuted by the Poincaré transformations

S1 : z̄ ! z̄ + 1/2, S2 : z̄ + !/2, R : z̄ ! !z̄, P : z̄ ! z̄⇤, P 0 : z̄ ! �z̄⇤, (31)

which, after orbifolding, generate the remnant symmetry. We can write these operations
explicitly S1[(12)(34)], S2[(13)(24)], R[(243)(1)], P [(34)(1)(2)], P 0[(34)(1)(2)]. There are
only 3 independent transformations since S2 = R2 · S1 ·R, P = P 0.
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Table 2: The representation matrices of the generators S and T in the five irreducible representations of
S4, where ! = e

2⇡i/3 = �1/2 + i
p
3/2 is a cubic root of unity.

We assume N = 1 SUSY in 10d and this abelian orbifold preserves N = 1 SUSY in 4d
after compactification [24]. Therefore we can assume 3 independent modular symmetry
groups, each associated with a different tori [11–14]. We assume three discrete modular
symmetries SA,B,C

4 associated to each complex coordinate z1,2,3 correspondingly.
With the assumed S4 modular symmetries, the corresponding moduli from Eq.15,

which have an arbitrary integer, now can only be

n = 0, 1, 2, 3, (26)

where it is now limited to a choice of one in four.

3.1 Fixed points and S4 modular forms

In most models using modular symmetries, the ⌧ is a free parameter that is minimized
by a potential and treated as a VEV. A standard strategy to increase the predictivity of
the model is to restrict to fixed points which are geometrically preferred. These point
⌧̄ are defined as the points that are invariant under some element of the modular group
� 2 S4 called the stabilizer.

In an orbifold, the ⌧ is not a free parameter and it is fixed by the geometry of the
orbifold itself. However, there are a finite number of choices, which allow specific modular
forms which are listed in Table 3 [28]. All the presented S4 modular forms are defined in
the basis from Table 2.

In the (T2)3/(Z4 ⇥ Z2) orbifold, it will be assumed that

⌧1 = i, ⌧2 = i+ 2, (27)

which are particular cases of Eq. 15 which are phenomenologicaly preferred, as described
in the Sec. 4. However the choice of ⌧3 is undetermined by the (T2)3/(Z4 ⇥ Z2) orbifold,
and instead shall be fixed by assuming a remnant S4 symmetry, as discussed in the next
subsection.
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30 (⌧) Y (4)
30 (⌧), Y (6)

3,II(⌧)
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3.2 S4 Remnant Symmetry

The orbifold Z2, associated with the third torus T2
C , does not fix ⌧ . However, supposing

that the twist angle is ⌧ = ! = e2i⇡/3 would leave a remnant S4 symmetry (which is a
subgroup of the extra dimensional Poincaré group) after compactification [29, 30]. We
shall assume that there is a remnant S4 after compactification, therefore fixing uniquely

⌧3 = !. (28)

We focus on the branes of the fixus torus TC [30–32],

z̄ = {0, 1/2, !/2, !2/2}, (29)

which are naturally invariant under the orbifold transformations

T1 : z̄ ! z̄ + 1, T2 : z̄ ! z̄ + !, Z : z̄ ! �z̄. (30)

The set of branes is invariant under the permutation set of them. However not all
permutations are Poincaré transformations.

These fixed branes and are permuted by the Poincaré transformations

S1 : z̄ ! z̄ + 1/2, S2 : z̄ + !/2, R : z̄ ! !z̄, P : z̄ ! z̄⇤, P 0 : z̄ ! �z̄⇤, (31)

which, after orbifolding, generate the remnant symmetry. We can write these operations
explicitly S1[(12)(34)], S2[(13)(24)], R[(243)(1)], P [(34)(1)(2)], P 0[(34)(1)(2)]. There are
only 3 independent transformations since S2 = R2 · S1 ·R, P = P 0.
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Table 2: The representation matrices of the generators S and T in the five irreducible representations of
S4, where ! = e

2⇡i/3 = �1/2 + i
p
3/2 is a cubic root of unity.

We assume N = 1 SUSY in 10d and this abelian orbifold preserves N = 1 SUSY in 4d
after compactification [24]. Therefore we can assume 3 independent modular symmetry
groups, each associated with a different tori [11–14]. We assume three discrete modular
symmetries SA,B,C

4 associated to each complex coordinate z1,2,3 correspondingly.
With the assumed S4 modular symmetries, the corresponding moduli from Eq.15,

which have an arbitrary integer, now can only be

n = 0, 1, 2, 3, (26)

where it is now limited to a choice of one in four.

3.1 Fixed points and S4 modular forms

In most models using modular symmetries, the ⌧ is a free parameter that is minimized
by a potential and treated as a VEV. A standard strategy to increase the predictivity of
the model is to restrict to fixed points which are geometrically preferred. These point
⌧̄ are defined as the points that are invariant under some element of the modular group
� 2 S4 called the stabilizer.

In an orbifold, the ⌧ is not a free parameter and it is fixed by the geometry of the
orbifold itself. However, there are a finite number of choices, which allow specific modular
forms which are listed in Table 3 [28]. All the presented S4 modular forms are defined in
the basis from Table 2.

In the (T2)3/(Z4 ⇥ Z2) orbifold, it will be assumed that

⌧1 = i, ⌧2 = i+ 2, (27)

which are particular cases of Eq. 15 which are phenomenologicaly preferred, as described
in the Sec. 4. However the choice of ⌧3 is undetermined by the (T2)3/(Z4 ⇥ Z2) orbifold,
and instead shall be fixed by assuming a remnant S4 symmetry, as discussed in the next
subsection.
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n = 1 +
p
6

n ⇡ 3.45

CSD(n)
Flipped

Yukawa couplings 
are modular forms 
evaluated at the 

fixed points of the 
moduli fields (the 

lattice vectors)

Littlest Modular Seesaw from Orbifold

These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.

12

De Anda, SFK 2304.05958

Fixed 
points 
of S4

Also see Multiple 
moduli talk by Zhou



de Medeiros 
Varzielas,S.F.K., 
M.Levy 2309.15901 

de Anda, SFK 2312.09010 

Field SU(5) SA
4 SB

4 SC
4 2kA 2kB 2kC Loc

F 5 1 1 3 0 0 0 T2
C

T1 10 1 1 1 0 0 1 T2
C

T2 10 1 1 1 0 0 1/2 T2
C

T3 10 1 1 1 0 0 0 T2
C

N c
a 1 1 1 1 0 −4 0 T2

B

N c
s 1 1 1 1 −2 0 0 T2

A

Hu 5 1 1 1 0 0 0 Bulk

Hd 5 1 1 1 0 0 1/2 Bulk

H45 45 1 1 1 0 0 1/2 Bulk

H45 45 1 1 1 0 0 0 Bulk

ΦBC 1 1 3 3 0 0 0 Bulk

ΦAC 1 3 1 3 0 0 0 Bulk

ξF 1 1 1 1 0 0 −5/2 T2
C

ξT 1 1 1 1 0 0 −1/2 T2
C

Yuk/Mass SA
4 SB

4 SC
4 2kA 2kB 2kC

Ye(τ3) 1 1 3 0 0 6

Yµ(τ3) 1 1 3 0 0 4

Yτ (τ3) 1 1 3 0 0 2

Ya(τ2) 1 3 1 0 4 0

Ys(τ1) 3 1 1 2 0 0

Ma(τ2) 1 1 1 0 8 0

Ms(τ1) 1 1 1 4 0 0

Table 1: Full list of the assumed fields of the model as well as they localization. The ones in the bulk are

10d chiral superfields while the ones in the defined branes are 6d chiral superfields. The modular forms

in the second table are fixed by the representation and weights of the fields. The H45 is added to cancel

anomalies and plays no other role in the low energy effective model.

As the 10d vector superfield decomposes into 4 4d superfields (1 vector and 3 left

chiral superfields) V = {V,φ1,2,3} which fulfils the conditions [28–30]

V (x, z1, z2, z3) = P4V (x, iz1,−iz2, z3)P4, V (x, z1, z2, z3) = V (x, z1,−z2,−z3),

φ1(x, z1, z2, z3) = iP4φ1(x, iz1,−iz2, z3)P4, φ1(x, z1, z2, z3) = φ1(x, z1,−z2,−z3),

φ2(x, z1, z2, z3) = −iP4φ2(x, iz1,−iz2, z3)P4, φ2(x, z1, z2, z3) = −φ2(x, z1,−z2,−z3),

φ3(x, z1, z2, z3) = P4φ3(x, iz1,−iz2, z3)P4, φ3(x, z1, z2, z3) = −φ3(x, z1,−z2,−z3),
(10)

where each 10d function decomposes into an infinite tower of KK modes. One can easily

find the zero modes by finding the solutions for the prior equations when z1 = z2 = z3 = 0.

The only available zero modes are the SM gauge vector superfields.

3.2 SM fermions

All the SM fermions are located in the 6d brane TC and therefore they are 6d chiral

superfields which decompose as 2 4d chiral superfields (left and right) F = {FL, FR}.

4
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where each 10d function decomposes into an infinite tower of KK modes. One can easily

find the zero modes by finding the solutions for the prior equations when z1 = z2 = z3 = 0.

The only available zero modes are the SM gauge vector superfields.

3.2 SM fermions

All the SM fermions are located in the 6d brane TC and therefore they are 6d chiral

superfields which decompose as 2 4d chiral superfields (left and right) F = {FL, FR}.

4

case y’s are arbitrary complex dimensionless parameters. The primed, 5 and 45 subscript

modular forms indicate different y complex parameter but the same flavour structure.

The symmetric up-quark mass matrix originates from the TTHu couplings in Eq. 18,

Mu =

⎛

⎜

⎝

0 yu12ξ̃
3
T,Fe

iφu1 yu13ξ̃
2
T

yu12ξ̃
3
T,Fe

iφu1 yu22ξ̃
2
T yu23ξ̃T e

iφu2

yu13ξ̃
2
T yu23ξ̃Te

iφu2 yu33

⎞

⎟

⎠
vu, (20)

where each y is now an arbitrary real dimensionless constant. Phases can be redefined

so that there are 5 real parameters and 2 phases. This yields the approximate up-type

quark mass hierarchies, mu ∼ ξ̃4T,Fvu, mc ∼ ξ̃2Tvu, mt ∼ vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5τ , Y45e,45µ,45τ

and primed ones have the same modular form structure but different overall complex

constants multiplying them. Therefore both are diagonal mass matrices but the actual

masses are determined after Higgs mixing [32]§,

ye11vd = y5evd5 − 3y5evd45, yd11vd = y5dvd + y45dvd45,

ye22vd = y5µvd5 − 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5τvd5 − 3y5τvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y′5µvd5 − 3y′5µvd45, yd12vd = y′5svd5 + y′45svd45,

ye32vd = y′5τvd5 − 3y′5τvd45, yd23vd = y′5bvd5 + y′45bvd45,

ye31vd = y′′5τvd5 − 3y′′5τvd45, yd13vd = y′′5bvd5 + y′′45bvd45,

(21)

where vd is an effective down Higgs VEV.

The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 18,

Md =

⎛

⎜

⎝

yd11ξ̃3F yd12ξ̃2F ξ̃T yd13ξ̃F ξ̃2T
0 yd22ξ̃2F yd23ξ̃F ξ̃T eiφd2

0 0 yd33ξ̃F

⎞

⎟

⎠
vd, (22)

Me =

⎛

⎜

⎝

ye11ξ̃3F 0 0

ye21ξ̃2F ξ̃T ye22ξ̃2F 0

ye31ξ̃F ξ̃2T ye32ξ̃F ξ̃T eiφd1 ye33ξ̃F

⎞

⎟

⎠
vd, (23)

where each matrix has 6 real parameters and 1 phase. These yield the the approximate

down-type quark and charged lepton mass hierarchies, md ∼ me ∼ ξ̃3Fvd, and ms ∼ mµ ∼
ξ̃2Fvd, and mb ∼ mτ ∼ ξ̃Fvd. We have written each mass matrix in LR convention so that,

upon diagonalisation, Md will yield left-handed mixing angles arising from the upper-right

§The presence of both H45 and H45 allows the mass term M45H45H45 which ensures that all the

components of these Higgs fields are heavy, apart from the Higgs doublet component of H45 that mixes

with the Higgs doublet contained in H5d, to produce the light linear combination identified as the physical

Higgs doublet Hd. In this way, the Higgs doublet-triplet splitting mechanism discussed earlier is sufficient

to ensure one light physical combination of down-type Higgs doublets which we identify as Hd.
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off-diagonal terms, while Me will yield approximately zero left-handed mixing angles (with

non-zero right-handed mixing angles from the lower-left off-diagonal terms). This means

that Md (as well as Mu) will both contribute approximately equally to the CKM mixing

angles, while Me will not contribute appreciably to the PMNS mixing angles.

Finally the neutrino Dirac and Majorana mass matrices from FNHu and N cN c terms

are

MD =

⎛

⎜

⎝

0 ysΦ̃AC

yaΦ̃BC ysΦ̃AC(1−
√
6)

−yaΦ̃BC ysΦ̃AC(1 +
√
6)

⎞

⎟

⎠
vu, MN =

(

Ma 0

0 Ms

)

, (24)

which has the structure of a type-I seesaw mechanism which generates effective mass

matrix for the light neutrinos:

mν = MD·M−1
R ·MT

D = v2u

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(ysΦ̃AC)2

Ms

(ysΦ̃AC)2(2− n)

Ms

(ysΦ̃AC)2n

Ms

.
(yaΦ̃BC)2

Ma
+

(ysΦ̃AC)2(2− n)2

Ms
−
(yaΦ̃BC)2

Ma
+

(ysΦ̃AC)2n(2− n)

Ms

. .
(yaΦ̃BC)2

Ma
+

(ysΦ̃AC)2n2

Ms

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(25)

where n = 1 +
√
6 ≈ 3.45. This can be redefined in terms of 3 independent physical

parameters

mν = ma

⎛

⎜

⎝

0 0 0

0 1 −1

0 −1 1

⎞

⎟

⎠
+mbe

iη

⎛

⎜

⎝

1 (2− n) n

(2− n) (2− n)2 n(2− n)

n n(2− n) n2

⎞

⎟

⎠
, (26)

where

ma =

∣

∣

∣

∣

∣

v2u(yaΦ̃BC)2

Ma

∣

∣

∣

∣

∣

, mb =

∣

∣

∣

∣

∣

v2u(ysΦ̃AC)2

Ms

∣

∣

∣

∣

∣

(27)

which corresponds to flipped CSD(n) with n = 1 +
√
6 ≈ 3.45 in the notation of

ref. [17]. Therefore the model has only these three parameters for the whole neutrino

sector, where the PMNS mixing parameters do not receive any appreciable contribution

from the charged lepton sector as mentioned above and discussed further below. This

results in a highly predictive flipped CSD(1 +
√
6) setup [3, 17] with an excellent fit to

neutrino oscillation parameters involving three real input parameters to determine the

three neutrino masses and the six parameters of the PMNS matrix, where one neutrino

mass and one Majorana phase are predicted to be zero.

One may ask how the fit changes due to the off-diagonal charged lepton mass matrix

parameters in the lower-left of the mass matrix Me in Eq. 23. To address this question we

show two fits in Table 2. First we assume that the off-diagonal terms in Me are smaller

than the diagonal ones on the same row, which is a natural choice, since they are relatively

suppressed by small expansion parameters. The results show that this generates quite
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where each y is now an arbitrary real dimensionless constant. Phases can be redefined

so that there are 5 real parameters and 2 phases. This yields the approximate up-type

quark mass hierarchies, mu ∼ ξ̃4T,Fvu, mc ∼ ξ̃2Tvu, mt ∼ vu.

The H45 breaks the charged lepton and down quark degeneracy. The Y5e,5µ,5τ , Y45e,45µ,45τ

and primed ones have the same modular form structure but different overall complex

constants multiplying them. Therefore both are diagonal mass matrices but the actual

masses are determined after Higgs mixing [32]§,

ye11vd = y5evd5 − 3y5evd45, yd11vd = y5dvd + y45dvd45,

ye22vd = y5µvd5 − 3y5µvd45, yd22vd = y5svd5 + y45svd45,

ye33vd = y5τvd5 − 3y5τvd45, yd33vd = y5bvd5 + y45bvd45,

ye21vd = y′5µvd5 − 3y′5µvd45, yd12vd = y′5svd5 + y′45svd45,

ye32vd = y′5τvd5 − 3y′5τvd45, yd23vd = y′5bvd5 + y′45bvd45,

ye31vd = y′′5τvd5 − 3y′′5τvd45, yd13vd = y′′5bvd5 + y′′45bvd45,

(21)

where vd is an effective down Higgs VEV.

The triangular down-quark and charged lepton mass matrices originate from the

FTHd couplings in Eq. 18,
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⎠
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⎠
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where each matrix has 6 real parameters and 1 phase. These yield the the approximate

down-type quark and charged lepton mass hierarchies, md ∼ me ∼ ξ̃3Fvd, and ms ∼ mµ ∼
ξ̃2Fvd, and mb ∼ mτ ∼ ξ̃Fvd. We have written each mass matrix in LR convention so that,

upon diagonalisation, Md will yield left-handed mixing angles arising from the upper-right

§The presence of both H45 and H45 allows the mass term M45H45H45 which ensures that all the

components of these Higgs fields are heavy, apart from the Higgs doublet component of H45 that mixes

with the Higgs doublet contained in H5d, to produce the light linear combination identified as the physical

Higgs doublet Hd. In this way, the Higgs doublet-triplet splitting mechanism discussed earlier is sufficient

to ensure one light physical combination of down-type Higgs doublets which we identify as Hd.
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• 10d orbifold B.C.s break SU(5) with DT splitting 
• Triangular form of Md, Me yields CKM mixing plus 

very suppressed charged lepton corrections 
• Two weightons  control the hierarchiesξF, ξT

Littlest Modular Seesaw from Orbifold GUTs

n = 1 +
p
6

CSD(n)Flipped

Dirac 
neutrino 
matrix

Upper/lower LR 
triangular form 



Summary
Flavour problem mo;vates family/flavour symmetry 
Neutrino mass and mixing mo;vates non-Abelian  
A4, S4, A5 can enforce TBM, BM, GR paMerns via ZTN and ZS2xZU2 
Reactor angle can be non-zero if only a subgroup is preserved 
Breaking ZTN leads to charged lepton correc;ons and solar sum rules 
Breaking ZU2 preserves 1st or 2nd columns, atmospheric sum rules 
Such symmetry predic;ons will be tested in coming years 
Type 1a seesaw: 2RHN + SRHND for natural hierarchy 

 (large mixing with no tuning) 
Predic;vity mo;vates CSD(n) with n~3 a.k.a. LiMlest Seesaw 
LiMlest Modular Seesaw yields excellent predic;ons 
Can arise from 10d orbifold and may be combined with SU(5) GUTs

m3 ≫ m2 ≫ m1 ≈ 0



Back-up: our bottom-up Orbifold

For more details see: 
De Anda, SFK 2304.05958



Consider Two Extra Dimensions compactified 
on a torus, equivalent to a parallelogramDonuts = TORI

53two cycles

constructed 
from 

parallelogram

Donuts = TORI

53two cycles

constructed 
from 

parallelogram

Modular Symmetries

54

edges ⇒ lattice basis vectors
points in plane identified if 
differ by a lattice translation

Equivalent TORI related 
by Modular Symmetries

!1
!1

!2
!2

Parallelogram is defined 
by two vectors 

Adding the vectors together with arbitrary 
integers generates a lattice of points. 

Any two lattice points give a new torus.

Surface area of torus = 
area of parallelogram



De Anda, SFK 2304.05958

Bottom-up Orbifolds
and N = 2 SUSY. The standard solution is to compactify the extra dimensions as an
orbifold, which we now present its basics.

2.1 The orbifold T2/ZN

The two extra dimensional coordinates can be treated as a single complex coordinate
z = x5 + ix6. The torus compactification is done by identifying

z ⇠ z + 1, z ⇠ z + ⌧, (1)

where ⌧ is called the twist angle and, for now, it is an arbitrary complex number. This
identification restricts the range of the complex coordinate. The {1, ⌧} are called the
basis vectors which generate the lattice of the extra dimensional plane and define the
torus.

The torus by itself leads to a non chiral theory after compactification. The solution is
to assume orbifolding, which is equivalent to assume that the extra dimensional part of the
Poincaré group is not a full symmetry. This is done by modding out a discrete subgroup
of the extra dimensional Lorentz group, which is called orbifolding. In 6 dimensions, the
extra dimensional part of the Lorentz group is

SO(1, 5)/SO(1, 3) ' SO(2) ' U(1), (2)

which correspond to rotation in the 2 extra dimensions. One can mod out by any discrete
subgroup F 2 U(1), which can only be F = ZN , with N an arbitrary integer (for now).
It has to be a discrete group to avoid reducing the dimensionality. The ZN orbifolding is
achieved by the identification

z ⇠ e2i⇡/Nz, (3)

which further restricts the range of the extra dimensional coordinates. The orbifold has
fixed points which allow boundary conditions that generate chirality, may break the gauge
symmetry and reduce the enhanced SUSY. Therefore they may lead to a consistent model
after compactification.

To avoid dimensional reduction and therefore for the orbifold to be consistent, the
orbifold action in Eq.3 must be equivalent to an integer number of lattice transformations
as in Eq. 3. In other words, there must exist integer numbers a, b 2 Z such that a solution
exists for

e2i⇡/Nz = z + a+ b⌧. (4)

It is enough to find a solution for each of the basis vectors {1, ⌧},

e2i⇡/N = a+ b⌧, e2i⇡/N⌧ = c+ d⌧, (5)
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Identify  

Two dimensional twisted torus 

where S; T ∈ SLð2;ZMÞ. These groups, with M ≤ 5, are
isomorphic to the known discrete groups as Γ̄2≃S3, Γ̄3≃A4,
Γ̄4 ≃ S4, Γ̄5 ≃ A5.
We now introduce a convenient (if nonunique) repre-

sentation for the modular transformations consistent with
the presentation in Eq. (8),

S ¼
!

0 1

−1 0

"
; TðMÞ ¼

!
e−2iπ=M 0

1 e2iπ=M

"
; ð9Þ

which satisfies the presentation of the Γ̄M group, for any
integer M > 2. This representation will be useful in the
following discussion.

B. Why the orbifold T2=Z2 suggests modular A4
symmetry with modulus τ =ω

In this subsection we present an argument which shows
that a particular T2=Z2 orbifold (as assumed in this paper)
suggests an underlying modular A4 symmetry with specific
modulus parameters.
We begin by defining the orbifold T2=Z2 in terms of two

arbitrary lattice vectors ω1 and ω2,

z ¼ zþ ω1; z ¼ zþ ω2; z ¼ −z: ð10Þ

The action of the orbifold in Eq. (10) leaves four invariant
4d branes given by3

z̄ ¼
#
0;
ω1

2
;
ω2

2
;
ω1 þ ω2

2

$
: ð11Þ

After compactification, the symmetries of the branes
remain unbroken; therefore it is relevant to study any
possible symmetry among the branes which will affect the
fields localized on them. Therefore, we want to check if the
modular transformations in Eq. (9) leave an invariant set of
branes for some value of M. At this stage the modulus
τ ¼ ω2=ω1 can apparently take any value. However we
present a proof in Appendix A that only the A4 symmetry is
consistent, meaning thatM ¼ 3, when the basis vectors are
related by

ω2 ¼ −
ei2π=3 þ 2pþ 2

2qþ 1
ω1: ð12Þ

The p and q are integers satisfying that

r ¼ ð2pþ 1Þðpþ 1Þ þ qþ 1

2qþ 1
ð13Þ

is an integer, which has infinitely many discrete solutions.
Furthermore, since the modular forms restrict τ to be in the
upper complex plane, then q < 0.

This paper’s approach is to focus on the orbifold first and
then derive the modular symmetries, instead of going
directly into the modular symmetries. We will restrict
ourselves to the case where jω1j ¼ jω2j, which happens
when p ¼ −1, q ¼ −1. This way we focus on studying the
effects only of the angle between both vectors. We can,
without loss of generality, choose ω1 ¼ 1. Furthermore, the
modular symmetries require τ to lie in the upper complex
plane; in this case the only solutions to Eqs. (12) and (13)
are ω2 ¼ ω ¼ ei2π=3. This uniquely fixes the modulus
coming from the orbifold T2=Z2. We emphasize that this
is one of the main differences of the present paper as
compared to recent works with modular symmetries which
regard the modulus τ as a free phenomenological parameter
[15,16]. In our work, we assume a specific orbifold T2=Z2,
for which we have shown that one consistent choice for a
surviving modular symmetry is A4 with fixed modulus τ,
although we shall not address the problem of moduli
stabilization [17].

C. The orbifold T2=Z2 with ω= ei2π=3
and modular A4 symmetry

Following the argument of the previous subsection, we
henceforth focus on the orbifold T2=Z2 with particular
twist angle denoted as ω ¼ ei2π=3, identified as the modulus
τ associated with a particular finite modular symmetry A4,
where A4 is the only choice consistent with this orbifold.
This orbifold then corresponds to the identification

z ¼ zþ 1; z ¼ zþ ω; z ¼ −z; ð14Þ

where the first two equations are the periodic conditions
from the torus T2 and the third one is the action generated
by the orbifolding symmetry Z2. The twist corresponds to
ω ¼ ei2π=3. The orbifold symmetry transformations leave
four invariant 4d branes as shown in Fig. 1:

z̄ ¼
#
0;
1

2
;
ω
2
;
1þ ω
2

$
: ð15Þ

The transformations

S∶ z → zþ 1=2 or z → zþ ω=2;

T∶ z → ω2z;

U∶ z → z% or z → −z%; ð16Þ

permute the branes and leave invariant the set of four branes
in Eq. (15). These transformations satisfy

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1;

U2 ¼ ðSUÞ2 ¼ ðTUÞ2 ¼ ðSTUÞ4 ¼ 1; ð17Þ

where the first line is the presentation of the group A4 and
both lines complete the presentation of S4 [1]. In Fig. 1 we
show how these transformations act on the extra-

3The notation for the lattice vectors ω1;2 should not be
confused with the twist angle ω ¼ ei2π=3.
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where there must exist a, b, c, d 2 Z that solve these equations. It is clear that there is
no solution for arbitrary N and ⌧ . This restricts the N and ⌧ to be one of
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N = 4, ⌧ = i,

N = 6, ⌧ = {!, ⇢/
p
3},

(6)

where ! = e2i⇡/3 and ⇢ = ei⇡/6 and all the solutions are valid up to an integer.
Therefore working with an orbifold may fix ⌧ geometrically, adding predictivity, and

solves the chirality problem therefore allowing a viable model.

2.2 The orbifold (T2)3/(ZN ⇥ ZM)

Many models may require various independent modular symmetries or different ⌧ values
to achieve a better fit. One such model is presented in Sec. 4. As it needs 3 independent
modular symmetries, we focus on 10 dimensional spaces with N = 1 SUSY before and
after compactification.

In the 10 dimensional case, one can orbifold by a discrete subgroup of the extra
dimensional part of the Lorentz group

SO(1, 9)/SO(1, 3) ' SO(6) ' SU(4), (7)

which corresponds to rotations in the extra 6 dimensions. The former SU(4) can be
identified with the SU(4)R of the enhanced N = 4 SUSY. As we want to preserve simple
SUSY after compactification, the discrete orbifolding group must be F ⇢ SU(3). As it
is rank 2, a general 10d SUSY preserving abelian factorisable orbifolding is

(T2)3/(ZN ⇥ ZM) (8)

which can be compactified by the basis vectors

zi ⇠ zi + 1, zi ⇠ zi + ⌧i, (9)

and the orbifolding defined by

✓N : (x, z1, z2, z3) ⇠ (x,↵Nz1, �Nz2, �Nz3),

✓M : (x, z1, z2, z3) ⇠ (x,↵Mz1, �Mz2, �Mz3),
(10)

where ↵N,M , �N,M , �N,M are Nth, Mth roots of unity.
The choice of the phases of the orbifolding are restricted by the preservation of N = 1

SUSY. The ⌧i must be fixed so that the lattice is unchanged by the orbifold transfor-
mation. The ⌧i are fixed, as they must such that the orbifolding identification does not
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Fixes  τ{

Lattice 
vectors 

Modular 
symmetry 

⌧0 �0 Stab(⌧0)
i S ZS

4 =
�
1, S, S2, S3

 

e2⇡i/3 ST, S2 ZST
3 ⇥ ZS2

2 =
�
1, ST, (ST )2, S2, S3T, S2(ST )2

 

i1 T, S2 ZT
⇥ ZS2

2 =
�
1, S2, T, S2T, T 2, S2T 2, . . .

 

others S2 ZS2

2 =
�
1, S2

 

Table 1. The fixed points ⌧0 in the fundamental domain D and the corresponding stabilizers
Stab(⌧0) which are abelian subgroup of �. Notice that the cyclic Zg

m has the presentation rule
Zg
m = {g|gm = 1}. The stabilizer ZST

3 ⇥ZS2

2 of ⌧0 = e2⇡i/3 is isomorphic to the cyclic group ZS3T
6 ,

and the ZT denotes the infinite cyclic group generated by the translation T .

group in figure 4. From Eq. (3.8) we see that only the modular symmetry transformation
conjugate to �0 can have fixed point. In other words, �f and �0 must belong to the same
conjugacy class. It is straightforward to see that the stabilizer Stab(⌧f ) = �0Stab(⌧0)�0�1 is
isomorphic Stab(⌧0), and the isomorphism is given by a conjugation with �0. The alignment
of the modular form at the symmetric points are fixed so that the lepton mass matrices
and mixing parameters are strongly constrained, the phenomenological implications of the
residual symmetry fixed points would be discussed later.

3.4 Modular invariant supersymmetric theories

We work in the framework of the modular invariant supersymmetric theory [4–6]. In the
context of N = 1 global supersymmetry, the most general form of the action is

S =

Z
d4xd2✓d2✓̄K(�I , �̄I , ⌧, ⌧̄) +

Z
d4xd2✓W(�I , ⌧) + h.c.

�
, (3.9)

where K(�I , �̄I , ⌧, ⌧̄) is the Kähler potential, it is a real gauge invariant function of the chiral
superfields �I , the modulus ⌧ and their hermitian conjugates �̄, ⌧̄ . W(�, ⌧) stands for the
superpotential, and it is a holomorphic gauge invariant function of the chiral superfields
�I and ⌧ . The action S should be modular invariant and respect the SM (or GUT) gauge
symmetry. The transformation properties of �I are specified by its modular weight �kI
and the representation rI under �0

N ,

⌧ ! �⌧ =
a⌧ + b

c⌧ + d
, �I ! (c⌧ + d)�kI⇢rI (�)�I . (3.10)

The Kähler potential to be the minimal form [6],

K(�I , �̄I , ⌧, ⌧̄) = �h⇤2 log(�i⌧ + i⌧̄) +
X

I

(�i⌧ + i⌧̄)�kI |�I |
2 , (3.11)

where h is a positive constant. After the modulus ⌧ gets a vacuum expectation, this Kähler
potential gives the kinetic terms for the scalar components of the supermultiplet �I and
the modulus field ⌧ . Notice the Kähler potential is loosely constrained by the modular
symmetry, there are additional terms consistent with modular symmetry [7]. However, the
Kähler potential K is subject to strong constraint in some top-down models motivated by

– 5 –

which implies 1

⌧ 7! �⌧ = �(⌧) =
a⌧ + b

c⌧ + d
, Im(⌧) > 0 . (3.2)

where a, b, c, d are integers and they fulfill ad � bc = 1. A complex torus is a quotient
C/⇤ of the complex plane C by a lattice ⇤, it is obtained by gluing both opposite pairs of
edges of the fundamental parallelogram depicted in gray in figure 1. Obviously each linear

fractional transformation of Eq. (3.2) is associated with a 2 ⇥ 2 matrix � =

 
a b

c d

!
with

integer coefficients and determinant 1. All the linear fractional transformations form the
full modular group � which is isomorphic to SL(2,Z). Notice that � and �� act in the
same way on the modulus ⌧ , the faithful action group is the projective special linear group
� ⌘ PSL(2,Z) ⇠= SL(2,Z)/{12,�12}, where 12 stands for the two-dimensional identity
matrix. Note that the modular group is defined to be � In some literature. The modular
group is an infinite discrete group and it can be generated by two elements S and T [1, 2]

S =

 
0 1

�1 0

!
, T =

 
1 1

0 1

!
. (3.3)

Note that S and T are often referred to as modular inversion and translation respectively,

S : ⌧ 7! �
1

⌧
, T : ⌧ 7! ⌧ + 1 . (3.4)

It is straightforward to check that the two generators satisfy the following relations

S2 = �12, S4 = (ST )3 = 12, S2T = TS2 (3.5)

and also (TS)3 = 12 which is equivalent to (ST )3 = 12. The corresponding relations in �

are S2 = (ST )3 = 12, since 12 and �12 are indistinguishable in �.
As shown in figure 3, the � orbit of every modulus ⌧ has a representative in the standard

fundamental domain D
2 .

D = {⌧ |Im(⌧) > 0, |Re(⌧)| 
1

2
, |⌧ | � 1} , (3.7)

which is bounded by the vertical lines Re(⌧) = �
1
2 , Re(⌧) =

1
2 and the circle |⌧ | = 1 in the

upper half plane H. Every point in the upper half plane is equivalent to a point of D under
the action of SL(2,Z), and no two points inside D differ by a linear fraction transformation.
The transformation T pairs the two vertical lines Re(⌧) = ±

1
2 , and the transformation S

maps the arc of |⌧ | = 1 from i to e⇡i/3 into the arc from i to e2⇡i/3. Notice that the
fundamental domain is not unique, the transformed region �D by any element � of � can
also be taken as the fundamental domain.

1This modular transformation is well-defined, as it fulfills Im(�(⌧)) = Im(⌧)
|c⌧+d|2 > 0 and (��0)(⌧) =

�(�0(⌧)).
2More precisely, each orbit has a unique representative in the standard fundamental domain

D =
n
⌧
���|⌧ | > 1,�1

2
 Re(⌧) <

1
2

o
[
n
⌧
���|⌧ | = 1, Re(⌧)  0

o
, (3.6)

– 2 –

� ⌘
Preserves torus area



Consider 6d space with 3 factorisable tori 

SUSY preserving orbifolds 

where there must exist a, b, c, d 2 Z that solve these equations. It is clear that there is
no solution for arbitrary N and ⌧ . This restricts the N and ⌧ to be one of

N = 2, ⌧ = z 2 C,
N = 3, ⌧ = !,

N = 4, ⌧ = i,

N = 6, ⌧ = {!, ⇢/
p
3},

(6)

where ! = e2i⇡/3 and ⇢ = ei⇡/6 and all the solutions are valid up to an integer.
Therefore working with an orbifold may fix ⌧ geometrically, adding predictivity, and

solves the chirality problem therefore allowing a viable model.

2.2 The orbifold (T2)3/(ZN ⇥ ZM)

Many models may require various independent modular symmetries or different ⌧ values
to achieve a better fit. One such model is presented in Sec. 4. As it needs 3 independent
modular symmetries, we focus on 10 dimensional spaces with N = 1 SUSY before and
after compactification.

In the 10 dimensional case, one can orbifold by a discrete subgroup of the extra
dimensional part of the Lorentz group

SO(1, 9)/SO(1, 3) ' SO(6) ' SU(4), (7)

which corresponds to rotations in the extra 6 dimensions. The former SU(4) can be
identified with the SU(4)R of the enhanced N = 4 SUSY. As we want to preserve simple
SUSY after compactification, the discrete orbifolding group must be F ⇢ SU(3). As it
is rank 2, a general 10d SUSY preserving abelian factorisable orbifolding is

(T2)3/(ZN ⇥ ZM) (8)

which can be compactified by the basis vectors

zi ⇠ zi + 1, zi ⇠ zi + ⌧i, (9)

and the orbifolding defined by

✓N : (x, z1, z2, z3) ⇠ (x,↵Nz1, �Nz2, �Nz3),

✓M : (x, z1, z2, z3) ⇠ (x,↵Mz1, �Mz2, �Mz3),
(10)

where ↵N,M , �N,M , �N,M are Nth, Mth roots of unity.
The choice of the phases of the orbifolding are restricted by the preservation of N = 1

SUSY. The ⌧i must be fixed so that the lattice is unchanged by the orbifold transfor-
mation. The ⌧i are fixed, as they must such that the orbifolding identification does not
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change the lattice and therefore the torus remains unchanged. Therefore there must exist
integers a, b, c, d such that

(�, �⌧) = (a+ b⌧, c+ d⌧), (11)

for each corresponding � = ↵N,M , �N,M , �N,M

These restrictions limit the available (SUSY preserving [27]) orbifolds to be as in Table
1, which displays all the available orbifolds with some of the ⌧i fixed as shown (up to an
integer), while the non-fixed values are indicated by the complex number z.

(N,M) (↵N , �N , �N) (↵M , �M , �M) (⌧1, ⌧2, ⌧3)

(3, 1) (!,!,!) (1, 1, 1) (!,!,!)

(4, 1) (i, i,�1) (1, 1, 1) (i, i, z)

(6, 1)I (�!2,�!2,!2) (1, 1, 1) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(6, 1)II (�!2,!,�1) (1, 1, 1) ({!, ⇢/
p
3},!, z)

(2, 2) (1,�1,�1) (�1, 1,�1) (z, z, z)

(4, 2) (i,�i, 1) (1,�1,�1) (i, i, z)

(6, 2)I (�!2, 1,�!) (1,�1,�1) ({!, ⇢/
p
3}, z, {!, ⇢/

p
3})

(6, 2)II (!2,�!2,�!2) (1,�1,�1) (!, {!, ⇢/
p
3}, {!, ⇢/

p
3})

(3, 3) (1,!,!2) (!, 1,!2) (!,!,!)

(6, 3) (�!2, 1,�!) (1,!,!2) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(4, 4) (1, i,�i) (i, 1,�i) (i, i, i)

(6, 6) (1,�!2,�!) (�!2, 1,�!) ({!, ⇢/
p
3}, {!, ⇢/

p
3}, {!, ⇢/

p
3})

Table 1: Comprehensive list of 6d abelian factorisable and SUSY preserving orbifolds (T2)3/(ZN ⇥ZM ),
where ! = e

2i⇡/3 and ⇢ = e
i⇡/6, and the fixed points of ⌧i are specified only up to an integer. For

example, ⌧2 = i, i + 1, i + 2 and so on are all equivalent. The values of the complex numbers z are not
restricted by the orbifold, but particular values of z may be fixed by a remnant global symmetry.

2.3 The orbifold (T2)3/(Z4 ⇥ Z2)

In this subsection we discuss an example of an orbifold chosen from Table 1 corresponding
to (N,M) = (4, 2) which leads to an interesting model ¶. The full model based on the
resulting orbifold (T2)3/(Z4⇥Z2) will be presented in Sec. 4. The model we have in mind
is an extra dimensional version of a four dimensional model based on three finite modular
groups S3

4 broken to a diagonal subgroup S4, with the three moduli fields in the low energy
theory located at three different fixed points, namely ⌧1 = i, ⌧2 = i+ 2, ⌧3 = !. In a 4d
framework, this was shown to lead to a very predictive and successful phenomenological

¶This example is not unique, there are other choices which also lead to viable models.
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description of the neutrino and charged lepton masses and lepton mixing based on a type
of littlest seesaw [19].

In the 10d framework considered here, the desired moduli fields ⌧i for such model are
in principle consistent with the orbifold divisors Z2 ⇥Z2, Z4, Z4 ⇥Z2. However Z2 ⇥Z2

does not fix any of the ⌧i, so is not so restrictive. The Z4 orbifold divisor fixes the ⌧i as
needed by the model, but does not have the necessary fixed branes to build consistent
interactions. We are then left with the only viable and predictive choice being the orbifold
divisor Z4 ⇥ Z2, which can lead to the desired fixed points, as we discuss below.

We assume, then, a 10d spacetime where the 6 extra dimensions are factorisable into
3 tori, each defined by one complex coordinate zi with i = 1, 2, 3, and compactified as in
Eq. 9

zi ⇠ zi + 1, zi ⇠ zi + ⌧i, (12)

The orbifold (T2)3/Z4⇥Z2 as defined by the orbifolding actions in Eq. 10, using Table 1
with (N,M) = (4, 2) then implies,

✓4 : (x, z1, z2, z3) ⇠ (x, iz1,�iz2, z3),

✓2 : (x, z1, z2, z3) ⇠ (x, z1,�z2,�z3).
(13)

In the orbifold approach, (1, ⌧i) define the twist and the basis vectors of each torus.
For the orbifold to be consistent, the orbifolding actions ✓2,4 must not change the lattice,
i.e. its action over the lattice basis vectors (1, ⌧i) must be a linear combination of the
original lattice vectors, with integer coefficients. Therefore there must exist integers
a1,2,3, b1,2,3, c1,2,3, d1,2,3 2 Z such that, as in Eq. 11

(i, i⌧1,2) = (a1,2 + b1,2⌧1,2, c1,2 + d⌧1,2),

(�1,�⌧3) = (a3 + b3⌧3, c3 + d⌧3),
(14)

In the present example, solving Eq. 14 gives,

⌧1,2 = i+ n1,2, | n1,2 2 Z,
⌧3 2 C.

(15)

which corresponds to the result given in Table 1 with (N,M) = (4, 2). We emphasise
that the twists ⌧i are fixed geometrically by the orbifold actions. Therefore in the orbifold
approach to modular symmetries, the moduli fields are not a completely free choice, but
are constrained as in Table 1.

Each orbifold action in Eq. 13, leaves some invariant subspaces which are called fixed

7

z

change the lattice and therefore the torus remains unchanged. Therefore there must exist
integers a, b, c, d such that

(�, �⌧) = (a+ b⌧, c+ d⌧), (11)

for each corresponding � = ↵N,M , �N,M , �N,M

These restrictions limit the available (SUSY preserving [27]) orbifolds to be as in Table
1, which displays all the available orbifolds with some of the ⌧i fixed as shown (up to an
integer), while the non-fixed values are indicated by the complex number z.

(N,M) (↵N , �N , �N) (↵M , �M , �M) (⌧1, ⌧2, ⌧3)

(3, 1) (!,!,!) (1, 1, 1) (!,!,!)

(4, 1) (i, i,�1) (1, 1, 1) (i, i, z)

(6, 1)I (�!2,�!2,!2) (1, 1, 1) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(6, 1)II (�!2,!,�1) (1, 1, 1) ({!, ⇢/
p
3},!, z)

(2, 2) (1,�1,�1) (�1, 1,�1) (z, z, z)

(4, 2) (i,�i, 1) (1,�1,�1) (i, i, z)

(6, 2)I (�!2, 1,�!) (1,�1,�1) ({!, ⇢/
p
3}, z, {!, ⇢/

p
3})

(6, 2)II (!2,�!2,�!2) (1,�1,�1) (!, {!, ⇢/
p
3}, {!, ⇢/

p
3})

(3, 3) (1,!,!2) (!, 1,!2) (!,!,!)

(6, 3) (�!2, 1,�!) (1,!,!2) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(4, 4) (1, i,�i) (i, 1,�i) (i, i, i)

(6, 6) (1,�!2,�!) (�!2, 1,�!) ({!, ⇢/
p
3}, {!, ⇢/

p
3}, {!, ⇢/

p
3})

Table 1: Comprehensive list of 6d abelian factorisable and SUSY preserving orbifolds (T2)3/(ZN ⇥ZM ),
where ! = e

2i⇡/3 and ⇢ = e
i⇡/6, and the fixed points of ⌧i are specified only up to an integer. For

example, ⌧2 = i, i + 1, i + 2 and so on are all equivalent. The values of the complex numbers z are not
restricted by the orbifold, but particular values of z may be fixed by a remnant global symmetry.

2.3 The orbifold (T2)3/(Z4 ⇥ Z2)

In this subsection we discuss an example of an orbifold chosen from Table 1 corresponding
to (N,M) = (4, 2) which leads to an interesting model ¶. The full model based on the
resulting orbifold (T2)3/(Z4⇥Z2) will be presented in Sec. 4. The model we have in mind
is an extra dimensional version of a four dimensional model based on three finite modular
groups S3

4 broken to a diagonal subgroup S4, with the three moduli fields in the low energy
theory located at three different fixed points, namely ⌧1 = i, ⌧2 = i+ 2, ⌧3 = !. In a 4d
framework, this was shown to lead to a very predictive and successful phenomenological

¶This example is not unique, there are other choices which also lead to viable models.

6

change the lattice and therefore the torus remains unchanged. Therefore there must exist
integers a, b, c, d such that

(�, �⌧) = (a+ b⌧, c+ d⌧), (11)

for each corresponding � = ↵N,M , �N,M , �N,M

These restrictions limit the available (SUSY preserving [27]) orbifolds to be as in Table
1, which displays all the available orbifolds with some of the ⌧i fixed as shown (up to an
integer), while the non-fixed values are indicated by the complex number z.

(N,M) (↵N , �N , �N) (↵M , �M , �M) (⌧1, ⌧2, ⌧3)

(3, 1) (!,!,!) (1, 1, 1) (!,!,!)

(4, 1) (i, i,�1) (1, 1, 1) (i, i, z)

(6, 1)I (�!2,�!2,!2) (1, 1, 1) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(6, 1)II (�!2,!,�1) (1, 1, 1) ({!, ⇢/
p
3},!, z)

(2, 2) (1,�1,�1) (�1, 1,�1) (z, z, z)

(4, 2) (i,�i, 1) (1,�1,�1) (i, i, z)

(6, 2)I (�!2, 1,�!) (1,�1,�1) ({!, ⇢/
p
3}, z, {!, ⇢/

p
3})

(6, 2)II (!2,�!2,�!2) (1,�1,�1) (!, {!, ⇢/
p
3}, {!, ⇢/

p
3})

(3, 3) (1,!,!2) (!, 1,!2) (!,!,!)

(6, 3) (�!2, 1,�!) (1,!,!2) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(4, 4) (1, i,�i) (i, 1,�i) (i, i, i)

(6, 6) (1,�!2,�!) (�!2, 1,�!) ({!, ⇢/
p
3}, {!, ⇢/

p
3}, {!, ⇢/

p
3})

Table 1: Comprehensive list of 6d abelian factorisable and SUSY preserving orbifolds (T2)3/(ZN ⇥ZM ),
where ! = e

2i⇡/3 and ⇢ = e
i⇡/6, and the fixed points of ⌧i are specified only up to an integer. For

example, ⌧2 = i, i + 1, i + 2 and so on are all equivalent. The values of the complex numbers z are not
restricted by the orbifold, but particular values of z may be fixed by a remnant global symmetry.

2.3 The orbifold (T2)3/(Z4 ⇥ Z2)

In this subsection we discuss an example of an orbifold chosen from Table 1 corresponding
to (N,M) = (4, 2) which leads to an interesting model ¶. The full model based on the
resulting orbifold (T2)3/(Z4⇥Z2) will be presented in Sec. 4. The model we have in mind
is an extra dimensional version of a four dimensional model based on three finite modular
groups S3

4 broken to a diagonal subgroup S4, with the three moduli fields in the low energy
theory located at three different fixed points, namely ⌧1 = i, ⌧2 = i+ 2, ⌧3 = !. In a 4d
framework, this was shown to lead to a very predictive and successful phenomenological

¶This example is not unique, there are other choices which also lead to viable models.

6

change the lattice and therefore the torus remains unchanged. Therefore there must exist
integers a, b, c, d such that

(�, �⌧) = (a+ b⌧, c+ d⌧), (11)

for each corresponding � = ↵N,M , �N,M , �N,M

These restrictions limit the available (SUSY preserving [27]) orbifolds to be as in Table
1, which displays all the available orbifolds with some of the ⌧i fixed as shown (up to an
integer), while the non-fixed values are indicated by the complex number z.

(N,M) (↵N , �N , �N) (↵M , �M , �M) (⌧1, ⌧2, ⌧3)

(3, 1) (!,!,!) (1, 1, 1) (!,!,!)

(4, 1) (i, i,�1) (1, 1, 1) (i, i, z)

(6, 1)I (�!2,�!2,!2) (1, 1, 1) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(6, 1)II (�!2,!,�1) (1, 1, 1) ({!, ⇢/
p
3},!, z)

(2, 2) (1,�1,�1) (�1, 1,�1) (z, z, z)

(4, 2) (i,�i, 1) (1,�1,�1) (i, i, z)

(6, 2)I (�!2, 1,�!) (1,�1,�1) ({!, ⇢/
p
3}, z, {!, ⇢/

p
3})

(6, 2)II (!2,�!2,�!2) (1,�1,�1) (!, {!, ⇢/
p
3}, {!, ⇢/

p
3})

(3, 3) (1,!,!2) (!, 1,!2) (!,!,!)

(6, 3) (�!2, 1,�!) (1,!,!2) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(4, 4) (1, i,�i) (i, 1,�i) (i, i, i)

(6, 6) (1,�!2,�!) (�!2, 1,�!) ({!, ⇢/
p
3}, {!, ⇢/

p
3}, {!, ⇢/

p
3})

Table 1: Comprehensive list of 6d abelian factorisable and SUSY preserving orbifolds (T2)3/(ZN ⇥ZM ),
where ! = e

2i⇡/3 and ⇢ = e
i⇡/6, and the fixed points of ⌧i are specified only up to an integer. For

example, ⌧2 = i, i + 1, i + 2 and so on are all equivalent. The values of the complex numbers z are not
restricted by the orbifold, but particular values of z may be fixed by a remnant global symmetry.

2.3 The orbifold (T2)3/(Z4 ⇥ Z2)

In this subsection we discuss an example of an orbifold chosen from Table 1 corresponding
to (N,M) = (4, 2) which leads to an interesting model ¶. The full model based on the
resulting orbifold (T2)3/(Z4⇥Z2) will be presented in Sec. 4. The model we have in mind
is an extra dimensional version of a four dimensional model based on three finite modular
groups S3

4 broken to a diagonal subgroup S4, with the three moduli fields in the low energy
theory located at three different fixed points, namely ⌧1 = i, ⌧2 = i+ 2, ⌧3 = !. In a 4d
framework, this was shown to lead to a very predictive and successful phenomenological

¶This example is not unique, there are other choices which also lead to viable models.

6

M.Fischer, M.Ratz, J.Torrado, 
P.K.S.Vaudrevange 1209.3906 

Fixes 

Now consider 
this example



These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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description of the neutrino and charged lepton masses and lepton mixing based on a type
of littlest seesaw [19].

In the 10d framework considered here, the desired moduli fields ⌧i for such model are
in principle consistent with the orbifold divisors Z2 ⇥Z2, Z4, Z4 ⇥Z2. However Z2 ⇥Z2

does not fix any of the ⌧i, so is not so restrictive. The Z4 orbifold divisor fixes the ⌧i as
needed by the model, but does not have the necessary fixed branes to build consistent
interactions. We are then left with the only viable and predictive choice being the orbifold
divisor Z4 ⇥ Z2, which can lead to the desired fixed points, as we discuss below.

We assume, then, a 10d spacetime where the 6 extra dimensions are factorisable into
3 tori, each defined by one complex coordinate zi with i = 1, 2, 3, and compactified as in
Eq. 9

zi ⇠ zi + 1, zi ⇠ zi + ⌧i, (12)

The orbifold (T2)3/Z4⇥Z2 as defined by the orbifolding actions in Eq. 10, using Table 1
with (N,M) = (4, 2) then implies,

✓4 : (x, z1, z2, z3) ⇠ (x, iz1,�iz2, z3),

✓2 : (x, z1, z2, z3) ⇠ (x, z1,�z2,�z3).
(13)

In the orbifold approach, (1, ⌧i) define the twist and the basis vectors of each torus.
For the orbifold to be consistent, the orbifolding actions ✓2,4 must not change the lattice,
i.e. its action over the lattice basis vectors (1, ⌧i) must be a linear combination of the
original lattice vectors, with integer coefficients. Therefore there must exist integers
a1,2,3, b1,2,3, c1,2,3, d1,2,3 2 Z such that, as in Eq. 11

(i, i⌧1,2) = (a1,2 + b1,2⌧1,2, c1,2 + d⌧1,2),

(�1,�⌧3) = (a3 + b3⌧3, c3 + d⌧3),
(14)

In the present example, solving Eq. 14 gives,

⌧1,2 = i+ n1,2, | n1,2 2 Z,
⌧3 2 C.

(15)

which corresponds to the result given in Table 1 with (N,M) = (4, 2). We emphasise
that the twists ⌧i are fixed geometrically by the orbifold actions. Therefore in the orbifold
approach to modular symmetries, the moduli fields are not a completely free choice, but
are constrained as in Table 1.

Each orbifold action in Eq. 13, leaves some invariant subspaces which are called fixed
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i.e. its action over the lattice basis vectors (1, ⌧i) must be a linear combination of the
original lattice vectors, with integer coefficients. Therefore there must exist integers
a1,2,3, b1,2,3, c1,2,3, d1,2,3 2 Z such that, as in Eq. 11
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(14)
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⌧3 2 C.

(15)

which corresponds to the result given in Table 1 with (N,M) = (4, 2). We emphasise
that the twists ⌧i are fixed geometrically by the orbifold actions. Therefore in the orbifold
approach to modular symmetries, the moduli fields are not a completely free choice, but
are constrained as in Table 1.

Each orbifold action in Eq. 13, leaves some invariant subspaces which are called fixed
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When building a model, fields can be chosen to be located in any of the previous branes
or in the bulk.

We want a minimal model where all fields can behave as modular forms (with different
⌧i depending on their location) but can interact with each other, we will only use the 6d
branes

T2
A = (x, z1, 0, 0),

T2
B = (x, 0, z2, 0),

T2
C = (x, 0, 0, z3),

(17)

where all of them touch at the origin brane, where all interactions happen.
From Eq. 13, we note that the z1 only feels the ✓4 action, therefore the T2

A is a Z4

orbifold. As the action of ✓2 on z2 is also contained in ✓4, the T2
B is also a Z4 orbifold.

Finally the z3 only feels the ✓2 action, therefore the T2
C is a Z2 orbifold.

3 Modular S4 symmetries in the orbifold approach

So far we have considered possible orbifolds in which the VEVs of the moduli fields ⌧i are
fixed at least partially by the geometry. We now turn to the modular symmetries of the
fields ⌧i which are broken by the VEVs of the moduli fields ⌧i. In general such modular
symmetries are infinite but have a series of infinite normal subgroups called the principle
congruence subgroups �(N) of level N , whose elements are equal to the 2⇥2 unit matrix
mod N (where typically N is an integer called the level of the group).

These matrix modular transformations are applied to the 2 extra dimensional basis
vectors {1, ⌧} and are such that the lattice these vectors generate remains invariant.
In this work we study 10 dimensional orbifolds where we restrict ourselves to the case
where the 6 extra dimensions are factorisable into 3 independent tori T2

1⇥T2
2⇥T2

3. Each
torus generated by it own set of basis vectors {1, ⌧i} and therefore each of them has
an independent modular symmetry, making the general modular symmetry the direct
product of each one corresponding to each torus.
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Choose 6d invariant fixed branes

change the lattice and therefore the torus remains unchanged. Therefore there must exist
integers a, b, c, d such that

(�, �⌧) = (a+ b⌧, c+ d⌧), (11)

for each corresponding � = ↵N,M , �N,M , �N,M

These restrictions limit the available (SUSY preserving [27]) orbifolds to be as in Table
1, which displays all the available orbifolds with some of the ⌧i fixed as shown (up to an
integer), while the non-fixed values are indicated by the complex number z.

(N,M) (↵N , �N , �N) (↵M , �M , �M) (⌧1, ⌧2, ⌧3)

(3, 1) (!,!,!) (1, 1, 1) (!,!,!)

(4, 1) (i, i,�1) (1, 1, 1) (i, i, z)

(6, 1)I (�!2,�!2,!2) (1, 1, 1) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(6, 1)II (�!2,!,�1) (1, 1, 1) ({!, ⇢/
p
3},!, z)

(2, 2) (1,�1,�1) (�1, 1,�1) (z, z, z)

(4, 2) (i,�i, 1) (1,�1,�1) (i, i, z)

(6, 2)I (�!2, 1,�!) (1,�1,�1) ({!, ⇢/
p
3}, z, {!, ⇢/

p
3})

(6, 2)II (!2,�!2,�!2) (1,�1,�1) (!, {!, ⇢/
p
3}, {!, ⇢/

p
3})

(3, 3) (1,!,!2) (!, 1,!2) (!,!,!)

(6, 3) (�!2, 1,�!) (1,!,!2) ({!, ⇢/
p
3}, {!, ⇢/

p
3},!)

(4, 4) (1, i,�i) (i, 1,�i) (i, i, i)

(6, 6) (1,�!2,�!) (�!2, 1,�!) ({!, ⇢/
p
3}, {!, ⇢/

p
3}, {!, ⇢/

p
3})

Table 1: Comprehensive list of 6d abelian factorisable and SUSY preserving orbifolds (T2)3/(ZN ⇥ZM ),
where ! = e

2i⇡/3 and ⇢ = e
i⇡/6, and the fixed points of ⌧i are specified only up to an integer. For

example, ⌧2 = i, i + 1, i + 2 and so on are all equivalent. The values of the complex numbers z are not
restricted by the orbifold, but particular values of z may be fixed by a remnant global symmetry.

2.3 The orbifold (T2)3/(Z4 ⇥ Z2)

In this subsection we discuss an example of an orbifold chosen from Table 1 corresponding
to (N,M) = (4, 2) which leads to an interesting model ¶. The full model based on the
resulting orbifold (T2)3/(Z4⇥Z2) will be presented in Sec. 4. The model we have in mind
is an extra dimensional version of a four dimensional model based on three finite modular
groups S3

4 broken to a diagonal subgroup S4, with the three moduli fields in the low energy
theory located at three different fixed points, namely ⌧1 = i, ⌧2 = i+ 2, ⌧3 = !. In a 4d
framework, this was shown to lead to a very predictive and successful phenomenological

¶This example is not unique, there are other choices which also lead to viable models.
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which all overlap the 6d origin

Assume 

The set of branes is invariant under the permutation set of them. However not all
permutations are Poincaré transformations.

These fixed branes and are permuted by the Poincaré transformations

S1 : z̄ ! z̄ + 1/2, S2 : z̄ + !/2, R : z̄ ! !z̄, P : z̄ ! z̄⇤, P 0 : z̄ ! �z̄⇤, (31)

which, after orbifolding, generate the remnant symmetry. We can write these operations
explicitly S1[(12)(34)], S2[(13)(24)], R[(243)(1)], P [(34)(1)(2)], P 0[(34)(1)(2)]. There are
only 3 independent transformations since S2 = R2 · S1 ·R, P = P 0.

These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [26]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.
The fields Table 4 are interacting extra dimensional fields whose profiles are described

in the Appendix A. The low energy phenomenology is studied after compactification.
The resulting 4d superpotential is [19], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [19].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)

where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
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and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)

13

(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)

13

(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)

13

Consider (N,M)= (4,2) example from table



(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [19].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)
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together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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Solar RHN lives here

(a) The extra dimensional space for T2
A. The Z4 orb-

ifolding identifies the four isosceles triangles labeled as

a.

(c) The extra dimensional space for T2
C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [19].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)

where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
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drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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Atmospheric RHN lives here
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C . I The Z2 orb-

ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

The � fields are assumed to obtain a diagonal VEV that breaks two modular symme-
tries into the diagonal one [19].

Hence, the charged-lepton mass matrix is simply given by

Ml = vd

0

B@
(Ye)1 (Yµ)1 (Y⌧ )1
(Ye)3 (Yµ)3 (Y⌧ )3
(Ye)2 (Yµ)2 (Y⌧ )2

1

CA , (34)

where vd stands for hHdi, and we ignore the dimensionless coupling coefficients.
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ifolding identifies the two equilateral triangles labeled

as e.

(b) The extra dimensional space for T2
B . The Z4 orbifolding is done by rotating the space by ⇡/2 and creating

drawing the lattice (dotted pink). One identifies the overlaps, which is this case are four quadrilaterlas labeled as b,

four isosceles triangles labeled as c and four right angle triangles labeled as d.

Figure 1: Visualization of the extra dimensional space for each of the fundamental tori T2
A,B,C . Identifying

together opposite sides we obtain T2. The orbifolding is described in each subfigure. The dots represent
the fixed points.

and the modular Yukawa forms are fixed by the moduli ⌧1 = i, ⌧2 = i+2, ⌧3 = ! resulting
in the alignments, using Tables 3 and 4, ignoring the overall constants,

Ya = (0, 1,�1)T ,

Ys = (1, 1 +
p
6, 1�

p
6)T ,

Y⌧ = (0, 1, 0)T ,

Yµ = (0, 0, 1)T ,

Ye = (1, 0, 0)T .

(33)
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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These symmetry transformations relate to the S4 generators with Ŝ = S1, T̂ = R, Û =

P satisfying Eq. 22 which is the presentation rules for the S4 symmetry [1].
The TA,B have only 2 branes from Eq. 16. Therefore its remnant symmetry can only

be Z2.
With the assumption of an S4 remnant symmetry, the ⌧3 is fixed geometrically to be

equal to ! [23]. .

4 A realistic orbifold model

We now turn to a concrete 10d bottom-up orbifold model with three factorizable tori
built from the fundamental space depicted geometrically in Fig. 1. The 10d model is
compactified on an orbifold (T2)3/(Z4 ⇥ Z2) and we assume three finite modular sym-
metries SA,B,C

4 . Furthermore there is a remnant S4 symmetry whose only role is to fix
⌧3 = ! �. This uniquely fixes the moduli geometrically to be ⌧1 = i, ⌧2 = i + 2, ⌧3 = !,

(up to a choice in four).
The field content which defines the model is given in Table 4.

Field S
A
4 S

B
4 S

C
4 2kA 2kB 2kC Loc

L 1 1 3 0 0 0 T2
C

e
c 1 1 1 0 0 �6 T2

C

µ
c 1 1 1 0 0 �4 T2

C

⌧
c 1 1 1 0 0 �2 T2

C

N
c
a 1 1 1 0 �4 0 T2

B

N
c
s 1 1 1 �2 0 0 T2

A

�BC 1 3 3 0 0 0 Bulk
�AC 3 1 3 0 0 0 Bulk

Yuk/Mass S
A
4 S

B
4 S

C
4 2kA 2kB 2kC

Ye(⌧3) 1 1 3 0 0 6

Yµ(⌧3) 1 1 3 0 0 4

Y⌧ (⌧3) 1 1 3 0 0 2

Ya(⌧2) 1 3 1 0 4 0
Ys(⌧1) 3 1 1 2 0 0
Ma(⌧2) 1 1 1 0 8 0
Ms(⌧1) 1 1 1 4 0 0

Table 4: Transformation properties of fields and modular forms (Yuk/Mass) under the modular sym-
metries S

A,B,C
4 with modular weights kA,B,C . The Higgs fields Hu,d (not displayed) transform trivially

under all the modular S4 symmetries. The leptons L ⇠ (2,�1/2), and e
c
, µ

c
, ⌧

c ⇠ (1, 1) have the usual
SM SU(2)L⇥U(1)Y quantum numbers and the right-handed neutrinos N c

a,s are SM singlets. The Higgs
� which break the three modular symmetries to their diagonal subgroup, live in the 10d bulk, while the
leptons live in the 2d subspaces as shown.

The resulting 4d Lagrangian is [16], ignoring the dimensionless coupling coefficients,

w` =
1

⇤
[L�BCYaN

c
a + L�ACYsN

c
s ]Hu

+ [LYee
c + LYµµ

c + LY⌧⌧
c]Hd (32)

+
1

2
MaN

c
aN

c
a +

1

2
MsN

c
sN

c
s .

�As discussed later, remnant S4 symmetry may be further employed to control the Kähler potential.
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Charged leptons live here

SA
4 SB

4

SC
4

De Anda, SFK 2304.05958

Littlest Modular Seesaw from Orbifold

SA
4 ⇥ SB

4 ⇥ SC
4

Assume modular S4 in each 2d space


