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Overview

Motivation for confining/QCD-like dark sectors


The confinement/deconfinement phase transition (PT)


▶ Gravitational waves from a first order PT


▶ The NANOGrav GW hint for a low scale PT


Towards quantitative predictions of GWs in strongly 
coupled PTs
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Why should you care about dark SU(N)

Top down perspective: 

▶ Many string compactifications contain hidden sectors with new 

gauge symmetries


▶ Straightforward extension of SM 


Useful for model building

▶ LHC-safe solutions to the hierarchy problem (twin Higgs…)


▶ Axion models and composite axions, relaxion


Interesting (&new) phenomenology

▶ DM with self-interactions, SIMP mechanism


▶ Unique collider signatures…
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Composite/QCD-like DM

Alternative to elementary WIMP models


Phenomenologically viable, “generic” possibility in 
presence of hidden sectors


Some nice features:

▶ DM stability, mass scale


▶ Self interactions, unique collider pheno


▶ Natural implementation of SIMP  
mechanism (3->2 annihilation)


▶ Glueball dark matter 
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Models I’m interested here 

Nonabelian  dark sector, confinement scale 


 light/massless dark quarks 


A new PT is a robust prediction of these scenarios

SU(N) Λd

nf
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nf = 0 nf > 0

Glueball DM 
 

PT from center

symmetry restoration

Dark Baryons 
or Dark Pions


Chiral Symmetry Breaking



What is the nature of the PT? 
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Figure 1: Phase diagram of QCD at zero chemical potential (schematic). The dashed region
represents our current lack of knowledge about the order of the PT in the limit of two massless
flavours.

chemical potential could be su�cient to provide a strong first order PT [25]. The resulting signal
was studied in [26].

The aim of this work is to point out that gravitational waves could also be produced by a
strong PT in a dark or hidden sector. The particular scenario we have in mind is a dark sector
with a new SU(Nd) gauge interaction which confines at some scale ⇤d. Such models have recently
received renewed interest either as models of dark matter [27–42] or as part of the low energy
sector of so called Twin Higgs models [43–48]. Di↵erent from generic hidden sectors [49], these
models provide a preferred mass range and some restrictions on the particle content, such that
the frequency range of the potential GW signal can be predicted.

Given that the SM QCD transition is not first order, we will review the known results on the
order of the PT in strongly coupled gauge theories in the next section, followed by a discussion of
models that fall into this category. In Sec. 3 we calculate the GW spectra that can be produced
in these models, and compare them to the sensitivity of current and planned GW detection
experiments in Sec. 4. We discuss the complementarity of GW experiments with other searches
for dark sectors in Sec. 5, before presenting our conclusions.

2 Models with First Order Phase Transition

Near the QCD confinement scale ⇤QCD, the dynamics of QCD is governed by three flavours,
two of which are almost massless, while the strange quark mass is of order ⇤QCD. Lattice
studies [5, 6, 50] have shown that for these values of the quark masses, the QCD PT is a weak
cross-over.

However this is not a generic result for QCD and similar theories, but more a consequence
of the precise values of mu ⇡ md and ms in the SM. The QCD phase diagram for arbitrary
mu,d and ms can be summarised in the so called Columbia plot, which is reproduced in Fig. 1,
based on [51]. The pure Yang-Mills limit mu,d,ms ! 1 is known to have a strong first order
PT [52] from the restoration of a global Z3 center symmetry at low temperatures. The opposite
mu,d,ms ! 0 limit, i.e. theories with three exactly massless quarks, also feature a strong first
order transition, related to the breakdown of the SU(3)⇥ SU(3) chiral symmetry [53].
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QCD phase diagram



Phase Diagram II
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Figure 1: Phase diagram of QCD at zero chemical potential (schematic). The dashed region
represents our current lack of knowledge about the order of the PT in the limit of two massless
flavours.

chemical potential could be su�cient to provide a strong first order PT [25]. The resulting signal
was studied in [26].

The aim of this work is to point out that gravitational waves could also be produced by a
strong PT in a dark or hidden sector. The particular scenario we have in mind is a dark sector
with a new SU(Nd) gauge interaction which confines at some scale ⇤d. Such models have recently
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models provide a preferred mass range and some restrictions on the particle content, such that
the frequency range of the potential GW signal can be predicted.
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order of the PT in strongly coupled gauge theories in the next section, followed by a discussion of
models that fall into this category. In Sec. 3 we calculate the GW spectra that can be produced
in these models, and compare them to the sensitivity of current and planned GW detection
experiments in Sec. 4. We discuss the complementarity of GW experiments with other searches
for dark sectors in Sec. 5, before presenting our conclusions.

2 Models with First Order Phase Transition

Near the QCD confinement scale ⇤QCD, the dynamics of QCD is governed by three flavours,
two of which are almost massless, while the strange quark mass is of order ⇤QCD. Lattice
studies [5, 6, 50] have shown that for these values of the quark masses, the QCD PT is a weak
cross-over.

However this is not a generic result for QCD and similar theories, but more a consequence
of the precise values of mu ⇡ md and ms in the SM. The QCD phase diagram for arbitrary
mu,d and ms can be summarised in the so called Columbia plot, which is reproduced in Fig. 1,
based on [51]. The pure Yang-Mills limit mu,d,ms ! 1 is known to have a strong first order
PT [52] from the restoration of a global Z3 center symmetry at low temperatures. The opposite
mu,d,ms ! 0 limit, i.e. theories with three exactly massless quarks, also feature a strong first
order transition, related to the breakdown of the SU(3)⇥ SU(3) chiral symmetry [53].
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SU(N) - PT

Consider.                with       massless flavours 


PT is first order for 

▶                  , 

▶                  ,


Not for:

▶                  (no global symmetry, no PT)


▶                  (not yet known) 


Note: Nature of the PT does not depend on arbitrary model 
parameters
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SU(Nd) nf

Nd � 3 nf = 0
Svetitsky, Yaffe, 1982
M. Panero, 2009

Nd � 3 3  nf < 4Nd Pisarski, Wilczek, 1983

nf = 1

nf = 2



First order phase transitions produce GWs 
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First order PT ➞ Bubbles nucleate, expand

Bubble collisions ➞ Gravitational Waves

hhi = 0

hhi = v
hhi = 0 hhi = v



PT signal

PT characterised by few parameters:

• Latent heat 

• Bubble wall velocity

• Bubble nucleation rate

• PT temperature


More details, see e.g.:
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Figure 3: Example output of the ’PTPlot’ tool. The plot shows the expected GW power spectrum

and the LISA sensitivity curve.

methods for going beyond the standard approach and the corresponding uncertainties as they

relate to LISA.

The majority of GW predictions in specific BSM scenarios rely on the computation of

the e↵ective potential V [{�i}], through a perturbative expansion to one- or sometimes two-

loop order in four dimensions (4D). Here, {�i} denotes the set of scalar fields involved in the

transition (the order parameters). Under the assumption that the {�i} are homogeneous,

one may compute the finite temperature corrections to the classical potential. The global

minimum of the e↵ective potential then corresponds to the finite temperature expectation

value of the fields. The order of the transition is determined by whether this minimum

changes continuously (second order/cross-over) or discontinuously (first order) as a function

of temperature. The parameter ↵ follows directly from the e↵ective potential, while �/H⇤

and T⇤ can be determined by computing the action of the bounce solution, which follows from

the Euclidean equations of motion for the scalar(s) again utilizing the e↵ective potential.

An alternative method that has received renewed interest lately is to investigate the phase

diagram and determine the GW parameters by computing the e↵ective action using numerical

Monte-Carlo lattice simulations. This method was instrumental in establishing that the

minimal Standard Model does not have a first order phase transition at the physical value

of the Higgs mass [2]. By considering the e↵ective action rather than just the e↵ective

potential, no assumption is made about homogeneity of the fields, and mixed configurations

(such as bubbles) contribute. Issues related to the well-known infrared divergences of finite

temperature perturbation theory are automatically avoided in this approach, allowing for

theoretically robust and accurate predictions. The computation may be done in full 4D

simulations of an e↵ective bosonic model [3], but because of the numerical e↵ort involved,

parameter scans are more feasible in simulations of e↵ective 3D models that are matched

onto the 4D theory at high temperature through a procedure known as dimensional reduction
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Summary and recommendations:


1910.13125 


(LISA Cosmology WG)

Made with PTplot



Signal properties

11Figure 3: Example output of the ’PTPlot’ tool. The plot shows the expected GW power spectrum

and the LISA sensitivity curve.
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diagram and determine the GW parameters by computing the e↵ective action using numerical

Monte-Carlo lattice simulations. This method was instrumental in establishing that the

minimal Standard Model does not have a first order phase transition at the physical value

of the Higgs mass [2]. By considering the e↵ective action rather than just the e↵ective

potential, no assumption is made about homogeneity of the fields, and mixed configurations

(such as bubbles) contribute. Issues related to the well-known infrared divergences of finite

temperature perturbation theory are automatically avoided in this approach, allowing for

theoretically robust and accurate predictions. The computation may be done in full 4D

simulations of an e↵ective bosonic model [3], but because of the numerical e↵ort involved,

parameter scans are more feasible in simulations of e↵ective 3D models that are matched

onto the 4D theory at high temperature through a procedure known as dimensional reduction
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There are many (planned) experiments 
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FIG. 2. Noise curves (left) and PLI sensitivity curves (right) for various gravitational wave observa-
tories. Dashed black lines in the left-hand plot indicate the expected magnitude of several important
backgrounds, in particular super-massive black hole binaries (SMBHB) [55, 56], and galactic [57, 58] as
well as extra-galactic [59, 60] compact binaries (CB). In determining the power-law integrated sensitivity
curves (as well as in the toy model analyses presented in Section III), we assume that the SMBHB back-
ground will eventually be resolvable, while the CB background will remain unresolved. In the right-hand
plot, we also show example spectra generated by a phase transition at T nuc = 10GeV and with ↵ = 0.1,
�/H = 10 for both runaway and non-runaway bubbles. The parameter choices made for forthcoming
experiments are given in Appendix B, and the data underlying our noise curves and PLI sensitivity curves
can be found in the ancillary material.

noise ratio (SNR) ⇢. A stochastic gravitational wave background is detectable if the signal-to-
noise is greater than a certain threshold value ⇢thr, which is either given by the experimental
collaborations or extracted from existing data as described in Appendix B.

The optimal-filter cross-correlated signal-to-noise is [6, 61]4

⇢
2 = 2 tobs

fmaxZ

fmin

df


h
2⌦GW(f)

h2⌦e↵(f)

�2
, (27)

where tobs is the duration of the observation, (fmin, fmax) is the detector frequency band, and
h
2⌦e↵(f) is the e↵ective noise energy density, i.e. the noise spectrum expressed in the same units

as the spectral gravitational wave energy density [61]. See Appendix B 1 for more details.
To make the comparison between the predicted signal and the noise even simpler, it has

become standard practice to quote so-called power-law integrated (PLI) sensitivity curves [61].
They are obtained by assuming the gravitational wave spectrum follows a power law with spectral
index b, i.e.

h
2⌦GW(f) = h

2⌦b

✓
f

f̄

◆
b

, (28)

where h2⌦b is the gravitational wave energy density at the arbitrarily chosen reference frequency
f̄ . According to Eq. (27), such a power-law signal is detectable if

h
2⌦b > h

2⌦thr
b

⌘
⇢thr

p
2tobs

2
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2
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4
For the case of a single-detector auto-correlated analysis, the factor 2 in Eq. (27) has to be dropped.

Space based

Ground
 based

from Breitbach,  
Kopp, Madge,  
Opferkuch, PS 
1811.11175 



Some recent 
developments 



Pulsar timing arrays 

NANOGrav has observed evidence for a stochastic GW 
background at nano-Hz frequencies: 


Strong evidence for Hellings-Downs correlation


Also supported by new EPTA+InPTA, CPTA data (PPTA less)
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NANOGrav Collaboration,  
2306.16213, APJL 951



Compatible with primordial GWs from new physics 
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NANOGrav Collaboration,  
2306.16219, APJL 951

Phase transitions 

Domain walls



Thoughts:

This is a very strong signal! 


Comparison: The photon density today is , but 
photons were in thermal equilibrium in early Universe


Any source that can explain this must:

▶ Represent a significant fraction of the total energy density at the 

time of production, 


▶ Be very efficient at converting that energy to GW radiation


▶ Then disappear before onset of BBN, 

Ωγ ∼ 10−5

T* ∼ (10 − 1000) MeV

T ∼ 1 MeV
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ΩGW, today ∼ 10−9



Supercooled phase transitions

Benchmark model: Coleman-Weinberg model with 
vanishing tree level potential


Two parameter model: Mass scale  and coupling 


Signal dominated by colliding bubbles and sound shells

M g
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Madge et al, 
2306.14856 

Simulated by Lewicki and Vaskonen, 2208.11697  

https://arxiv.org/abs/2306.14856


Supercooled phase transitions

Comparison with  
12 year data


Large supercooling 
and reheating


▶ Dilution of baryons, 
dark matter


▶ Two BBNs


Pheno: Light scalar ,  
decay to electrons and photons 


Higgs portal not viable, instead


FCC? Or low energy e+e- machine (e.g. MESA in Mainz) 

mϕ ≈ M
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Figure 3. Fit of the supercool dark sector model to the PTA data as discussed in section 3. Shown are the best-

fit regions for the NANOGrav 12.5 year dataset [5, 10] (blue) and IPTA DR2 dataset [9, 14] (orange), as well as

the best-fit of a naive combination of the two datasets (green). Left: Best-fit (solid lines) of the GW spectrum.

The violins depict the corresponding 30-bin free-spectrum fits used for the refitting. Right: 2D posteriors for the

coupling g and mass scale M of the model. Solid black contours show the dilution factor due to reheating after

the PT. Below the dotted line the percolation temperature is below 1 MeV, while to the left of the dashed line the

reheating temperature does not reach 2 MeV. The full triangle plot including 1D posteriors is shown in Fig. 9.

Finally, let us discuss how the reheating process can work in practice. From the Friedmann equations,
one finds the reheating temperature

Trh = 0.55 g
�1/4

⇤
p

MP�� , (4.2)

where g⇤ ⇡ 10.75, and �� is the decay width of �. Reheating above 2 MeV requires �� & 4 ⇥ 10�20 MeV.
The preferred range of m� is (0.92 – 6.9) MeV for NANOGrav and (11.5 – 124) MeV for IPTA. We can
consider di↵erent decay operators that can satisfy these constraints.

The simplest scenario is the Higgs portal, via the operator

L � �h�|�|
2
|H|

2
, (4.3)

which after symmetry breaking leads to mixing of � with the Higgs boson with mixing angle ✓ ⇡ �h�v�vh/mh,
where vh = 246 GeV and mh = 125 GeV (see e.g. Ref. [147] for a recent study). This allows � decays to
electrons and photons, however both channels are suppressed by the small Higgs couplings to those states,
requiring a Higgs mixing of order 10�4 [148, 149],6 and thus a large portal coupling �h�. Unfortunately the
operator in Eq. (4.3) also contributes a large mass for the scalar after electroweak symmetry breaking, and
is thus in conflict with our initial assumption of classical scale invariance.

Alternatively we can consider a direct decay channel to electrons or photons, via couplings

L � cee
|�|

2

⇤2
LHē + c��

|�|
2

⇤2
Fµ⌫F

µ⌫
, (4.4)

where ⇤ is some UV scale. These operators do not violate scale invariance at the tree level, and are otherwise
not strongly constrained [150]. The main laboratory probes of our PT scenario therefore are searches for a
light scalar in the (1 – 100) MeV range which decay to electron or photon pairs. In fact there is an intriguing

6See also Ref. [22] for a very recent discussion of this point.
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Madge et al, 
2306.14856 

https://arxiv.org/abs/2306.14856


Can this be from the 
(dark) QCD phase 

transition? 



Towards quantitative predictions for SU(N) PTs

Strong coupling → Non-perturbative methods required


Lattice?

▶ Good for equilibrium thermodynamics (free energy, pressure…)


▶ Easier for , lots of data for 


▶ No real time dynamics


Holography (AdS/CFT)

▶ Allows perturbative calculations


▶ Works best for large  and in CFT limit 

nf = 0 Nc = 3

Nc
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e.g. Hindmarsh et al, Cotrone et al, … 



Combine both approaches

Improved holographic QCD 
 
 

▶ AdS Einstein-dilaton gravity    4D CFT


▶ Dilaton potential 


▶ Dilaton  ’t Hooft coupling 


▶ …


▶ Solutions of EOM    phases of SU(N)

↔
V(Φ)

λ = exp Φ ↔ λt = Ncg2
YM

↔
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Enrico Morgante 
JGU Mainz

emorgant@uni-mainz.de IFT Madrid 27/10/2022

Improved Holographic QCD

• Scalar potential 


• Radial fifth-dim coordinate r <—> RG scale


• Scalar field  <—> ’t Hooft coupling 


• Scale factor  <—> Energy scale 


• Solutions of EOM <—> phases of 


•  fluctuations <—> scalar glueballs

V(Φ)

λ = exp Φ λt = Nc g2
YM

b(r) E = E0b(r)

SU(Nc)

Φ
6
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Improved holographic QCD

Want this to reproduce SU(N) theories

▶ Confinement in IR ( )


▶ Yang Mills beta function in UV ( )


Fix parameters:

▶  to reproduce 2 loop YM  

running in UV 


▶  fit to reproduce SU(3)  
lattice thermodynamics in IR 

λ → ∞
λ → 0

V0, V2

V1, V3
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Potential
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Thermodynamics
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The phase transition in ihQCD 

Three solutions

▶ Big BH: Deconfined phase 


▶ Small BH: Unstable, saddle point 


▶ Thermal gas: Confined phase 

23

Confinement PT in AdS/CFT

Confinement of Pure YM () Hawking Page PT in D+1 AdS

Figure: Thanks To Enrico!!
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The phase transition in ihQCD II

At , deconfined phase becomes meta-stableT = Tc
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Thermodynamics
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The phase transition in ihQCD III

Hawking Page transition, with small 
BH acting as instanton


To compute bounce action, need 
effective action (or free energy)  
along the full path 


Interpolate between big and  
small BH solutions 

▶ Do some hard work…


▶ Win :) 

25

Enrico Morgante 
JGU Mainz

emorgant@uni-mainz.de IFT Madrid 27/10/2022
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Effective action for tunnelling

20

• Interpolate between big and small BH


• Choose an order parameter (  or )


• Violate the condition 


➡ BH not thermal eq.


➡ Conical singularity


• Regularize the metric and compute the 
contribution to the action

rh λh

Th = T

Morgante, Ramberg, PS, 2210.11821



Effective potential and bounce action 

Bounce action


Tunneling decay rate


Allows us to compute 
 and α β

26
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Effective potential

22
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• Stationary points <—> regular solutions:


• Big BH: min


• Small BH: max


•  —> Big BH are stable


•  —> No BH solution (no deconfined phase)

T > Tc

T < Tmin

<latexit sha1_base64="AlkaBuITJU3RLEcRBBRBWs5gq+w=">AAACUHicbVFdSxtBFL2btmrTVmN99GVoEOKDYVeD+iIIgvrSYiGJQjYus5O72cHZD2buCmHZn+iLb/4OX3xQ2klMwaoHhjlzzp2PeybMlTTkundO7cPHTwuLS5/rX75+W15prH7vm6zQAnsiU5m+CLlBJVPskSSFF7lGnoQKz8Oro6l/fo3ayCzt0iTHYcLHqYyk4GSloDHuB37CKdZJiVFUsQM2WwquyuOq5St70ogH8SbbYh0/l+xnkF/usF+BuNxm4Qvfir7CiFreFvMjzUXZDeKq7Fa+luOYNoNG0227M7C3xJuTJsxxFjRu/VEmigRTEoobM/DcnIYl1ySFwqruFwZzLq74GAeWpjxBMyxngVRswyojFmXajpTYTH25o+SJMZMktJXTbs1rbyq+5w0KivaHpUzzgjAVzxdFhWKUsWm6bCQ1ClITS7jQ0r6ViZjbOMj+Qd2G4L1u+S3pb7e93Xbnd6d5eDKPYwnW4Qe0wIM9OIRTOIMeCLiBe3iEJ+fWeXD+1Jzn0n8zrMF/qNX/Ao8vslw=</latexit>

Ve↵ = F(�h)� 4⇡M3
pN

2
c b(�h)

3

✓
1� Th

T

◆
Enrico Morgante 
JGU Mainz

emorgant@uni-mainz.de IFT Madrid 27/10/2022

Bubble nucleation
• O(3) invariant bounce solutions


• Tunnelling rate:


• Nucleation: 


• Percolation: Universe ~ filled with confined phase bubbles 

Γ ≈ H4

23
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Bubble nucleation
• O(3) invariant bounce solutions


• Tunnelling rate:


• Nucleation: 


• Percolation: Universe ~ filled with confined phase bubbles 

Γ ≈ H4
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for Tc = 50MeV. Having Tn close to Tc is not unex-
pected, as it could be estimated from thermodynamics
using some lattice input (see e.g. Ref. [54]).

The percolation temperature roughly indicates the end
of the phase transition. It is defined as the time when the
probability P of remaining in the false vacuum is reduced
by O(30)%

P(t) = e
�I(tp), (16)

I(t) =
4⇡

3

Z
t

tc

dt
0�(t0)a(t0)3r(t, t0)3 , (17)

where

r(t, t0) =

Z
t

t0
dt

00 vw

a(t00)
(18)

is the radius at time t of a bubble emitted at t
0. The

precise definition of Tp varies across the literature. Here
we impose I(Tp) = 0.34 as discussed e.g. in Ref. [55]. An
alternative definition, leading to smaller Tp, is I(Tp) =
1 [56, 57]. We assume a constant value of vw, and we
obtain Tp = (0.993 ± 0.003)Tc for vw = 0.01 � 1 and for
both Tc = 50MeV and 100GeV, where the uncertainty
in Tp comes from varying c and only negligibly from vw.
We will discuss the wall velocity in more detail below. We
see that the ratios Tn/Tc, Tp/Tc are almost independent
of the critical temperature Tc. This is due to the strong
exponential dependence of �(T ) on T/Tc.

The parameter �/H describes the duration and the
number of nucleated bubbles the phase transition gener-
ates, and is evaluated when the phase transition has com-
pleted, i.e. at the percolation temperature Tp. For a fast
phase transition one can approximate � ⇠ exp[�(t� tp)],
and the inverse duration of the phase transition is given
by

�

H
= T

✓
dSB

dT

◆ ����
T=Tp

. (19)

We obtain �/H ⇠ O(105) (the exact values are sum-
marized in Tab. I), with an uncertainty of order 10%
stemming from vw, while the uncertainty from varying
c = 0.3�3 is of order O(1) and is indicated by the width
of the bands in our GW spectra in Fig. 3.

The next quantity that we need to compute is the
strength of the phase transition ↵, i.e. the amount of
energy released during the phase transition that is avail-
able to convert into the fluid motion of the plasma. We
define it as

↵ =
4

3

�✓

�w
=

1

3

�⇢� 3�p

�w
. (20)

where ✓ is the trace of the energy-momentum tensor, w
is the enthalpy, and � indicates that we take the di↵er-
ence of the corresponding values in the deconfined and
confined phases.

The enthalpy and trace anomaly are given by �w =
T ·�s and �✓ = 4F + T ·�s. We obtain ↵|Tp ⇡ 0.343,

↵ �/H (vw = 1) �/H (0.1) �/H (0.01)
Tc = 50MeV 0.343 9.0 ⇥104 8.6⇥ 104 8.2⇥ 104

100GeV 0.343 6.8⇥ 104 6.4⇥ 104 6.1⇥ 104

TABLE I. Values of �/H and ↵ for di↵erent wall velocities
and critical temperatures. All entities are evaluated at the
percolation temperature Tp = 0.993Tc.

with a O(10�2) relative uncertainty coming from the
variation in c in the evaluation of Tp, and an even smaller
dependence on Tc and on vw. Our result di↵ers from the
lattice one of Ref. [58] by roughly 10%, which we consider
to be a good estimate of the overall uncertainty on ↵.
The calculation of wall velocity vw in cosmological

phase transitions has received a lot of attention through-
out the years. An estimate of vw is typically obtained by
computing the transmission coe�cient of particles at the
bubble wall [27, 59–66], or can be understood from the
local thermodynamics properties of the plasma [67, 68].
In strongly coupled theories the problem becomes even
more complicated, and can be addressed using hologra-
phy in certain models [69–73].
Extrapolating the result of Refs. [70, 71, 73] to our

parameter range, we obtain vw ⇠ O(0.01). Even smaller
velocities are obtained in Ref. [14]. On the other hand,
Ref. [72] obtains a terminal bubble wall velocity of vw ⇠

0.3 in a 3+1 dimensional simulation of the bubble growth
in a regime of at least moderately strong supercooling.
Finally if one resorts to the Chapman-Jouguet formula
for the wall velocity we obtain vCJ ⇡ 0.867. Under these
circumstances, we treat the bubble wall velocity as a free
parameter and leave it for future work.
Fig. 3 shows our results for the GW spectra, together

with the expected sensitivity of future observatories. The
contours are evaluated by computing the e↵ective action
Eq. (14), varying c = 0.3 � 3. The dashed line corre-
sponds to c = 3, the dotted to c = 0.3, with c = 1 in
between. The variation of c a↵ects the GW spectrum
mainly through �/H.

Discussion: In this Letter, we report on the
first computation of the GW signal from the con-
finement/deconfinement phase transition in pure SU(3)
Yang-Mills theory using bottom-up holography. We use
the IHQCD framework which successfully reproduces
lattice results for the equilibrium thermodynamics of
this theory, and calculate the equilibrium and quasi-
equilibrium quantities of the phase transition relevant for
GWs. These are the energy budget ↵, the percolation
temperature Tp and the average bubble size compared
to the Hubble horizon �/H, which we obtain with O(1)
errors. Our calculation of �/H agrees up to O(1) with
previous estimates based on e↵ective models of low en-
ergy QCD [24, 26, 28].
The recent works of Refs. [77–79] also employ holo-

graphic techniques for studying phase transition dynam-
ics and the resulting GWs, however their holographic
models do not aim to quantitatively reproduce the be-
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GW spectrum 

First prediction for GW spectra  
of QCD-like dark sectors from  
holography


▶ for 


▶ Some work remains 
(wall velocity)


▶ Larger signal possible for 
larger 


▶ Agrees with estimates based  
on effective theories and lattice data  
(e.g. Halverson+ 2012.04071, Huang+ 2012.11614, March-Russell+ 1505.07109)

Nc = 3, nf = 0

Nc, nf

27
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FIG. 3. Gravitational wave spectra estimated with our e↵ec-
tive action for IHQCD and the projected sensitivity curves for
future GW experiments: Square Kilometer Array (SKA) [2],
µAres [74], LISA [1], DECIGO/BBO [3], Einstein Telescope
(ET) [75], and Cosmic Explorer (CE) [76]. For illustration, we
choose a critical temperature Tc = 50MeV and Tc = 100GeV,
and the contours denote vw = 1 (grey), vw = 0.1 (red) and
vw = 0.01 (blue).

haviour of known strongly coupled theories. Refs. [25, 34]
study the WSS model, which can reproduce qualitative
features of QCD. Refs. [80–82] also use holography to
model the phase transition of QCD-like theories, however
they do not calculate �/H and instead choose an opti-
mistic value. Our study suggests that their GW signal
predictions are grossly over-estimated because of this.

The resulting GW spectra are shown in Fig. 3. Even
for the most optimistic case of highly relativistic bubble
walls, the signal is out of reach for next generation GW
detectors. However, we expect a magnification of the
GW signals for larger Nc due to additional supercooling
from delaying nucleation by having additional degrees
of freedom. We intend to elaborate on this in future
work by utilizing the methods presented here for SU(3)
case to the SU(Nc) case. Additional questions left for
future work are the inclusion of flavor to study chiral
symmetry breaking/confinement, the glueball spectra for
Nc > 3 and the impact of an axion on the deconfinement
temperature.

Acknowledgements: We thank Mark Hindmarsh,
Manuel Reichert and Michele Redi for interesting dis-
cussion about holography and phase transitions. We
also thank James Renwick Hudspith for valuable dis-
cussion on SU(Nc) lattice thermodynamics. Work in
Mainz is supported by the Deutsche Forschungsgemein-
schaft (DFG), Project No. 438947057 and by the Clus-
ter of Excellence “Precision Physics, Fundamental In-

teractions, and Structure of Matter” (PRISMA+ EXC
2118/1) funded by the German Research Foundation
(DFG) within the German Excellence Strategy (Project
No. 39083149).
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Work in progress

Bounce action


Normalisation “c” of kinetic term unknown 


Can be determined for simpler geometries using 
prescription of


Here: Not so easy. But obtained an estimate that has 
proper normalisation up to a factor 1-10
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Bubble nucleation
• O(3) invariant bounce solutions


• Tunnelling rate:


• Nucleation: 


• Percolation: Universe ~ filled with confined phase bubbles 

Γ ≈ H4

23
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Work in progress

Effective action for canonically normalised field


Unfortunately this seems to further weakens the GW 
signal

29
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Work in progress

Furthermore: Redid fit of dilation potential to newer lattice 
data and for  up to 8 - no significant  dependence


Extrapolation for large  - signal strengthens, but still 
unobservable


Exploring different methods to estimate wall velocity 

Nc Nc

Nc
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Summary

Confining dark sectors are interesting


Predict additional phase transition in the early Universe

▶ First order for many scenarios, without tuning of parameters


PTA data hints towards a strong first order PT at the MeV scale, 
potentially in a dark sector 


Holography allows computation of PT observables also at strong 
coupling  

In general: GWs are a new window into the early Universe, with 
lots of data expected in near (PTAs) and far (LISA, ET) future 
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Some more details on improved holographic QCD

Thermal gas Ansatz (confined phase):  

AdS black hole Ansatz (deconfined phase):  

Functions  determined from EOM


Solutions asymptotic to AdS in UV, with log corrections

b0(r), b(r), f(r)

33

As our interests of the theory are at finite temperature by employing the imaginary time

formalism and compactifying time on a circle of size � = 1

T
, two solutions are identified.

• Thermal Gas Solution: This solution is equivalent to the vacuum solution except for

the compactification along the time direction

ds
2 = b

2

0(r)(dr
2
� dt

2 + dx
m
dxm). (2.11)

This solution corresponds to a thermal excitation above the vacuum and is often referred

to as a thermal gas of gravitons at temperature T. This is a thermal ensemble of the

same original solution, in which it inherits all the correct non-perturbative features like

(confinement, glueball spectra, etc..)

• AdS Black Hole Solution: are of the form

ds
2 = b
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these solutions are characterized by their black hole horizon rh where f(rh) = 0. These

solutions, provided they exist correspond to a deconfined phase. To realize this one can

consider the confining string tensions analog in the holographic picture [24], doing so one

finds that it is proportional to Minr(
p
gtt · grr) = 0. The temperature of the system is

given by the hawking temperature of the black hole i.e.

Th ⌘
|ḟ(rh)|

4⇡
, (2.13)

The picture of this system for an arbitrary temperature T in the gravity theory is that one has

the black hole solution which is surrounded by the thermal gas. By considering the canonical

ensemble partition function in the largeNc limit, it becomes the sum over saddle points evaluated

at temperature T, in which one determines the governing phase by the contribution which

dominates the partition function at that temperature. This therefore imposes a regularity

condition at the BH horizon that the temperature of the BH is equal to that of the thermal gas

i.e.

Th = T . (2.14)

If the aforementioned condition is not fulfilled a conical singularity appears which needs to

be dealt with accordingly. More about this in 4. By inspecting Eq. (2.13) one can realize

that because the blackening factor f(rh) is absolute valued, there are either zero or two values

of rh at each temperature Th. These BH horizon position values rh identifies two branches,

there is the Big BH (BBh) branch for small values of rh and the corresponding small BH

(SBh) branch for large values of rh. The Big BH branch is thermodynamically stable whose

evolution with decreasing temperature describes the SU(Nc), whereas the Small BH branch is

thermodynamically unstable see Figure 1. However, the Small BH branch and its dynamics is

essential for the tunneling [1] between the di↵erent vacua. More about this in the upcoming

sections. A firm requirement on the AdS BH in Einstein-Dilaton gravity is that their UV

asymptotics are equal to those in the thermal/vacuum solution. Hence to impose this practically
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Thermal History

34



Gravitational Waves?
Zoom into interesting region


New window into early universe

35

e.g.

Electroweak symmetry 
breaking

Baryogenesis

Dark matter production



Standard model

The hot early Universe sources GWs!

▶ Classical picture: thermal fluctuations source tensor fluctuations


▶ Quantum picture: gluon + gluon -> graviton


36

From Ringwald,
Schütte-Engel, Tamarit, 2020

Original computations:
Ghiglieri, Laine, 2015
Ghiglieri, Jackson, Laine,  
Zhu, 2020



Dark QCD

Models I’m interested in here:


Nonabelian SU(N) dark sector, confinement scale


      light/massless flavours

37

⇤d

nf

nf = 0 nf > 0

Glueball DM 
 

PT from center

symmetry restoration

Dark Baryons 
or Dark Pions


Chiral Symmetry Breaking



Composite DM / Hidden Sector

38

GeV

TeV

asymmetry
sharing

annihilation

Xd

pD , . . .

⇡D , . . .

QCD dark QCD

⇡ , K , . . .

p , n
decay

⇤darkQCD

Bai, PS, PRD 89, 2014
PS, Stolarski, Weiler, JHEP 2015

many other works!
Similar setup e.g.: Blennow et al; Cohen et al; Frandsen et al;
Hidden Valleys: Strassler, Zurek;… 

• SU(N) dark sector 
with neutral  
“dark quarks” 


• Confinement scale


• DM is composite 
“dark proton”



New physics mass scales for PTA 

Phase transition

▶  

Audible axions:

▶  

Cosmic strings/domain walls

▶

39

Buchmuller,  
Domcke, 
Schmitz,  

2021

Madge, PS, 2018
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FIG. 2. Black lines give benchmark gravitational wave spectra for various values of the model parameters (shown in
Table I). The black dots show the prediction of the peak location using the scaling relation in Eq. 23. Colored curves
are power law sensitivities for various gravitational wave detectors- Green (dotted): IPTA (SKA), Red: LISA 4-yr
(projected), Blue: LIGO 2022 (projected), Brown: DECIGO (projected), Magenta: BBO (projected). ADD ET IN
CAPTION AS WELL.

detectors. The low mass region 10�19 eV . m .
10�13 eV will also be probed by the black hole su-
perradiance with data from LISA [10], showing some
unexpected complementarity of GW measurements
by LISA and PTAs.

GW Spectrum m (eV) f (GeV) ✓ ↵ ⇢0�/⇢
0
DM �Ne↵

ALP 1 5.6⇥ 10�14 2.0⇥ 1017 1.0 75 0.011 0.24

QCD Axion 1 3.0⇥ 10�11 2.0⇥ 1017 1.0 73 1.1 0.18

QCD Axion 2 6.1⇥ 10�11 1.0⇥ 1017 1.3 55 1.9 0.075

ALP 2 1.0⇥ 10�2 1.0⇥ 1017 1.2 55 1.7 0.030

ALP 3 5.0⇥ 10�1 2.0⇥ 1017 1.0 75 0.85 0.069

ALP 4 1.0⇥ 102 1.0⇥ 1017 1.1 65 0.020 0.018

ALP 5 1.0⇥ 1010 2.0⇥ 1017 1.0 50 ⇤ ⇤

TABLE I. Parameter values for the gravitational wave
spectra shown in Figure 2. The present time ratio of the
axion and DM energy densities is given by ⇢0�/⇢

0
DM.

B. Chirality of the Gravitational Wave
Spectrum

As we discussed in Section III B, the dark photon
population is completely dominated by a single he-
licity and has a relatively narrow range of momenta
corresponding to the modes that experienced signif-
icant tachyonic growth. Since gravitational waves
are sourced by exponentially amplified dark photon
quantum fluctuations, they inherit the parity viola-
tion in the dark photon population. The peak of
the gravitational wave spectrum comes from the ad-
dition of two approximately parallel “+” polarized
dark photons of similar momenta k, such that a “+”
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FIG. 3. Emission time gravitational wave spectrum for
the ALP 2 model parameters. The solid black line gives
the total spectrum while the dashed lines show the con-
tributions from the “+” (red) and “�” (blue) helicities
of the spectrum.

circularly polarized gravitational wave is produced
with momentum ⇡ 2k. In contrast, the low-k tail
of the gravitational wave spectrum comes from two
approximately anti-parallel “+” polarized dark pho-
tons of similar momenta k. This results in an ap-
proximate cancellation of the polarizations and mo-
menta, leading to the production of unpolarized, low
momentum gravitational waves. These features can
be seen in Figure 3, where the peak of the gravita-
tional wave spectrum is dominated by “+” polarized
gravitational waves while the tail has equal compo-
nents of both helicities such that the net spectrum
is unpolarized.

Machado, Ratzinger,  
Stefanek, PS, 2018/19
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spectrum and input data for the refitting (violins). Right: Contours of the ALP mass ma and decay constant fa.

The regions above the solid lines are excluded by constraints from reheating and Ne↵ , as discussed in the text. The

projected sensitivity of PIXIE is indicated by the dotted line. The full triangle plot including 1D posteriors is shown

in Fig. 10.

hint for a new boson with a mass around 17 MeV [151, 152], which could be either � or the gauge boson of
our model, and which could be searched for in high intensity electron beam experiments such as MESA [153].

As far as astrophysical probes of this scenario are concerned, for very small m�, close to the lowest
preferred masses, late decays will continue to inject energy into the plasma during BBN and before CMB
formation [154, 155], and could produce CMB spectral distortions that can be probed in the future [145],
while acoustic waves à la Ref. [139] are not expected to contribute here.

4.2 Meta-stable topological defects, remnants of symmetry breaking

4.2.1 Global (ALP) Strings

In Fig. 4 we show the preferred parameter space in which cosmic strings from the spontaneous breaking
of a U(1) symmetry can explain the PTA signal. This region changes slope around ma ⇡ 10�14 eV. For
lower masses, the network decays at temperatures below 1 MeV and the PTA signal is due to the almost
scale invariant part of the spectrum, for larger masses the / f

3 tail of the spectrum that gets created in
the decay of the network gives the signal. The NANOGrav data seems to prefer the former scenario, while
IPTA favors the latter.

In a minimal scenario ALPs in this parameter space are expected to be cosmologically stable with
negligible SM interactions. As the ALP strings continuously radiate ALPs during the evolution of the
network, they create an abundance of both relativistic and non-relativistic ALPs contributing to Ne↵ and
DM respectively. For the contribution towards Ne↵ we obtain using Eq. (21) of Ref. [83],

�Ne↵ = 0.4

✓
fa

1015 GeV

◆2 ✓
log(fa/ma)

80

◆3

. (4.5)

Using this relation, the present bound on �Ne↵ corresponds to an ALP decay constant of fa . 1015 GeV.
It is therefore at tension with all of the parameter space favored by the fit. At this point it is however worth

– 19 –

0 5 10 15
f [nHz]

10�11

10�10

10�9

10�8

10�7

10�6

h
2 �

G
W

NANOGrav 12.5 yr

IPTA DR2

combined

best-fit

106 107
k�

�
Mpc�1

�

10�9 10�8

f� [Hz]

10�4

10�3

10�2

10�1

A
�

�
=

1

� = 2

�
=

1

� = 2
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a very careful assessment of the PBH constraint. An important role is played by non-Gaussianities (NGs),
which come from two sources: primordial NGs in the inflationary spectrum and NGs coming from non-
linearities in PBH formation. A proper inclusion of these two e↵ects can suppress PBH formation and
lift the constraint, only mildly a↵ecting the GW spectrum [123]. This e↵ect can only be computed in a
model-by-model basis. We therefore refrain from presenting PBH constraints here, but we highlight their
potential importance.

The absence of spectral distortions in the CMB sets strong constraints on the amplitude of the power
spectrum at low momenta. In particular, COBE/FIRAS set an upper limit on the µ parameter [163, 164],
defined as

µ ⇡

1Z

1Mpc�1

dk

k
P⇣(k)Wµ(k) , (4.9)

where Wµ is the window function [165]

Wµ(k) ⇡ 2.27

0

@exp

2

4�

✓
k

1360 Mpc�1

◆2
 

1 +

✓
k

260 Mpc�1

◆0.3

+
k

340 Mpc�1

!�1
3

5 (4.10)

� exp

"
�

✓
k

32 Mpc�1

◆2
#1

A .

In Fig. 8 we show as solid lines the bounds obtained by imposing µ < 4.7⇥10�5 (from a recent reanalysis
of COBE/FIRAS data [140]) and µ < 3 ⇥ 10�8 as a benchmark for future observers such as PIXIE [141].
The bounds are obtained with fixed � = 1 or � = 2, while the tilt n has no impact because the integral
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As with the other models, the second option is to deplete the energy to the SM plasma. Here this
is however very challenging, and impossible to achieve via perturbative processes. The reason is that the
axion mass sets the energy scale of all processes. The decay rate of the axion is for instance proportional to
� / m

3
/f

2, and therefore e�cient decays can only occur long after the onset of the axion oscillations, in our
case preventing the decay before BBN. The large field strengths present in this model might possibly allow
for the non-perturbative production of particles through the Schwinger e↵ect as considered in Ref. [162].
This process, while e�cient in reducing the energy in the bosonic sector, however also lowers the amount
of produced GWs.

4.4 Scalar-induced GWs

Our results for scalar-induced GWs are presented in Fig. 8. We see that the PTA signal can be reproduced
with a rather large amplitude, A⇣ ⇠ 10�2 – 10�1, and peak momentum around (106 – 107) Mpc�1, in agree-
ment with previous results [32]. Figure 14 shows the contours and the posteriors for the other parameters
of the model.

Di↵erent from the other scenarios, here the underlying source of the GWs is active during inflation.
Therefore, after inflation ends and the universe reheats, only the curvature perturbations remain as traces,
frozen outside the horizon. Once they reenter the horizon, besides sourcing GWs, very large curvature
perturbations can lead to (over)production of PBHs. Since this has to happen at scales not too far away
from the CMB, spectral distortions of the latter are also typically induced.

The production of PBHs is a delicate issue. The fraction fPBH of DM in the form of PBHs depends
strongly on the choice of the window function for the variance of the density contrast, for which there is no
unique prescription, and exponentially on the exact value of the critical density for collapse. This delicate
sensitivity prevents a reliable calculation of fPBH from the model parameters. Nevertheless, as pointed out
in Ref. [32], the reverse approach is possible: imposing fPBH < 1, reliable bounds on the parameters of the
model can be derived. Assuming Gaussian distributed perturbations, the upper bound on A⇣ derived from
fPBH < 1 is A⇣ < 0.01 – 0.04 [32], falling right inside the best-fit region shown in Fig. 8. This claims for
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where � = ⇢/
p

2 exp (ia/va) is a complex scalar field and the axion a is its angular part. The potential
of Eq. (2.17) is such that the U(1) symmetry is spontaneously broken, with a vev h�i = va/

p
2 and

a 2 [0, 2⇡va). The term V (a) in Eq. (2.17) is the anomaly-induced U(1) breaking under the influence of a
strongly coupled gauge theory with dynamical scale ⇤ '

p
mafa. This explicitly breaks the U(1) symmetry

into its ZNDW subgroup. The conventional form of such explicit breaking at zero temperature is

V (a) = ⇤4

✓
1 � cos

a

fa

◆
, (2.18)

where fa = va/NDW. The tension of ALP DWs in the absence of finite temperature e↵ects can be estimated
as [75]

� = 8maf
2

a
. (2.19)

We will work under the assumptions that va < Trh, such that the U(1) symmetry is restored after
inflation and the network forms as the universe cools down, and that there is a large separation of scales
between va and ⇤. This initially leads to the formation of a CS network which persists until the time of
DW formation when H ⇡ ma. Since NDW � 2, there are multiple DWs attached to every string and the
network is stable. Shortly after this time, the combined network is dominated by the dynamics of the DWs
and one can neglect any e↵ect the remnant strings have on the evolution. GWs produced by strings, as well
as cosmological constraints such as those coming from Ne↵ , are negligible with respect to the contributions
from DWs. This is because, as will be clear from section 4.2.2, the decay constant fa is much lower than in
the CS scenario discussed above.

In addition, the global U(1) symmetry is expected to be broken quantum gravity e↵ects. Therefore,
additional breaking terms, if not accidentally aligned with the anomalous breaking, lift the degeneracy
between the minima. They provide the necessary Vbias for the network to annihilate, with the temperature
of annihilation given by Eq. (2.14).

In addition to the generic ALP model, we consider DWs in models of the QCD axion, i.e. models that
solve the strong CP problem. One such scenario is that of axion alignment [76] realized by a clockwork
mechanism. Here a collection of N axions that individually respect a shift symmetry

�i ! �i + Ci , (2.20)

is considered, where Ci is a real-valued transformation parameter. One then assumes that N � 1 of these
shift symmetries get explicitly broken into their discrete subgroups, giving rise to the potential for N � 1
linear combinations of the axions. The remaining flat direction is then identified as the QCD axion with its
associated gluon coupling in, for instance, the Kim-Shifman-Vainshtein-Zakharov (KSVZ) model.

The main advantage of this scenario is that it gives a light QCD axion with an exponentially enhanced
e↵ective decay constant Fa ⇠ fae

N , while the actual symmetry breaking scales fa can be much lower,
e.g. around the TeV-PeV scale, thus making the model testable at particle physics experiments. This also
ensures that the symmetry breaking can take place after reheating, and thus a DW network, made from
the N � 1 heavy axions predicted by the model, can form. Ref. [76] found that the DWs are long-lived and
survive until the QCD axion potential becomes relevant. For simplicity we take equal masses ma and equal
decay constants fa for all the heavy axions. In terms of these, the DW tension is again given by Eq. (2.19).

Di↵erent from the generic ALP model, here the network is destabilized by QCD instantons at the time
of the QCD phase transition. This lifts the degeneracy between the di↵erent minima by �V ' ⇤4

QCD
, and

the annihilation temperature can be predicted as [76]

Tann ⇠ 1 GeV

✓
g⇤(Tann)

80

◆� 1
4

✓
⇤QCD

400 MeV

◆2 ✓
107 GeV

fa

◆ r
10 GeV

ma

. (2.21)
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Figure 6. Fit results of the aligned QCD axion DW model from section 2.2.2 to NANOGrav (blue), IPTA (orange)

and their combination (green). Left: Best-fit GW spectrum alongside the free-spectrum fit (violins). Right: 68 % and

95 % CL fit region in terms of the axion mass ma and decay constant fa. In between the dashed lines our description

of the GW spectrum in terms of the scaling regime is valid. The full triangle plot including 1D posteriors is shown

in Fig. 12. The collider projections from LHC Run 2 in grey are taken from Ref. [158], whereas the projections from

searches by FCC and CLIC are from Ref. [159].

than the range probed by PTAs, while for the ALP model the peak can be freely adjusted and the fit prefers
parameters where it falls into this range.

Furthermore, it can be interesting to ask whether the heavy axions in this model can be probed in the
laboratory, in particular at the LHC. It was shown in Ref. [158] that the production of axions in the decay
of electroweak bosons provide a particularly sensitive probe for heavy axions in the (1 – 100) GeV mass
range. While the projected collider reach of the LHC (grey shaded region) is not su�cient to probe the
best-fit region, it is still interesting to see that collider probes of such scenarios are in principle possible.
In particular, a future linear electron-positron collider such as CLIC with a center-of-mass energy of 3TeV
can explore the best-fit region for axion masses above ma & (10 – 100) GeV, whereas a circular collider like
FCC-ee would not be able to probe the required decay constants [159].

4.3 Bosonic instabilities and late preheating

Explaining the PTA signal requires the bosonic sector to comprise a non-negligible amount of the total
energy. In our model of an axion coupled to a dark photon we will have two components, the axion behaving
as DM and the photon contributing to Ne↵ , in the case where there are only gravitational interactions with
the visible sector. The contribution to Ne↵ can be estimated as [108]

�Ne↵ = 9.1 ⇥

✓
✓f

MP

◆2

. (4.8)

As one can see from Fig. 7, this puts the parameter space preferred by the fit in mild tension with the
current bound of �Ne↵  0.29. Furthermore, as pointed out in Refs. [107, 108, 160], the relic abundance of
the axion is typically larger than the observed amount of dark matter. This problem has also been observed
in models relying on a parametric resonance instead of tachyonic growth [99, 100, 161]. A possible solution
to this problem might be model extensions that allow for a time dependent axion mass as discussed in
Refs. [108, 160].
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Figure 5. Fit results of the ALP DW model from section 2.2.2 to NANOGrav (blue), IPTA (orange) and their

combination (green). Left: Best-fit GW spectrum alongside the free-spectrum fit (violins). Right: 68 % and 95 % CL

fit region in terms of the axion mass ma and annihilation temperature Tann. In the region between the dashed

lines, our description of the GW spectrum in terms of the scaling regime is valid. The region below the solid lines

is excluded by Ne↵ for fa = 105 GeV (black) and for fa = 107 GeV (grey). The dotted line shows the projected

sensitivity of PIXIE. The full triangle plot including 1D posteriors is shown in Fig. 11.

them for two characteristic values of fa in the figure. As discussed above, our estimate of the GW signal
is only reliable in a certain window, which here is the region between the dashed lines. Finally PIXIE
would be able to probe the region below the dotted line. It is apparent that especially at small annihilation
temperatures µ-distortions provide a strong independent probe of the model going much beyond the Ne↵

limit. Within the range of decay temperatures favored by the fit their reach is however limited.

In the aligned axion model, we expect instead that the heavy axions rapidly decay to SM particles after
DW annihilation. Therefore, we do not expect constraints from Ne↵ or spectral distortions. Instead, one
needs to make sure that the decay products of the heavy axions do not jeopardize BBN. To estimate this,
we compare their decay rate into gluons and photons with the Hubble rate, i.e. �a!gg/�� ' H(T ), where
the decay rate at leading order of an axion into two gluons is given by

�a!gg ⇠
1

64⇡

✓
Cgg↵s

2⇡

◆2
m

3

a

f2
a

' 1.67 ⇥ 1011 s�1

⇣
ma

10 GeV

⌘3
✓

107 GeV

fa

◆2

, (4.7)

with ↵s = 0.1 and Cgg = 1. Our primary concern will be the decay into gluons for ma � 1 GeV. This rate is
fast enough to ensure decays before the onset of nucleosynthesis. In fact it guarantees that the relic axions
will almost instantly decay after the DW network annihilates for all values of ma and fa considered here.

We show the 68% and 95% CL contours as a function of the axion mass and decay constant in Fig. 6.
The technical constraints discussed for the ALP case also apply here. Again we see that the best-fit region
fully agrees with the range of validity of the DW simulations we are using, and there are no conflicts with
cosmological bounds. It should be noted though that the best-fits shown on the left of Figs. 5 and 6 disagree
substantially. This di↵erence is due to the heavy axion model possesing e↵ectively only one parameter, with
the surface energy � / f

2

a
ma and the annihilation temperature Tann / 1/(fa

p
ma) both being controlled by

the same combination of parameters. This leads to the peak of the spectrum sitting at higher frequencies
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Figure 6. Fit results of the aligned QCD axion DW model from section 2.2.2 to NANOGrav (blue), IPTA (orange)

and their combination (green). Left: Best-fit GW spectrum alongside the free-spectrum fit (violins). Right: 68 % and

95 % CL fit region in terms of the axion mass ma and decay constant fa. In between the dashed lines our description

of the GW spectrum in terms of the scaling regime is valid. The full triangle plot including 1D posteriors is shown

in Fig. 12. The collider projections from LHC Run 2 in grey are taken from Ref. [158], whereas the projections from

searches by FCC and CLIC are from Ref. [159].

than the range probed by PTAs, while for the ALP model the peak can be freely adjusted and the fit prefers
parameters where it falls into this range.

Furthermore, it can be interesting to ask whether the heavy axions in this model can be probed in the
laboratory, in particular at the LHC. It was shown in Ref. [158] that the production of axions in the decay
of electroweak bosons provide a particularly sensitive probe for heavy axions in the (1 – 100) GeV mass
range. While the projected collider reach of the LHC (grey shaded region) is not su�cient to probe the
best-fit region, it is still interesting to see that collider probes of such scenarios are in principle possible.
In particular, a future linear electron-positron collider such as CLIC with a center-of-mass energy of 3TeV
can explore the best-fit region for axion masses above ma & (10 – 100) GeV, whereas a circular collider like
FCC-ee would not be able to probe the required decay constants [159].

4.3 Bosonic instabilities and late preheating

Explaining the PTA signal requires the bosonic sector to comprise a non-negligible amount of the total
energy. In our model of an axion coupled to a dark photon we will have two components, the axion behaving
as DM and the photon contributing to Ne↵ , in the case where there are only gravitational interactions with
the visible sector. The contribution to Ne↵ can be estimated as [108]

�Ne↵ = 9.1 ⇥

✓
✓f

MP

◆2

. (4.8)

As one can see from Fig. 7, this puts the parameter space preferred by the fit in mild tension with the
current bound of �Ne↵  0.29. Furthermore, as pointed out in Refs. [107, 108, 160], the relic abundance of
the axion is typically larger than the observed amount of dark matter. This problem has also been observed
in models relying on a parametric resonance instead of tachyonic growth [99, 100, 161]. A possible solution
to this problem might be model extensions that allow for a time dependent axion mass as discussed in
Refs. [108, 160].
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Figure 1. Left: Rate for binaries merging at tr (dotted line) as well as rate for emitting GWs at tr with
frequencies today f = 1 µHz and 2.5 nHz (solid green and orange lines) assuming mPBH = 10

5
M�,

fPBH = 1, and �dc = 1. Right: GW energy density h
2
⌦GW(f) obtained using the correct rate

R(tr +⌧fr ) (solid lines) and instead using the merger rate R(tr) in Eq. (2.2) (dotted lines) for different
PBH masses and abundances. We also show the region, where the NANOGrav 12.5 and 15 yr signals
are located assuming a power-law corresponding to the inspiral of binary BHs.

with the incomplete gamma function � and ÑPBH = NPBH(x̃). By substituting tr ! tr + ⌧fr

we can therefore compute the rate for the emission of this frequency R(tr + ⌧fr). Multiple
merger steps, possibly present due to successive hierarchical merging of PBH binaries with
increasing mass due to large clustering, can be easily implemented by adding the rates and
contributions to the GW energy density parameter for the corresponding steps as detailed in
Ref. [41]. We include multiple merger steps when discussing the case of significant clustering,
noting that this slightly shifts our results for �dc = 10

3 to lower PBH abundances compared
to only considering a single step.

To illustrate the importance of the time when a given frequency is emitted we show in
the left panel of Fig. 1 the rate for binaries merging at tr (dotted blue line) with the one for
GW emission with frequencies f = 1 µHz and 2.5 nHz today (solid green and orange lines),
assuming mPBH = 10

5
M�, fPBH = 1, and �dc = 1 in each case. For instance, at tr = 10

8
yr

(i.e. z ⇡ 30) one obtains ⌧fr((1 + z)1 µHz) ⇡ 130 yr and ⌧fr((1 + z)2.5 nHz) ⇡ 1.1 ⇥ 10
9
yr.

Hence, the rate for the emission of GWs with the larger frequency (solid green line) is very
close to the merger rate (dotted blue line), whereas the rate for the emission of GWs with
the smaller frequency (solid orange line) differs significantly, i.e. it takes the value that the
dotted blue line attains 1.1 ⇥ 10

9
yr later.

In the right panel of Fig. 1 we show h
2
⌦GW(f) as a function of the GW frequency today

according to Eq. (2.2) (solid lines) as well as just inserting the merger rate R(tr) instead of
R(tr+⌧fr) in the integral (dotted lines). The difference between those calculations is especially
important for the low frequencies observed by NANOGrav if the PBH mass is relatively light.

We close the discussion of the GWB signal by mentioning some assumptions that entered
in its calculation. These include

• a monochromatic mass distribution for the PBHs [36],
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Figure 2. Best-fit region (purple) in the plane of PBH mass mPBH vs. abundance fPBH, where
the NANOGrav signal can be explained by merging PBH binaries without clustering (left) and with
significant clustering (right). We indicate regions, where N̄ < 1, 10, and 100 PBH binaries are
expected to contribute to the signal, noting that for N̄ . 10 uncertainties in the signal prediction
would become relevant and for N̄ < 1 no signal is expected for most of the time. We also show the
relevant constraints on PBHs as discussed in Sec. 3, which were derived assuming no clustering, and
indicate that the constraints from µ-distortions can be very relevant, but depend on the production
mechanism.

If the GWB signal generated by merging PBH binaries becomes too large, corresponding
to parameters above the purple regions in Fig. 2, the abundance of PBHs can be constrained
by PTA observations. Here we conservatively require an expected number of at least N̄ = 10

binaries contributing to the signal. The constraints are shown in Fig. 3 without clustering
(purple) and with significant clustering �dc = 10

3 (red).

6 Discussion and conclusions

In this work we have studied the possibility that the signal observed by various pulsar tim-
ing arrays is due to merging primordial supermassive black hole binaries. If the PBHs are
“homogeneously” distributed at their formation, i.e. follow a Poisson distribution, significant
cosmological and astrophysical constraints exclude the possibility of explaining the PTA sig-
nal with merging PBHs. Instead considering a clustered spatial distribution of PBHs increases
the binary merger rate and thus enables a consistent explanation of the PTA signals with
merging PBH binaries. Crucially, we have checked that also the signal prediction is reliable
in the relevant parameter space by computing the expected number of binaries contributing
to the gravitational wave signal. Further, we used PTA data to constrain the PBH parameter
space when the GWB generated during the mergers would result in stronger signal strengths
than the one detected.

Due to publicly available data that can be reanalysed for new models we concentrated
on the 12.5 yr NANOGrav data set, but intend to update our results once the new 15 yr data
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