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Overview

u Introduction and brief status of the LHC searches on the 
composite models

u Use of an analysis example based on the Higgs self-coupling 
measurements to explore Machine Learning tools and where and 
how they can be used 

u Overview of some Machine Learning (ML) tools: 
u Deep Neural Network (DNN)

u Convolutional Neural Network (CNN)

u Recurrent Neural Networks (RNN)

u Graph Neural Network (GNN)

u Extra slides (ML applied to b-tagging)
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Introduction: SM incompleteness
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Hierarchy Problem: Why is MPl/MEW ~1017

Unification of Gauge couplings: Why are gauge couplings so different, 
are they unified at a higher scale? Are there more forces in nature?

Origin of generations: Why do quarks and leptons come in three 
generations? Are they elementary particles?

Gravity: SM describes three of the four fundamental interactions at the 
quantum level (microscopically) but gravity is only treated classically.

Dark matter: What is 25% of the Universe made off, and how does it 
interact with ordinary matter?

Neutrino masses: What is the origin and nature of neutrino masses?

CP Violation: What is the origin?



Composite models at LHC 
✦ Compositeness mechanisms (i.e. confinement) can naturally generate mass scales well below the Planck scale.
✦ The quarks and leptons in the Standard Model (SM) could be composed of more fundamental particles. 
✦ Constituents are normally SM-charged, but hadrons can be SM-neutral, leading to suppressed interactions.

Today, there are two mass scales that observations say clearly exist but lack a natural explanation:
ü Dark matter exists and it should be more massive than neutrinos (cold dark matter, not axions).
ü Higgs boson has a mass of 125 GeV but the Standard Model mechanism is severely fine-tuned.
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LHC Higgs Working Group

Higgs 
discovery 

• 2012 higgs boson discovery

Higgs 
properties

• After the discovery of the Higgs boson, focus has been given 
in precisely measuring its properties

Compositness 
in Higgs 

signatures

• Obvious starting point to explore the compositeness 
hypothesis is the analysis of Higgs signatures, and of their 
possible deviations from the predictions of the SM.

Higgs mass, spin, width and couplings 
can indeed set constraints on the kind 
of new physics possibly connected to the 
Higgs, and in particular, on composite 
interpretations

LHC is suitable for the exploration of signatures:
• Heavy Neutral Leptons (HNLs)
• Vector-like quarks (VLQs) and Vector-like leptons (VLLs)
• New heavy mass resonances (spin-0 objects) signatures 

can be very effective for constraining composite scenarios

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG?redirectedfrom=LHCPhysics.LHCHXSWG


(GeV)

Composite-Higgs models and vector-like fermions
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✗ Spin 1/2 particles with color charge 
✗ Left and right chiralities behave the same  è Vector-like 

interaction with weak force 
✗ Mass not from Higgs boson and decay to SM boson and quark
✗ explains the lack of CP-violation in the strong interaction 
✗ Simplest extensions with VLQ (T2/3, B-1/3 and X5/3) singlets, 

doublets, and triplets.
✗ Vector-like quarks have the same mass heirarchy as SM quarks
✗ The Higgs boson is a composite pseudo-Nambu-Goldstone boson 

(pNGB) from spontaneous breaking of a global symmetry in a 
new strongly coupled sector èThis protects the Higgs mass.

Composite Models predicting new vector-like fermions:
u Warped or universal extra-dimensions: KK excitations of bulk fields
u Composite Higgs models: VLQ appear as excited resonances of the 

bounded states which form SM particles
u Little Higgs models: partners of SM fermions in larger group 

representations which ensure the cancellation of divergent loops
u Gauged flavour group with low scale gauge flavour bosons required 

to cancel anomalies in the gauged flavour symmetry
u Non-minimal SUSY extensions: VLQs increase corrections to Higgs 

mass without affecting EWPT
u Predicted in other models such as the Left Right Mirror Model Model 

QCD pair-production (via strong interactions): 
Mass-independent, dominant at low mass
Single-production (via EW interactions): Scales with 
coupling, model dependent, significant at high mass



Pair-produced vector-like top and bottom partners in events with large 𝐸!"#$$
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Eur. Phys. J. C 83 (2023) 719

Ø The search uses 139 fb-1 data collected with the 
ATLAS detector

Ø Masses of the VLQs >800GeV
Ø Vector-like T2/3, B-1/3 and X5/3 considered
Ø Branching ratios: T: 𝓑 𝒁𝒕;𝑯𝒕;𝑾𝒃 ≈ 𝟎. 𝟐𝟓; 𝟎. 𝟐𝟓; 𝟎. 𝟓  

and B: 𝓑 𝒁𝒃;𝑯𝒃;𝑾𝒕 ≈ 𝟎. 𝟐𝟓; 𝟎. 𝟐𝟓; 𝟎. 𝟓
Ø Events characterized by low lepton-multiplicity, 

high jet-multiplicity, and large missing transverse 
energy (𝐄𝐓𝐦𝐢𝐬𝐬):

Ø High missing transverse momentum 𝐸%&'(( > 250	𝐺𝑒𝑉 

Ø Only one lepton ℓ 𝑒	𝑜𝑟	𝜇  è veto for a second lepton

Ø At least 4 jets including a b-tagged jet

Ø At least one top quark from the signal expected to 
have a high pT è requirement on large-R jets

Ø Dominant backgrounds: 𝐭 ̅𝐭  and W+jets è reduced 
using cuts on transverse mass; Other BKGs: 𝑡 ̅𝑡𝐻, 𝑡𝑊𝑍 
and 𝑍 + 𝑗𝑒𝑡𝑠

Ø Systematic Uncertainties resolution and scale of: 𝑡 ̅𝑡 
background, Jet mass, Effciency of lepton 
identification, isolation, reconstruction and energy

𝑇"𝑇	&	𝐵 "𝐵 production
𝑇"𝑇	 𝐵 "𝐵

Examples of discriminating variables

𝑚%
& 𝐸%'())

https://arxiv.org/abs/2212.05263


Pair-produced vector-like top and bottom partners in events with large Emiss
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Eur. Phys. J. C 83 (2023) 719𝑇"𝑇	&	𝐵 "𝐵 production
Neural networks (NN) used to discriminate between signal and background
• Input variables such as high meff for VLQ mass, properties of large-R jets, 

b-jet multiplicity, transverse mass etc. used
• The NNs are implemented as a three-layer feedforward NN with one input 

node for each variable, 15 nodes in the hidden layers and one output node 
which gives a continuous NN output score (𝑁𝑁out) 

• Training on different Branching Ratios:
Ø For TT 4NN: 0.8; 0.1; 0.1 ; 0.2; 0.4; 0.4 ; 0.4; 0.1; 0.5 ; 0.4; 0.5; 0.1
Ø For BB 3NN: 0.1; 0.1; 0.8 ; 0.4; 0.1; 0.5 	and 0.1; 0.4; 0.5 ;
Ø All the main backgrounds are used in the training

NN input variables

𝑇"𝑇	 signal of mass 1.2 TeV 
B (𝑍𝑡, 𝐻𝑡, 𝑊𝑏) = (0.8, 0.1, 0.1)

𝑇"𝑇	 signal of mass 1.2 TeV 
B (𝑍𝑡, 𝐻𝑡, 𝑊𝑏) = (0.2, 0.4, 0.4)

𝐵 "𝐵	 signal of mass 1.2 TeV 
B (𝑍b, 𝐻b, 𝑊t) = (0.1, 0.1, 0.8)

𝑁𝑁out 𝑁𝑁out 𝑁𝑁out

https://arxiv.org/abs/2212.05263


Pair-produced vector-like top and bottom partners in events with large Emiss

Examples of discriminating variables

For masses of the VLQs >800GeV:
ü No significant excesses

ü Expected and observed mass limits as a function of 
the T and B branching ratios 𝓑

ü Analysis most sensitive to the T à Zt and BàWt 
decay modes
ü 𝓑 𝐓′	 → 𝐙𝐭 = 𝟏𝟎𝟎%
ü 𝓑 𝐁′	 → 𝐖𝐭 = 𝟏𝟎𝟎%%

ü limit at 1.47 TeV for exclusive T à Zt decays
ü limit at 1.46 TeV for exclusive B/X à Wt decays

ü Lower limits on the T and B quark masses are 
derived for all possible branching ratios

ü The obtained mass limits are 300 to 400 GeV 
higher than in the earlier ATLAS analysis in the 
same final state using a subset of the Run 2 data. 

Results Eur. Phys. J. C 83 (2023) 719
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𝐓, 𝐁 	𝐨𝐫 𝐗, 𝑻  doublet
mass degenerate

Strongest limits corresponding to the weak-isospin 
doublet model 

è (T,B) and (X,T) when mX = mT = mB are at 1.59 TeV

https://arxiv.org/abs/2212.05263


A search for bottom-type, vector-like quark pair production in leptonic and 
fully hadronic final states
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B2G-20-014 Submitted to Phys. Rev. D

✦ Masses of the VLQs from 1000 to 1800 GeV
✦ The search uses 138 fb-1 data collected with the CMSS detector
✦ First analysis to combine fully hadronic and leptonic categories
✦ Branching Ratios ℬ: Leptonic: 𝓑(𝑍𝑏, 𝐻𝑏, 𝑊𝑡) & Hadronic: 𝓑(𝑍𝑏, 𝐻𝑏)

February 2024

expected postfit background (blue histogram)
signal plus background (colored lines)
observed data (black points)

4-jet bHbH
4-jet bHbZ

Reconstructed VLQ mass

hadronic category 

3-jet bHbZ

4-jet bHbZ

Leptonic category 

Leptonic decays

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-014/index.html
https://cds.cern.ch/record/2889911


A search for bottom-type, vector-like quark pair production in leptonic and 
fully hadronic final states
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B2G-20-014 Submitted to Phys. Rev. D February 2024

Expected and observed limits on the cross section at 95% CL

The theoretical cross 
section and its uncertainty 
are shown by the red line 
and light-red band.

✦ No excess over the expected background is observed. 
✦ Lower limits are set on the B VLQ mass at 95% confidence level and they depend on the 

B VLQ branching fractions:
✦  for 100% B→bH è 1.57 TeV
✦  for 100% B→bZ è 1.54 TeV 

✦ In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-014/index.html
https://cds.cern.ch/record/2889911


Search for electroweak production of a T in association with a b: T→ Ht / Zt →bb t
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✦ Masses of the VLQs from 600 - 1200 GeV è past 
searches signatures with a large Lorentz boost

✦ Search for electroweak production of a T in 
association with a b, which requires a nonzero 
TWb coupling for charged-current production

✦ The T with a narrow width can have charge 2/3 
and can decay to a top quark (t) and a Higgs or Z 
boson è Branching Ratios: B (𝑍𝑡, 𝐻𝑡, 𝑊𝑏) ≈ 
(0.25, 0.25, 0.5)

✦ Invariant mass reconstructed from 5 jets is used 
as the main discriminating variable

✦ Event kinematics and the presence of jets 
containing b hadrons are used to reconstruct 
the hadronic decays of the t and Higgs or Z 
boson. 

✦ No discrepancy from the standard model 
prediction is observed in the data. The limits 
are stronger than those in the previous search 
by at least a factor three

B2G-19-001
 (August 2023)

95% CL upper limits on the cross-section for associated production with a 
b for final states tHbq and tZbq, for T masses from 600 - 1200 GeV

T→ Zt in ATLAS in backup slides

Associated production of a T and a b

http://cds.cern.ch/record/2869087?ln=en


Heavy Neutral Leptons [HNLs]

12Many searches, in different final states, and with both prompt and displaced signatures from ATLAS, CMS & LHCb

https://twiki.cern.ch/twiki/bin/vi
ew/CMSPublic/SummaryPlotsEXO1

3TeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV


Ranges of new particle masses or energy scales excluded at the 95% confidence level

13https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-008/

similar plot for 
CMS in slide 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-008/


Analysis example: Higgs self-coupling measurements using ML 

Exploit 4b final state: highest signal yields, but overwhelming QCD background (by orders of magnitude!) 

arXiv:2004.04240v3 



Analysis example: Higgs self-coupling measurements using ML 

SM

Current limits on 𝜆!!! from ATLAS: 
  −2.3 < 	𝑘" < 10.3 

Ideally, analyses should have a high signal-
to- background ratio S/B across different 
kinematic regimes of the Higgs boson  
but…
small 𝑘"	variations cause dramatic changes 
to kinematical variables distributions as for 
mhh and pT(h) 



Analysis example: Higgs self-coupling measurements using ML 

1) Resolved and/or boosted analysis?

ML

𝒌𝝀	𝒊𝒎𝒑𝒂𝒄𝒕	𝒐𝒏 mhh and pT(h) 𝒌𝝀	𝒔𝒊𝒈𝒏	𝒊𝒎𝒑𝒂𝒄𝒕	𝒐𝒏 mhh and pT(h) 



Analysis example: Higgs self-coupling measurements using ML 

2) boosted analysis require Boson tagging

ML



Analysis example: Higgs self-coupling measurements using ML 

3) Resolved analysis require 
excellent b-tagging performance

o Due to the small signal-to-background 
ratios sensitivity is limited by systematics 

o Reducing the multijet background mitigate 
the impact of systematics whose 
suppression relies on modern b-tagging 
algorithms 

ML



Analysis example: Higgs self-coupling measurements using ML 

4) Online (trigger) selection: 

ML

Jet Trigger @ pt =20 GeV Jet Trigger @ pt =40 GeV 

Maintaining sufficiently low trigger thresholds for the HL-LHC upgrades is of key 
importance for both discovery of the di-Higgs process as well as constraining λhhh. 

ML Classification in the hardware trigger a.k.a. selection before storing data!



Multilayer 
perceptron
• The first example of a NN is the 

Multilayer perceptron, this is a 
net of fully connected 
perceptron

• In the schematical view on the 
right every circle is a perceptron 
with a fixed number of inputs 
and outputs

• In the example we have an input 
layer, only one hidden layer 
and an output layer



Activation Functions

The activation function provides to the 
activation or not of a node.
The functions are in general differentiable 
operators to transform the inputs to outputs
Most of them provides to add non-linearity to 
the model
The activation function σ has as input the 
weighted sum of the input variables x, added 
with the bias b

Rectified Linear Unit (ReLU) Sigmoid Function 



Classification

• How can we interpret the two 
values?

• In classification problem the goal is 
to understand how the input x is 
related to the belonging to a certain 
class.

• The output o could be seen as the 
vector of probabilities of belonging to 
each class.

However this is not straightforward:



Softmax activation in multiclass regression
• However this is not straightforward:

• Softmax activation function:



DNN Parametrization Cost
• Fully-connected layers are fundamental in 

the neural network  building up process.

• Adding neurons to a network layer or adding 
a layer makes our model more complex and 
capable of facing a wide range of problems.

• The complexity of the model, however, faces 
directly with computational time, which 
could be extremely high. Suppose to have a 
hidden layer with d input and q outputs:

The parametrization cost is 



Loss function
• To measure the quality of our predicted 

probabilities we need a loss function.

• Let’s suppose that the entire dataset has N 
examples {X,Y}. The i-th {X,Y} data entry 
is made by the M features vector x-ith and the 
one-hot label vector y-ith.

• It is possible to compare the predicted class 
with the real class by checking how 
probable the actual classes are according to 
our model.

• According to the maximum likelihood 
estimation, we want to maximize P(Y|X), or 
minimize the negative log-likelihood.

M features 



Which loss function?
• The negative log-likelihood is equal to:

• Usually loss can be the cross-entropy, defined 
as:

Mean Squared Error (MSE)/ Quadratic Loss/ L2: Mean Absolute Error (MAE)/ L1 Loss:

Cross-entropy loss vs 
predicted probability 



Validation procedure
• The common practice to address this 

problem is to split our data three ways, 
incorporating a validation set in addition 
to the training and test datasets.
• Number of epochs: The main idea of the 

training is to iterate over the network model 
different times.
• In each epoch is selected from the training 

dataset k stochastic minibatches of n 
(batchsize) entries.
• Model update (i.e. weights update) is done 

on the average loss over single minibatch. 
Then after k iterations  the epoch ends. 



Validation and Overfitting problem

The more complex the model is, the higher is the risk of 
overfitting.
In order to avoid overfitting and make the training stable we have 
different approach:

1. Introduce a callback function that stops the training if the 
validation loss get worse and restore the best parameters 
(Early Stop function). Reduce overtraining and time needed 
for the training.

2. "Dropout": injecting noise while computing each internal layer 
during forward propagation.

Stop and restore the parameters

Here a clear example of overfittig, the train loss keeps 
going down while the validation loss get worse!!



Performance evaluation 
• The confusion matrix helps us 

visualize whether the model is 
"confused" in discriminating 
between two or more classes.

• Metrics:
• Accuracy =  TP+TN/ALL
• Precision =  TP/TP+FP 

•  (TP+FP = all predicted positive)
• Recall = TP/TP+FN 

•  (TP+FN = all true positive)



Roc curve
Events selected if: NN output value > arrow value



Analysis example: Higgs self-coupling measurements using ML: DNN results 

o 20 high level features as:
candidates H candidates four-momenta, ∆R distance between the two 
subjets associated to Higgs candidate, b-tagging, the missing transverse 
momentum, the number of reconstructed electrons and muons (veto), and 
the mass and transverse momentum of the di-Higgs system 
o DNN with 2 hidden layer 
o 200 nodes for each layer
o Activation function is ReLu
o Loss is cross-entropy

o The signal vs background 
discrimination is improved across 
the categories.

o However, this depends on the 
value of κλ. DNN trained on κλ = 1 
is optimal for κλ = 1 signal, but not 
for a κλ = 5 signal. 

arXiv:2004.04240v3 



pDNN: Higgs self coupling 𝜆!!!

o DNN training at κλ = 5 surpassing those achieved by the κλ = 1 DNN training 
(substantial triangle diagram contribution and therefore has a significant fraction of events at low mhh). 
o This underscores the importance of optimisation away from the signals with SM couplings for κλ

constraints in the hh → 4b final state. 

. 

Parameterised neural 
network can be used to 
construct an observable 
that is a well- behaved 
function of κλ



Parametrized DNN in HEP (pDNN) 
In a typical application of neural networks, one 
might consider various options: 

o Train a single neural network at one 
intermediate value of the mass and use it for 
all other mass values  
Ø quite usual but suboptimal (as in the 

previous example)

o Train a single neural network using a mixture 
of signal samples and use it for all other 
mass values 
Ø It’s better but degrade performance 

almost everywhere

o Train a set of neural networks for a complete  
set of mass.
Ø This approach gives the best signal-

background but is time/computional 
expensive and doesn’t interpolate 

A single parameterized network can replace a set of 
individual networks trained for specific cases, as well as 
smoothly interpolate to cases where it has not been trained. 

https://link.springer.com/article/10.1140/epjc/s10052-016-4099-4


Parametrized DNN in HEP (pDNN) 
A parameterized network, however, provides a 
result that is parameterized in terms of θ : f(x0,θ), 
yielding different output values for different 
choices of the parameters θ ; 

𝑋 → 𝑡 ̅𝑡	 𝐵𝑆𝑀	𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒

BSM signal SM bkg

pDNN saw no 
events @ 1000 GeV

https://link.springer.com/article/10.1140/epjc/s10052-016-4099-4


DNN-based Reweighting procedure 

The exact statistical solution to the problem 
of calculating the reweighting function would 
be to know the multi-dimensional pdfs of 
data.

Indeed, the weights between a region 1 and 
a region 2 are exactly the pdfs ratio between 
the two regions: 

The re-weighting function has the 
form of a probability density ratio 
(direct importance estimation field)
It can be directly estimated from
data via a DNN algorithm, by
minimizing a specific loss function

https://arxiv.org/abs/1911.00405


How to Direct Importance Estimation with DNN? (probability density estimation) 

o Two regions 0 and 1 and #observables_X = B, N0 measurements in region #0 and N1 measurements in region #1

o The multidimensional pdf	𝑝$ 𝑋  and 𝑝% 𝑋 	 are supposed unknown

o Our goal is the analytical ratio 𝑤 𝑋 = 	'! (
	'" (

 and our estimation:	𝑤( 𝑋) = ∑𝛼)𝜙)(𝑋) 

This term does not depend 
on α, thus it can be ignored 
in the minimization  

Loss function 

If 𝑤( 𝑋) is intended as the output 
of the network (it is effectively a 
function of data) and the 
constants α
as the weights of the network the 
loss function J0 can be effectively 
minimized by a Neural Network 
algorithm! 



How to Direct Importance Estimation with DNN?

o Two regions 0 and 1 and #observables_X = B, N0 measurements in region #0 and N1 measurements in region #1

o The multidimensional pdf	𝑝$ 𝑋  and 𝑝% 𝑋 	 are supposed unknown

o Our goal is the analytical ratio 𝑤 𝑋 = 	'! (
	'" (

 and our estimation:	𝑤( 𝑋) = ∑𝛼)𝜙)(𝑋) 

This term does not depend 
on α, thus it can be ignored 
in the minimization  

Loss function 

If 𝑤( 𝑋) is intended as the output 
of the network (it is effectively a 
function of data) and the 
constants α
as the weights of the network the 
loss function J0 can be effectively 
minimized by a Neural Network 
algorithm! 



Real Life example of DNN reweighting 
Background is dominated by QCD di-jet processes 
Data-driven background estimation required to not incorporate MC 
mismodelling into background estimation 
Strategy: a reweighting function is learnt by a Deep Neural Network 
(DNN) in HSB, validated in LSB and extrapolated in Higgs mass window 
to reweight control region to SR 

Phys. Rev. D 108, 052009 – Published 18 September 2023

No feature from X candidates has 
been used!!

Here you select a b-
tagged Higgs candidate  
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Higgs mass 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.052009


DNN 
reweighting 
results in 
Validation 
Regoin 



DNN reweighting results in Signal region



Background Uncertainties
Phys. Rev. D 108, 052009 – Published 18 September 2023

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.052009


o No standard Combined Performances from Atlas Recostruction  or MC-based 
systematics on background, since it is fully data-driven.

o Three kinds of uncertainties considered:
 1) Systematic, on the choice of the training region (~5-10%)
 2) Statistical, intrinsically related to the training procedure (<10%). Summed in 
square with the Poissonian error in each bin
 3) Systematic, on the extrapolation of predictions across  bins (~10%)

Background Uncertainties



Predictions in the SR may be different if the region used for training changes
To quantify this mismodelling, an additional kinematic region ( in [165, 200] GeV) is used to train an 
alternate model (totally identical to the nominal one, only changing the training region)
The ratio of the alternate shape to the nominal shape  is determined as the NN modeling shape uncertainty

1) Shape Uncertainties - Training Region

Here you select a b-
tagged Higgs candidate  

B-
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Higgs mass 

The ratio of the alternate shape to the nominal
shape is determined as the DNN modeling shape
uncertainty





Weights extrapolation process from the training region to the SR may be an additional source of mismodelling.

Since it is not possible to directly estimate the discrepancy between reweighed data and the target distribution 
in SR, it is determined by looking at the ratio of data to estimated background in LSB (LSB1 over reweighed 
LSB0) 

2) Shape Uncertainties – Extrapolation (Non Closure test)

Here you select a b-
tagged Higgs candidate  

B-
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ed
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Higgs mass 

It is defined by the symmetrized shape difference 
between the data and predicted background in the LSB.
The non-closure is negligible for low mJJ and rises to 
O(10)% in the mJJ tails. 
 



RNN: Recurrent Neural Networks
• Two main limitations from standard NN:
• Standard NN (and also Convolutional Networks) are constrained to accept fixed-sized vector as 

input (e.g. an image) and produce a fixed-sized vector as output (e.g. probabilities of different 
classes)

• These models perform this mapping using a fixed amount of computational steps (e.g. the 
number of layers in the model)

Input vectors Output vectors hidden layers vectors

Standard NN Image to sequence Sequence to single out Sequence to sequence output Synced sequence input/output



What’s “new” about RNN algorithm?
The output vector’s Y contents are influenced not only by the input X you 
just fed in, but also on the entire history of inputs you’ve fed in in the past. 

Y

X

X

X

o Let’s see how this mechanism works in the simplest case 
with a single hidden vector h:

X YH

Wxh Why

Whh

When you feed the RNN with your step t input X(t) 
the hidden state H(t) is updated this way: 

𝐻 𝑡 = tanh(𝑊YY𝐻Z[\+ 𝑊]Y𝐻Z)

H

H

H

Activation function

based on the 
past history

based on the 
current step

In practice most of us use a slightly different formulation called a Long Short-Term Memory (LSTM) network. 
The LSTM is a particular type of RNN that works slightly better with more powerful update equation and some 
appealing backpropagation dynamics.

“t
im

e”



RNN real life application 
Given the complexity of the 
LHC and the detector 
effects each event has a 
different jet multiplicity, 
that may vary up to about 
tens of jets.

o Classification VBF events was strongly driven 
by the identification of 2 jets in the events that 
are directly related to the topology of the 
process. 

o This represents a combinatorial problem in 
which all the possible pairs of objects may 
diverge quickly as the total amount of objects 
(N) available increases. 

o For instance, with 𝑁=3 only 3 pairs are 
possible, but with 𝑁=6 the number of possible 
pairs increases to 15

https://www.mdpi.com/2076-3417/13/5/3282
Eur. Phys. J. C 2020, 80, 1165

https://www.mdpi.com/2076-3417/13/5/3282
https://link.springer.com/article/10.1140/epjc/s10052-020-08554-y


RNN real life application 
Weak dependency on BSM resonance mass

1 or 2 VBF reco jets??

1 reco jets

2 reco jets



RNN real life application:
 Expected exclusion limits to VBF signals 

A. Giannini, A. Machine Learning Methods for 
Diboson Searches in Semi-Leptonic Final States 
with the ATLAS Experiment at LHC. Ph.D. Thesis 

https://scholar.google.com/scholar?cites=8716265244315662439&as_sdt=2005&sciodt=0,5&hl=en
https://scholar.google.com/scholar?cites=8716265244315662439&as_sdt=2005&sciodt=0,5&hl=en


Low-level vs High-level features
From 2014 outbreaking result of Baldi, Sadowski and Whiteson as a result of the deep learning: 

“A set of features with basic information (low-level) such as information coming directly form the 
detectors implies better performances wrt features built combining basic information (high-level)”

Warning: be carefully translating this plot  from here to there

RNN performance

https://www.nature.com/articles/ncomms5308


B. Nachman @ PHYSTAT-Anomalies

https://indico.cern.ch/event/1138933/timetable/


B. Nachman @ PHYSTAT-Anomalies

There are two complementary paths forward: 

(1) Identify new, specific, well-motivated places to look 
This is still an incredibly important direction and has resulted 
in new directions like long-lived particle searches 

(2) Look in many places all at once 

https://indico.cern.ch/event/1138933/timetable/


Anomaly detection and model independent searches

Core idea: 

create a reference sample and see if our 
target and reference are the same; if yes, 
limits; if no, discovery! 

Nature Reviews Physics (2022), 2112.03769 

Almost no searches at the 
LHC with a few exceptions 
for very well-known 
processes like 4-lep

Here ML 
can help!

B.Nachman @PHYSTAT-Anomalies

https://arxiv.org/abs/2112.03769
https://arxiv.org/abs/2203.09601
https://arxiv.org/abs/2007.14400
https://arxiv.org/abs/2007.14400


Anomaly detection for LHC 

LHC Olympics paper 

Relatively simple signal and well know 
features for s/b separation…but are we able 
to catch signal with an unsupervised 
approach? Or we lose it?

This is for R&D and training step

https://lhco2020.github.io/homepage/
https://arxiv.org/abs/2101.08320


Anomaly detection for LHC 

LHC Olympics paper 

Relatively simple signal and well know 
features for s/b separation…but are we able 
to catch signal with an unsupervised 
approach? Or we lose it?

This is for TEST!!DATASET might contain signal

https://lhco2020.github.io/homepage/
https://arxiv.org/abs/2101.08320


Anomaly detection for LHC 

LHC Olympics paper 

Relatively simple signal and well know 
features for s/b separation…but are we able 
to catch signal with an unsupervised 
approach? Or we lose it?

This is for TEST!!

DATASET contain signal!!

https://lhco2020.github.io/homepage/
https://arxiv.org/abs/2101.08320


Anomaly detection for LHC 

LHC Olympics paper 

Relatively simple signal and well know 
features for s/b separation…but are we able 
to catch signal with an unsupervised 
approach? Or we lose it?

DATASET contain signal!!

Different observations claimed, none identified 
the correct value of the mY signal…. 

Lesson learned 

https://lhco2020.github.io/homepage/
https://arxiv.org/abs/2101.08320


First application of Anomaly detection in ATLAS

High (~1-6TeV) Y mass resulting in X 
and H boosted 
•Y Reconstructed with two large-R 
jets 

Object Reconstruction:
H Candidate: XbbTagger @60% WP + 
mass window (75GeV < mH < 
145GeV) 

• Model-independent discovery region 
introduced with novel data-driven 
anomaly score (AS) 
• AS determined from fully unsupervised 
variational recurrent neural network 
(VRNN) trained over jets modeled as 
sequence of constituent four-vectors.

Phys. Rev. D 108, 052009 – Published 18 September 2023
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A bit unexpected signals..

https://cds.cern.ch/record/2812377
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.052009
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What is a CNN?

• Let’s build intuition using jet tagging as example
• Begin with a jet of constituents (as defined by 

some conical clustering)

𝜂

𝜙

1. Make 2D histogram, 
weighted by 𝑝!
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What is a CNN?
• Let’s build intuition using jet tagging as example
• Begin with a jet of constituents (as defined by 

some conical clustering)

2. Apply a “2D MLP” = a convolution
to each kernel block
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1. Make 2D histogram, 
weighted by 𝑝!
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What is a CNN?
What is a CNN?

• Let’s build intuition using jet tagging as 
example

• Begin with a jet of constituents (as defined by 
some conical clustering)

• Grid avoids arbitrary ordering by applying a 
physical interpretation of vectors into 𝜂 − 𝜙 
space

• Has translational invariance (i.e. could 
translate all momenta by Δ𝜂, Δ𝜙 without 
affecting prediction)

• Stack CNN convolutions to a final vector

2. Apply a “2D MLP” = a convolution
to each kernel block

Im
ag

e 
H

Image W

𝑊

2 x 2
Kernel

× +
𝐵
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𝑅𝑒𝐿𝑈: 

Convolution

𝑥 = 0



SM QCD
Costituents based W/Z tagger in VVJJ analysis

Improvement wrt D2

Using Jet Images technique 
A.Giannini (USTC), FC 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-029/


SM QCD
Costituents based W/Z tagger in VVJJ analysis

Using Jet Images technique 

How to build the jet images?

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-029/


SM QCD
Costituents based W/Z tagger in VVJJ analysis

Using Jet Images technique 
It is possible to mitigate the mass-peak correlation using alternative 
boson mass samples
This is nicely explainable in the jet images context

2. Random Zoom of the W/Z signal (data pre-processing)

A.Giannini (USTC)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-029/


What are graphs?

Undirected graph Directed graphBipartite graph

Ø Structured objects composed of entities used to describe and analyze relations and interactions (edges) between
such entities (nodes).
Ø Nodes and edges typically contain features specific to each element and each pair.
Ø Many types of graphs based on the relations: directed, heterogeneous, bipartite, weighted ecc.

Some data must be arranged in array-like
objects in order to be processed by machine
learning algorithms, but sometimes it just
doesn’t feel intuitive (protein chains, social
networks between people, ecc.)

Graph representation!



Ø Graph Neural Networks (GNNs) are ML architectures built specifically to make predictions on graphs, exploiting their relational
nature.

o The network during training learns the vector representation (embedding h!) of each node of the input graphs.
o Embedding of a target node depends in some way on what the embeddings of the other nodes are and from its

structure.

target node

Several task levels, carried out by processing the final
node embeddings in certain ways.

How? Graph Neural Networks!

1. Node prediction by prediction +y(h!), e.g. for identification of malevolous users among
social network.

2. Edge prediction by predction +y h!, h" ,	e.g. estimate the probability of affiliation between
two people of interest of a person to an object.

3. Graph identification by prediction +y(Pool(h!)), e.g. classification of protein structure.

https://arxiv.org/pdf/1810.00826.pdf


Ø The embeddings are updated at each layer by aggregating the information passed between the 
target node and the nodes from its closest neighbourhood → message passing

Message passing

2° layer GNN1° layer GNN

Each layer of GNN extends the neighbour range

ℎ#$

ℎ#"

ℎ%"

ℎ#"

ℎ&"

ℎ'"

ℎ#(

ℎ%(

h)* = initial features of node 𝜈

embedding
representation of node 𝜈
at layer (l+1) 

weights matrix aggregation over N(𝜈) 
neighbours u  

message passed
from u nodes to node
𝜈

Bias term

set of L layers

Ø Graph G embedding is obtained by pooling the nodes embedding at the final layer into one global representation
Ø Global sum pooling: ℎ+ = 𝑆𝑢𝑚({ℎ,- ∈ ℝ., ∀𝜈 ∈G})
Ø Global mean pooling: ℎ+ = Mean({ℎ,- ∈ ℝ., ∀𝜈 ∈ G})
Ø Global max pooling: ℎ+ = Max({ℎ,- ∈ ℝ., ∀𝜈 ∈ G})

𝜎

𝜎

𝜎



Graph Neural Network
Graph Neural Network (GNN) is a deep learning model that handles a graph as input data.

A Graph is the type of data 
structure that contains nodes and 
edges. A node can be a person, 
place, or thing, and the edges 
define the relationship between 
nodes. The edges can be directed 
and undirected based on directional 
dependencies.

node node

node

ed
ge

s

ed
ge

s

edges

Community Graph Plot by dataset 
Jazz Musicians Network

198 nodes and 2742 edges: different colors of 
nodes represent various communities of Jazz 
musicians and the edges connecting them

Graphs are excellent in dealing with complex problems with 
relationships and interactions. 
They are used in pattern recognition, social networks analysis, 
recommendation systems, and semantic analysis. Creating graph-
based solutions is a whole new field that offers rich insights into 
complex and interlinked datasets.

Data structure in HEP  

2007.13681

2203.12852

Task Definition: the first step is to decide what function 
one wants to learn with the GNN. In some applications 
this is trivial - for example jet, event or particle 
classification. In those cases a GNN is used to learn 
some representation of the node or the entire graph/set 
and a standard classifier is trained on that 
representation. For tasks such as segmentation or 
clustering this definition is less trivial.

https://datarepository.wolframcloud.com/resources/Jazz-Musicians-Network
https://arxiv.org/pdf/2007.13681.pdf
http://2203.12852.pdf/


CNN vs GNN

Ø GNN message passing updating: 

Ø CNN convolution updating:
o Rewritten as:

Jure Leskovec et al., CS224W: Machine Learning with Graphs Stanford Course, Fall 2021

Ø CNNs are special GNNs with fixed neighbour size and nodes ordering of the input graphs.
o Heterogeneous objects can be treated as nodes
o Graphs typically have arbitrary number of connections between nodes, as opposed to images.
o Possibility to assign any kind of information to nodes and edges (structural and features).

B and W: weight parameters
N(𝜐): set of neighbours of node 𝜐
𝜎: non-linear activation function
ℎ#
(%): embedding at layer l of node u 

http://web.stanford.edu/class/cs224w/


b-jet tagging

71

b quark:
Lifetime: ~1.5 ps (cτ ≈ 450 µm)
<l> = βγcτ ~3mm in the transverse direction
Mass: ~5 GeV 
Decays to charmcharm

beauty

Primary vertex
Displaced tracks 
Secondary vertex 
Tertiary vertex 
High track multiplicity

The tracks from b-hadron decay products tend to have large impact parameters which can be distinguished 
from tracks stemming from the primary vertex

b-jet tagging algorithm:
• Lifetime-based tagging algorithms
• Vertex-based algorithms 
• Combined tagging algorithms è The vertex-based 

algorithms è lower mistag rates but their efficiency for 
actual b jets is limited by the secondary vertex finding 
efficiency è Both vertex- and lifetime-based approaches 
are therefore combined to define versatile and powerful 
tagging algorithms.



b-jet tagging: evolution of the algorithms

72

ATLAS Two-stage approach:
✦ Low-level flavour-taggers: reconstruct the characteristic features of the heavy-flavour jets via two 

complementary approaches: one that uses the properties of individual charged-particle tracks 
associated with a hadronic jet (transverse and longitudinal parameters of impact), and a second 
which combines the tracks to explicitly reconstruct displaced vertices

✦ High-level flavour-taggers: high-level algorithms consisting of multivariate classifiers using the results 
of low-level algorithms

Eur.Phys.J.C 83 (2023) 7, 681

Run 1 Run 2 Run 3 
• improvements and retuning 
of the low-level algorithms 

• introduction of new low-
level algorithms based on 
recurrent and deep neural 
networks

• introduction of new high-
level algorithms based on 
deep neural networks

• the low-level algorithms 
first introduced during 
Run 1

• algorithms based on 
boosted decision trees or 
likelihood discriminants

• a new machine learning algorithm 
based on graph neural networks is 
introduced. 

• It uses information from a variable 
number of charged particle tracks 
within a jet, to predict the jet 
flavour without the need for 
intermediate low-level algorithms

• the model predicts which physics 
processes produced the different 
tracks in the jet, and groups 
tracks in the jet into vertices.

JINST 11 P04008 (2016) ATL-PHYS-PUB-2022-027

https://arxiv.org/pdf/2211.16345.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/11/04/P04008/pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/


Low Level b-jet tagging algorithms

73

JINST 11 P04008 (2016)

IP3D Log-likelihood ratio discriminantstransverse and longitudinal impact parameter significances

• IP2D and IP3D: IP2D makes use of the signed transverse impact parameter significance of tracks to 
construct a discriminating variable; IP3D uses both the signed transverse and signed longitudinal impact 
parameter significances in a two-dimensional template to account for their correlation è Log-
likelihood ratio (LLR) discriminants are then defined as the sum of the logarithms of the per-track 
probability ratios for each jet-flavour hypothesis

• RNNIP algorithm: developed during Run-2 exploits a recurrent neural network to learn track impact-
parameter correlations in order to further improve the jet flavour discrimination.

1st approach: Lifetime-based tagging algorithm

https://iopscience.iop.org/article/10.1088/1748-0221/11/04/P04008/pdf


Low Level b-jet tagging algorithms

74

• IP2D and IP3D: IP2D makes use of the signed transverse impact parameter significance of tracks to 
construct a discriminating variable; IP3D uses both the signed transverse and signed longitudinal impact 
parameter significances in a two-dimensional template to account for their correlation è Log-
likelihood ratio (LLR) discriminants are then defined as the sum of the logarithms of the per-track 
probability ratios for each jet-flavour hypothesis

• RNNIP algorithm: developed during Run-2 exploits a recurrent neural network to learn track impact-
parameter correlations in order to further improve the jet flavour discrimination.

1st approach: Lifetime-based tagging algorithm

RNNIP scheme
The outputs provided by the network correspond to 
the 𝑏-jet, 𝑐-jet, and light-flavour jet probabilities 

Great improvement on: 
Displaced tracks 

High track multiplicity

The outputs of the RNN are combined into the 𝑏-tagging 
discriminant function (𝑓𝑐 denotes the 𝑐-jet fraction)

JINST 11 P04008 (2016)

https://iopscience.iop.org/article/10.1088/1748-0221/11/04/P04008/pdf


Low Level b-jet tagging algorithms
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• SV1 algorithm: secondary-vertex-tagging algorithm attempts to reconstruct an inclusive secondary 
vertex; iterative procedure that starts with two-track vertices built with all tracks associated with the 
jet. In each iteration, the track-to-vertex matching is evaluated using a 𝜒2 test

• developed for Run-1 but improved in Run-2 (increased pile-up rejection and an overall enhancement 
of the performance at high jet 𝑝T)

• JetFitter algorithm: JetFitter algorithm aims to reconstruct the full 𝑏- to 𝑐-hadron decay chain. A 
modified Kalman filter is used to find a common line on which the primary, 𝑏- and 𝑐-hadron decay 
vertices lie, approximating the 𝑏-hadron flight path as well as the vertex positions è possible to resolve 
the 𝑏- or 𝑐-hadron decay vertex

• Both were developed for Run-1 but improved for Run-2 (increased pile-up rejection and an overall 
enhancement of their performance)

2nd approach: explicit reconstruction of displaced vertices

SV1

Secondary vertex

JetFitter

Tertiary vertex

JINST 11 P04008 (2016)

https://iopscience.iop.org/article/10.1088/1748-0221/11/04/P04008/pdf


High Level b-jet tagging algorithms
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MV1 and MV2: MV1 based on perceptron with two hidden layers consisting of three and two nodes, 
respectively, and an output layer with a single node which holds the final discriminant variable MV1 
based on boosted decision trees (BDTs).
è input variables low-level tagger: IP3D, SV1 and JetFitter discriminants è IP3D (Lifetime-based 
tagging algorithm); SV1(Vertex-based algorithm) and JetFitter (Vertex-based algorithm)
è discrimination between b-jets and light-flavour jets

JINST 11 P04008

MV1

IP3D

Displaced tracks

SV1

Secondary vertex

JetFitter

Tertiary vertex

Mostly used in Run-1

JINST 11 P04008

https://iopscience.iop.org/article/10.1088/1748-0221/11/04/P04008/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/11/04/P04008/pdf


High Level b-jet tagging algorithms
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DL1 algorithm series: output quantities of the low-level algorithms are combined using deep-learning 
classifiers, based on fully connected multi-layer feed-forward neural networks (NN)
• Trained with a hybrid training sample: 70% of the jets are from 𝑡𝑡 events 30% of the jets are from 𝑍 ′ → 
𝑞𝑞 events

• TensorFlow with the Keras front-end and the Adam optimiser
• DL1 algorithm exploits as input the IP2D, IP3D, SV1 and JetFitter algorithm outputs
• DL1r algorithm also includes the jet RNNIP output probabilities è multidimensional output 

corresponding to the probabilities for a jet to be a 𝑏-jet, a 𝑐-jet or a light-flavour jet
• DL1d algorithm: Flavour Tagging based on Deep Sets (DIPS), which models the jet as a set of tracks, in 

order to identify the experimental signatures of jets containing heavy flavour hadrons using the impact 
parameters and kinematics of the tracks. This approach is an evolution with respect to the RNN

Run-2 & early Run-3 



High Level b-jet tagging algorithms

78Early Run 2           Run 2     Early Run 3



High Level b-jet tagging algorithms

79

GN1 algorithm: uses Graph Neural Networks (GNNs) is a new machine learning algorithm based on graph 
neural networks. GN1 uses information from a variable number of charged particle tracks within a jet, to 
predict the jet flavour without the need for intermediate low-level algorithms. 
Alongside the jet flavour prediction, the model predicts which physics processes produced the different 
tracks in the jet, and groups tracks in the jet into vertices è useful additional information on the contents 
of the jet and improve performance
GN1lep algorithm: the GN1 Lep variant includes an additional track-level input, lepton ID, which indicates 
if the track was used in the reconstruction of an electron, a muon or neither.

Run-3 

ATL-PHYS-PUB-2022-027

https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf


High Level b-jet tagging algorithms

80

Early Run 2           Run 2     Early Run 3   Run 3
✗ For jets coming from 𝑡𝑡 decays with 20 < 𝑝T < 250 GeV: 𝑏-jet efficiency of 70% & the light-jet rejection is 

improved by a factor of ∼1.8 and 𝑐-jet rejection of ∼2.1 for jets coming from 𝑡𝑡 decays with 20 < 𝑝T < 250 GeV. 
✗  For jets coming from 𝑍′ decays with transverse momentum 250 < 𝑝T < 5000 GeV: 𝑏-jet efficiency of 30% & the 

light-jet rejection improves by a factor ∼6 and and 𝑐-jet rejection of ∼2.8 for a comparative 30% 𝑏-jet efficiency.



High Level b-jet tagging algorithms

81

GN2 algorithm: updated version of GN1 
with the transformer architecture adopted 
achieves the best performance!



b-jet tagging algorithms and data

82

Taggers are developed using simulation 
Do the work well in data?

Efficiencies SF in data measured for b-,c- and light-jet

Eur. Phys. J. C 79 (2019) 970 Eur. Phys. J. C 82 (2022) 95 CERN-EP-2022-211
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Vector Like Quarks (VLQ)



What are Vector-Like Quarks (VLQs)?
Vector-like fermions,𝜓, have left- and right-handed chiralities that transform in the same way 
under the SM gauge group:

SU(3)C ×SU(2)L ×U(1)Y

Additionally, gauge-invariant mass terms,−𝑀 "𝜓𝜓, allowed without the need of Higgs.

85



Vector-like quarks in many models of New Physics

u Warped or universal extra-dimensions: KK excitations of bulk fields
u Composite Higgs models: VLQ appear as excited resonances of the 

bounded states which form SM particles
u Little Higgs models: partners of SM fermions in larger group 

representations which ensure the cancellation of divergent loops
u Gauged flavour group with low scale gauge flavour bosons required 

to cancel anomalies in the gauged flavour symmetry
u Non-minimal SUSY extensions: VLQs increase corrections to Higgs 

mass without affecting EWPT
u Predicted in other models such as the Left Right Mirror Model Model 86

✗ Spin 1/2 particles with color charge 
✗ Left and right chiralities behave the same  è Vector-like 

interaction with weak force 
✗ Mass not from Higgs boson 
✗ Decay to SM boson and quark
✗ explains the lack of CP-violation in the strong interaction 
✗ Vector-like quarks have the same mass heirarchy as SM quarks



Composite-Higgs models and vector-like quarks
✬ The Higgs boson is a composite pseudo-Nambu-Goldstone boson (pNGB) from 

spontaneous breaking of a global symmetry in a new strongly coupled sector èThis 
protects the Higgs mass.

✬ Models with partial compositeness predict new vector-like fermions.
✬ Simplest extensions with VLQ (T2/3, B-1/3 and X5/3) singlets, doublets, and triplets.
✬ VLQs assumed to decay via charged and neutral currents to 3rd generation quarks.

QCD pair-production:
Mass-independent, dominant at low mass

Single-production: 
Scales with coupling, model dependent, 
significant at high mass.

87



Vector-Like Quarks (VLQs)
✦ Spin 1/2.
✦ Left and right-handed chiralities transform in 

the same way under the SM gauge group.
✦ Decay to qZ, qW or qH where q = { t, b }

QCD pair-production Single-production: 

Model Independent production cross section
• Dependent on qQ coupling (constraints from 

flavor physics and EW precision tests)
• Becomes dominant at high energies

88



Why Vector-Like Quarks?
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QCD pair-production



Pair-produced vector-like top and bottom partners in events with large Emiss

91

Eur. Phys. J. C 83 (2023) 719

Ø Vector-like T2/3, B-1/3 and X5/3 considered
Ø Events characterized by low lepton-multiplicity, high jet-multiplicity, and large missing transverse energy 

(𝐸!/"00)
Ø Dominant backgrounds: 𝒕�̅� and W+jets è reduced using cuts on transverse mass
Ø At least one top quark from the signal expected to have a high pT èrequirement on large-R jets
Ø Neural networks used to discriminate between signal and background èInput variables such as 

high me  for VLQ mass, properties of large-R jets, b-jet multiplicity, transverse mass etc. used
Ø The search uses 139 fb-1 data collected with the ATLAS detector

𝑇"𝑇	&	𝐵 "𝐵 production

𝑇"𝑇	 𝐵 "𝐵

https://arxiv.org/abs/2212.05263


Pair-produced vector-like top and bottom partners in eventswith large Emiss
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Examples of discriminating variables

Examples of discriminating variables
✦ For masses of the VLQs >800GeV
✦ Branching ratios ℬ:

Ø T: ℬ 𝑍𝑡;𝐻𝑡;𝑊𝑏 ≈ 0.25; 0.25; 0.5
Ø B: ℬ 𝑍𝑏;𝐻𝑏;𝑊𝑡 ≈ 0.25; 0.25; 0.5

✦ Final state signature:
Ø High missing transverse momentum 𝐸%&'(( > 250	𝐺𝑒𝑉 
Ø Only one lepton ℓ 𝑒	𝑜𝑟	𝜇  è veto for a second lepton
Ø At least 4 jets including a b-tagged jet

✦ Dominant background: 𝑡 ̅𝑡 and 𝑊 + 𝑗𝑒𝑡𝑠
Ø Others: 𝑡 ̅𝑡𝐻, 𝑡𝑊𝑍 and 𝑍 + 𝑗𝑒𝑡𝑠

✦ Neural Networks (NN) covering sections on the Branching ratios 
ℬ plane:
Ø For 𝑇𝑇 4NN: 0.8; 0.1; 0.1 ; 

0.2; 0.4; 0.4 ; 0.4; 0.1; 0.5 ; 0.4; 0.5; 0.1
Ø For 𝐵𝐵 3NN: 0.1; 0.1; 0.8 ; 0.4; 0.1; 0.5 	and 0.1; 0.4; 0.5 ;

✦ More sensitive to 𝑇′ → 𝑍𝑡, 𝐵′ → 𝑊𝑡
✦ Systematic Uncertainties resolution and scale of: 

Ø 𝑡 ̅𝑡 background
Ø Jet mass
Ø Effciency of lepton identification, isolation, reconstruction 

and energy

Eur. Phys. J. C 83 (2023) 719

https://arxiv.org/abs/2212.05263


Pair-produced vector-like top and bottom partners in events with large Emiss
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Examples of discriminating variables

Results

𝓑 𝐓	 → 𝐙𝐭 = 𝟏𝟎𝟎% 𝓑 𝐁/𝐗	 → 𝐖𝐭 = 𝟏𝟎𝟎%

𝐓, 𝐁 	𝐨𝐫 𝐗, 𝑻  doublet

Expected and observed upper limits on the signal cross-section

ü No significant excesses
ü Analysis most sensitive to the T à Zt and BàWt 

decay modes
ü Strongest limits for the (T,B) and (X,T) when mX = 

mT = mB are at 1.59 TeV

Eur. Phys. J. C 83 (2023) 719

https://arxiv.org/abs/2212.05263
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Examples of discriminating variables

ü No significant excesses

ü Expected and observed mass limits as a 
function of the T’ and B’ branching ratios ℬ

ü Analysis most sensitive to the T à Zt and 
BàWt decay modes
ü 𝓑 𝐓′	 → 𝐙𝐭 = 𝟏𝟎𝟎%
ü 𝓑 𝐁′	 → 𝐖𝐭 = 𝟏𝟎𝟎%%

ü Strongest limits corresponding to the weak-
isospin doublet model è (T,B) and (X,T) when 
mX = mT = mB are at 1.59 TeV

ü 1.47 TeV for exclusive T à Zt decays
ü 1.46 TeV for exclusive B/X à Wt decays

ü Lower limits on the T and B quark masses are 
derived for all possible branching ratios

Results Eur. Phys. J. C 83 (2023) 719

https://arxiv.org/abs/2212.05263
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B2G-20-014 Submitted to Phys. Rev. D

✦ For masses of the VLQs from 1000 to 1800 
GeV

✦ Branching Ratios ℬ:
✦ Leptonic: 𝓑(𝑍𝑏, 𝐻𝑏, 𝑊𝑡)
✦ Hadronic: 𝓑(𝑍𝑏, 𝐻𝑏)

✦ Fully hadronic category:
✦ At least 4 (<=6) AK4 jets PT > 50 GeV |𝜂| < 

2.4, HT > 1350 GeV
✦ No isolated e or 𝜇 PT > 50 GeV
✦ Bkg: SM jets produced through the strong 

interaction (QCD multijet events).
✦ Leptonic category:

✦ At least 3 (<=5) AK4 jets PT > 50 GeV and 
|𝜂| < 2.4

✦ At least one pair of leptons 80 < mll < 102 
GeV

✦ Bkg: Drell-Yan dilepton production in 
association with jets

✦ Systematic uncertainties:
✦ Integrated luminosity, trigger, dilepton Z 

boson efficiency, scale factors…

February 2024

expected postfit background 
(blue histogram)
signal plus background 
(colored lines)
observed data (black points)

4-jet bHbH
4-jet bHbZ

4-jet bZbZ

Reconstructed VLQ mass

hadronic category 

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-014/index.html
https://cds.cern.ch/record/2889911
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B2G-20-014 Submitted to Phys. Rev. D February 2024

expected postfit background 
(blue histogram)
signal plus background 
(colored lines)
observed data (black points)

3-jet bHbZ

4-jet bHbZ

3-jet bZbZ

Reconstructed VLQ mass

Leptonic category 

4-jet bZbZ

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-014/index.html
https://cds.cern.ch/record/2889911
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B2G-20-014 Submitted to Phys. Rev. D February 2024

Expected and observed limits on the cross section at 95% CL

The theoretical cross 
section and its 
uncertainty are shown 
by the red line and 
light-red band.

✦ No excess over the expected 
background is observed. 

✦ Lower limits are set on the B VLQ 
mass at 95% confidence level. 

✦ These depend on the B VLQ 
branching fractions and are 1570 
and 1540 GeV for 100% B→bH and 
100% B→bZ, respectively. 

✦ In most cases, the mass limits 
obtained exceed previous limits 
by at least 100 GeV.

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-014/index.html
https://cds.cern.ch/record/2889911
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Expected exclusion limits on the VLQ mass at 95% CL 
as a function of the branching fractions

✦ No excess over the expected 
background is observed. 

✦ Lower limits are set on the B VLQ 
mass at 95% confidence level. 

✦ These depend on the B VLQ 
branching fractions and are 1570 
and 1540 GeV for 100% B→bH and 
100% B→bZ, respectively. 

✦ In most cases, the mass limits 
obtained exceed previous limits 
by at least 100 GeV.

https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-014/index.html
https://cds.cern.ch/record/2889911
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✦ For masses of the VLQs from 1 TeV to 2 TeV
✦ Relative strength coupling ξ

✦ ξ: (ξW, ξZ, ξH) ≈ (0.5, 0.25, 0.25)
✦ Signal samples normalized to NLO cross-section (NWA)

✦ Final state signature 2l:
✦ Z boson: |𝑚ℓℓ − 𝑚𝑍| < 10 GeV
✦ PTℓℓ > 200 GeV
✦ 𝐻T > 300 GeV
✦ 𝐻 T + 𝐸%&'(( < 𝑚 ℓℓ 𝐽 
✦ 1 FWD jet; at least 1 b-jet & 1 top-tagged jet

✦ Final state signature 3l:
✦ 3 leptons passing the preselection
✦ At least 1 FWD jet, 1 b-tagged jet
✦ Z boson candidate PT(ℓℓ) > 300 GeV
✦ Leading lepton PT(ℓ) > 200 GeV
✦ 𝐻T · 𝑛(jets) < 6 TeV

✦ Main Backgrounds:
✦ 2l: 𝑍+jets, minor contributions from VV and tt- 

processes
✦ 3l: Diboson processes and tt+Z and other small 

contributions from tt+W and tttt

2307.07584

https://arxiv.org/abs/2307.07584
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✦ Systematic uncertainties
✦ Experimental sources:

✦ electron energy scale and resolution
✦ muon momentum scale and resolution
✦ flavor tagging, jet energy scale and resolution…

✦ Theoretical sources:
✦ cross section
✦ other modeling uncertainties for all background 

samples
✦ Jets misidentified as leptons

Observed and Expected limits at 95% 
on total cross-section
✦ k=0.7 - Singlet representation
✦ k=0.7 - Doublet representationk=0.7 - Singlet 

representation

k=0.7 – Doublet 
representation

2307.07584

https://arxiv.org/abs/2307.07584
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Observed and expected limits at 95% CL on the top partner coupling as a function of the T mass

The strongest exclusion is observed for singlet representation with ξW approx 0.5 where masses 
up to 1975 GeV are excluded at relative decay width of ΓT/MT=0.5 for the top partner.

2307.07584

https://arxiv.org/abs/2307.07584
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High-Mass selection

Low-Mass selection
designed to avoid 
distorting
the 5-jet invariant 
mass
distribution and 
producing
artificial peaks (see 
backup).

✦ For masses of the VLQs from 600 - 1200 GeV
✦ Branching Ratios B:

✦ T’: B (𝑍𝑡, 𝐻𝑡, 𝑊𝑏) ≈ (0.25, 0.25, 0.5)
✦ Final state signature:

✦ 5 jets, single production 2 additional 
jets 3 of them b-jets

✦ PT > 400 GeV (2016)
✦ PT > 300 GeV (2017 & 2018)
✦ mT up to 700 GeV (low-mass selection)
✦ mT above 800 GeV (high-mass selection)

✦ Main Bkg process:
✦ multijet
✦ tt+ jets

✦ Systematic Uncertainties
✦ Trigger efficiency
✦ Jet energy and resolution uncertainties
✦ b tagging efficiency scale factor for jets

✦ Invariant mass reconstructed from 5 jets is 
used as the main discriminating variable

B2G-19-001

http://cds.cern.ch/record/2869087?ln=en
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Expected and Observed 95% CL upper limits on the cross-section for associated production with a b for 
final states tHbq and tZbq, for T masses from 600 - 1200 GeV

Excess in the tH final state found in [1909.04721], is not observed with a larger dataset.
The limits are stronger than those in the previous search by at least a factor of three

B2G-19-001

https://arxiv.org/pdf/1909.04721.pdf
http://cds.cern.ch/record/2869087?ln=en
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Many searches, in different final states, and with both prompt and 
displaced signatures from ATLAS, CMS & LHCb

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV
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https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2023-008/

