COMPOSITE PHENOMENOLOGY OF RESONANCES

Avik Banerjee

Tata Institute of Fundamental Research Mumbai, India

07.03.2024

Composite Higgs: global symmetries

Composite Higgs: global symmetries

A₂ of Sp(4) → (1, 1) + (2, 2)**S**₂ of SO(5) → (1, 1) + (2, 2) + (3, 3)**Ad**of SU(4)_D → (1, 1) + 2.(2, 2) + (3, 1) + (1, 3) $\mathbf{A}_2 \text{ of } Sp(6) \to 8 + 3 + \overline{3}$ $\mathbf{S}_2 \text{ of } SO(6) \to 8 + 6 + \overline{6}$ $\mathbf{Ad} \text{ of } SU(3) \to 8$

U(1) breaking gives an ALP

Coset	HC	ψ	χ	$-q_{\chi}/q_{\psi}$	Baryon	Name	Lattice
	SO(7)	$5 \times \mathbf{F}$	6 × Sp	5/6	diara	M1	
SU(5) SU(6)	SO(9)	$0 \times \mathbf{r}$	$0 \times \mathbf{Sp}$	5/12	$\psi \chi \chi$	M2	
$\overline{\mathrm{SO}(5)} \wedge \overline{\mathrm{SO}(6)}$	SO(7)	$5 \times Sp$	$6 \times F$	5/6	alalas	M3	
	SO(9)	0 × 5h	$0 \times \Gamma$	5/3	$\psi\psi\chi$	M4	
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}$	$\operatorname{Sp}(4)$	$5 \times \mathbf{A}_2$	$6 imes \mathbf{F}$	5/3	$\psi \chi \chi$	M5	\checkmark
$SII(5)$ $SII(3)^2$	SU(4)	$5 \times \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	5/3		M6	
$\left \frac{\mathrm{SU}(3)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(3)}{\mathrm{SU}(3)} \right $	SO(10)	$5 \times \mathbf{F}$	$3 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	5/12	$\psi \chi \chi$	M7	V
	~ ~ (- ~)			0711			
SU(4) $SU(6)$	$\operatorname{Sp}(4)$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	1/3	, ,	M8	
$\overline{\mathrm{Sp}(4)} \times \overline{\mathrm{SO}(6)}$	SO(11)	$4 \times \mathbf{Sp}$	$6 \times \mathbf{F}$	8/3	$\psi\psi\chi$	M9	
$SU(4)^2$ $SU(6)$	SO(10)	$4 \times (\mathbf{Sp}, \overline{\mathbf{Sp}})$	$6 imes \mathbf{F}$	8/3		M10	
$\frac{1}{\mathrm{SU}(4)} \times \frac{1}{\mathrm{SO}(6)}$	SU(4)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	2/3	$\psi\psi\chi$	M11	\checkmark
$\boxed{\frac{\mathrm{SU}(4)^2}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(3)^2}{\mathrm{SU}(3)}}$	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	4/9	$\psi\psi\chi$	M12	

G Cacciapaglia, G Ferretti et. al. [1902.06890]

Spin-1/2 resonances

Partial compositeness: top-partners

Requirements:

- Nearly conformal dynamics above confinement scale
- Large anomalous dimension to reproduce top mass

- Physical states are mixture of elementary and composite degrees of freedom
- Top quark is more composite compared to lighter quarks

Examples

VLQ Review	by SHIFT	(in	preparation
------------	----------	-----	-------------

Spin	Symbol Quantum numbers		Components	Con	nposite l	osite Higgs models	
		$[SU(3)_c \times SU(2)_L]_{U(1)_Y}$		$\frac{SO(5)}{SO(4)}$	$\frac{SU(4)}{Sp(4)}$	$\frac{SU(5)}{SO(5)}$	$\frac{SU(4)^2}{SU(4)}$
	η	$({f 1},{f 1})_{f 0}$	η	-	\checkmark	\checkmark	\checkmark
0	Φ	$({f 1},{f 2})_{{f 1}/{f 2}}$	$\left(egin{array}{c} \phi^{\pm} \ \phi^{0} \end{array} ight)$	-	_	-	\checkmark
0	Δ	$({f 1},{f 3})_{f 0}$	$\left(egin{array}{ccc} \Delta^0 & \Delta^+ \ \Delta^- & \Delta^0 \end{array} ight)$	-	-	\checkmark	\checkmark
	Σ	$({f 1},{f 3})_{{f 1}}$	$ \begin{pmatrix} \Sigma^+ & \Sigma^{++} \\ \Sigma^0 & \Sigma^- \end{pmatrix} $	-	_	\checkmark	-
	$T_{2/3}$	$({f 3},{f 1})_{{f 2}/{f 3}}$	$T_{2/3}$	\checkmark	\checkmark	\checkmark	\checkmark
	$B_{-1/3}$	$({f 3},{f 1})_{-{f 1}/{f 3}}$	$B_{-1/3}$	\checkmark	\checkmark	\checkmark	\checkmark
	$\Psi_{2_{1/6}}$	$({f 3},{f 2})_{{f 1}/{f 6}}$	$(T_{2/3}, B_{-1/3})$	\checkmark	\checkmark	\checkmark	\checkmark
1/2	$\Psi_{2_{7/6}}$	$({f 3},{f 2})_{{f 7}/{f 6}}$	$(X_{5/3}, T_{2/3})$	\checkmark	\checkmark	\checkmark	\checkmark
	$\Psi_{3_{-1/3}}$	$({f 3},{f 3})_{-{f 1}/{f 3}}$	$(T_{2/3}, B_{-1/3}, U_{-4/3})$	\checkmark	_	\checkmark	-
	$\Psi_{3_{2/3}}$	$({\bf 3},{\bf 3})_{{f 2}/{f 3}}$	$(X_{5/3}, T_{2/3}, B_{-1/3})$	\checkmark	\checkmark	\checkmark	\checkmark
	$\Psi_{3_{5/3}}$	$({\bf 3},{\bf 3})_{{f 5}/{f 3}}$	$(Y_{8/3}, X_{5/3}, T_{2/3})$	\checkmark	-	\checkmark	-

For fermions in higher SU(3) irreps: G Cacciapaglia, T Flacke, M Kunkel, W Porod [2112.00019]

Model dependent chiral EFT: use global symmetries

Simplified model: SU(3)xU(1) invariant Lagrangian Model independent EFT: Full SM invariant Lagrangian

All coupling strengths are free parameters

Model dependent chiral EFT: use global symmetries

Simplified model: SU(3)xU(1) invariant Lagrangian Model independent EFT: Full SM invariant Lagrangian

Spectra of Top-partners

Spectra of Top-partners

- n-2 degenerate VLQs with mass M
- 2 heavy:

$$\frac{\Delta M}{M} \sim \frac{\kappa^2 f^2}{M^2} \text{ or}, \frac{\kappa^2 v^2}{M^2}$$

• Mixing of lighter generation of quarks with the VLQs are negligibly small

$$m_{1,2} \sim yv$$
 $m_3 \sim \frac{\kappa_L \kappa_R f v}{M} + yv \gg yv$

Spectra of Top-partners

- Degenerate states are the lightest with off-diagonal terms in self energy
- One loop mass-splitting can be comparable to the decay widths

Interesting quantum interference problem between channels for a pair production process

$$\sigma(pp \to \mathcal{T}\overline{\mathcal{T}} \to A\bar{B}) \stackrel{\text{NWA}}{=} N_{\mathcal{T}}\sigma(pp \to \mathcal{T}\overline{\mathcal{T}})\mathcal{BR}_2(\mathcal{T}\overline{\mathcal{T}} \to A\bar{B})$$

Non-trivial correlations between the two final states

 $\mathcal{BR}_2(\mathcal{T}\overline{\mathcal{T}} \to A\bar{B}) \neq \mathcal{BR}(\mathcal{T} \to A)\mathcal{BR}(\bar{\mathcal{T}} \to \bar{B})$

Any applications in SM physics?

- Degenerate states are the lightest with off-diagonal terms in self energy
- One loop mass-splitting can be comparable to the decay widths

Interesting quantum interference problem between channels for a pair production process

$$\sigma(pp \to \mathcal{T}\overline{\mathcal{T}} \to A\overline{B}) \stackrel{\text{NWA}}{=} N_{\mathcal{T}}\sigma(pp \to \mathcal{T}\overline{\mathcal{T}})\mathcal{BR}_2(\mathcal{T}\overline{\mathcal{T}} \to A\overline{B})$$

Non-trivial correlations between the two final states

 $\mathcal{BR}_2(\mathcal{T}\overline{\mathcal{T}} \to A\bar{B}) \neq \mathcal{BR}(\mathcal{T} \to A)\mathcal{BR}(\bar{\mathcal{T}} \to \bar{B})$

Any applications in SM physics?

Vector-like quark searches at LHC

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary Status: March 2023 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 13 \text{ TeV}$ ℓ, γ Jets $\dagger E_{-}^{\text{miss}}$ (\mathcal{L} dt[fb⁻¹] Model Limit Reference VLQ $TT \rightarrow Zt + X$ $2e/2\mu/\geq 3e,\mu \geq 1$ b, ≥ 1 j 139 1.46 TeV SU(2) doublet 2210.15413 T mass /ector-like VLQ $BB \rightarrow Wt/Zb + X$ multi-channel 36.1 B mass 1.34 TeV SU(2) doublet 1808.02343 VLQ $T_{5/3}T_{5/3}|T_{5/3} \to Wt + X$ 2(SS)/≥3 *e*,*µ* ≥1 b, ≥1 j 36.1 T_{5/3} mass 1.64 TeV $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ Yes 1807.11883 VLO $T \rightarrow Ht/Zt$ 1 *e*, µ ≥1 b, ≥3 j SU(2) singlet, $\kappa_T = 0.5$ Yes 139 T mass 1.8 TeV ATLAS-CONF-2021-040 VLQ $Y \rightarrow Wb$ $1 e, \mu \ge 1 b, \ge 1 j$ Yes 36.1 Y mass 1.85 TeV $\mathcal{B}(Y \to Wb) = 1, c_R(Wb) = 1$ 1812.07343 VLO $B \rightarrow Hb$ $0 e, \mu \geq 2b, \geq 1j, \geq 1J -$ 139 B mass 2.0 TeV SU(2) doublet, $\kappa_B = 0.3$ ATLAS-CONF-2021-018 VLL $\tau' \rightarrow Z \tau / H \tau$ multi-channel >1 i Yes 898 GeV SU(2) doublet 139 τ' mass 2303.05441 **Overview of CMS B2G Results** August 2023 $36 - 138 \, \text{fb}^{-1} (13 \, \text{TeV})$ CMS Preliminary (F/m=0.3, Singlet) IHEP 05 (2022) 093 1.4 b Zt (Z → vv) Mт JHEP 05 (2022) 093 ▶ b Zt $(Z \rightarrow vv)$ (F/m=0.2, Singlet) M+ 1.2 138 fb⁻¹ ▶ b Zt (Z $\rightarrow \nu\nu$ (F/m=0.1, Singlet) Мт 1.0 (F/m=0.05, Singlet) 1.0 Мт IHEP 05 (2022) 093 <1 96.5 fb⁻¹ ▶ b tH (H $\rightarrow vv$ $(\Gamma/m = 0.05, Singlet)$ M-1.0 36 fb⁻¹ $(\Gamma/m=0.04, Singlet)$ 1.0 ▶ b tH (H \rightarrow VV) M-▶ $h t H (H \rightarrow v v)$ $(\Gamma/m = 0.03$ Singlet) 0.9 14. 0.8 ▶ b tH (H $\rightarrow VV$) (F/m=0.02, Singlet) 0.7 (Г/m=0.01, Singlet) ▶ b tH (H $\rightarrow \gamma\gamma$) м \vdash t Ht (H $\rightarrow b\bar{b}$) (Г/m=0.3, Doublet) M 0.8 0.9 > t Ht (H→ $b\bar{b}$) (F/m=0.3, Singlet) 64 1.0 $t Ht (H \rightarrow b\bar{b})$ (F/m=0.1, Singlet) M heavy fermions 0.8 $t Ht (H \rightarrow b\bar{b})$ (F/m=0.05, Singlet) M IHEP 01 (2020) 03 (F/m=0.1, LH) EPIC 79 (2019) 90 0.9 1.7 - len + iet $(\Gamma/m=0.3, LH)$ Mo EPIC 79 (2019) 90 $(\Gamma/m=0.2 \text{ IH})$ EPIC 79 (2 1.6 Mo →len +iets → lep. + jets (Г/m=0.1, LH) M EPIC 79 (2019) 9 1.4 HEP 06 (2018) 03 1.1 b Hb $(H \rightarrow b\bar{b})$ ([Г/m=0.3, Doublet) MB 0.8 b Hb (H→ $b\bar{b}$) (Г/m=0.2, Doublet) M IHEP 06 (2018) 03 > t Wt \rightarrow lep. + jets (F/m=0.3, LH) MX30 EPIC 79 (2019) 90 1.5 Very (F/m=0.2, LH) 1.1 lep + jets M_{X 51} (F/m=0.1, LH) M_{X 3/} 0.9 lep. + jets 1.3 $> Y_{-4/3}Y_{-4/3} \rightarrow bW \ bW \rightarrow \ell v q \bar{q} q \bar{q}$ M PLB 779 (2018) 82 0.5 $<1EE \rightarrow 4b \tau \tau / \tau v / v v$ M Sub to PLE ▶ BB → $ba\bar{a} ba\bar{a} (B(tZ) = 1)$ 14. 1.4 ▶ BB → $bq\bar{q} bq\bar{q} (B(tH) = 1)$ 1.6 BB → bqā bqā (Singlet) 1.4 PRD 102 IHEP 05 (2022) 00 1.1 BB → lep. + jets (Doublet) м BB → lep. + iets (Singlet) M IHEP 05 (2022) 00 1.5 lep. + jets (Singlet and Doublet) IHEP 05 (2022) 00 1.5 BB → lep. + jets (B(tH) = 1) B2G-20-014 1.6 ▶ BB \rightarrow lep. + jets (B(tZ) = 1) B2G-20-014 1.5 1.5 BB → lep. + jets (Doublet) B2G-20-014 Mo BB → lep. + jets (Singlet) Ma B2G-20-014 1.1 0.5 0.0 0.2 0.8 1.0 1.2 1.5 1.8 2.0 Lower mass limit at 95% CL [TeV]

- Limits on VLQ mass $\sim 1.5~TeV$
- Caveats: simplified model (often with single VLQ), purely SM decays of VLQs

Single production of VLQs

• Limits from single production:

Cross-section proportional to coupling to SM particles

Maximum sensitivity for large width

• Pair production: limited by energy at high mass, Single production: sensitive at large width

VLQ production

- Pair production:
 - driven by QCD,
 - σ depends on VLQ mass (NWA)

VLQ production

- Pair production:
 - driven by QCD,
 - σ depends on VLQ mass (NWA)
- Single production:
 - σ proportional to couplings of VLQs with SM particles
 - where is the crossing?

Pair production – still important?

- Single production is suppressed if:
 - Narrow width
 - VLQ couplings with SM particles are **forbidden/suppressed**
- Example: Composite Higgs motivated VLQ triplet with Y=5/3

•
$$Q_{3_{5/3}} = (Y_{8/3}, X_{5/3}, T_{2/3})$$

Pair production – still important?

- Single production is suppressed if:
 - Narrow width
 - VLQ couplings with SM particles are **forbidden/suppressed**
- Example: Composite Higgs motivated VLQ triplet with Y=5/3

•
$$Q_{3_{5/3}} = (Y_{8/3}, X_{5/3}, T_{2/3})$$

Pair production is necessary: exploit the multiplet structure to gain in signal σ

Decays to exotics

VLQ	SM Decays	BSM Decays
$U_{-4/3}$	bW^-	$bS^{-}, tS^{}$
$B_{-1/3}$	tW^-, bh, bZ	tS^-, bS^0
$T_{2/3}$	th, tZ, bW^+	tS^0, bS^+
$X_{5/3}$	tW^+	tS^+, bS^{++}
$Y_{8/3}$	tW^+W^+	tS^{++}

Scalar	Final state	Condtions
S^0	$tar{t}$	$m_S > 2m_t$
S^0	$b ar{b}$	$m_S < 2m_t$
S^0	$\gamma\gamma, Z\gamma, W^+W^-, ZZ$	Fermiophobic
S^{\pm}	$tar{b}$	$m_S > m_t + m_b$
S^{\pm}	$W^{\pm}\gamma, W^{\pm}Z$	Fermiophobic
$S^{\pm\pm}$	$t \overline{b} W^{\pm}$	$m_S > m_t + m_b + M_W$
$S^{\pm\pm}$	$W^{\pm}W^{\pm}$	Fermiophobic

Decays to exotics

VLQ	SM Decays	BSM Decays
$U_{-4/3}$	bW^-	$bS^{-}, tS^{}$
$B_{-1/3}$	tW^{-}, bh, bZ	tS^-, bS^0
$T_{2/3}$	th, tZ, bW^+	tS^0, bS^+
$X_{5/3}$	tW^+	tS^+, bS^{++}
$Y_{8/3}$	tW^+W^+	tS^{++}

Scalar	Final state	Condtions
S^0	$tar{t}$	$m_S > 2m_t$
S^0	$b ar{b}$	$m_S < 2m_t$
S^0	$\gamma\gamma, Z\gamma, W^+W^-, ZZ$	Fermiophobic
S^{\pm}	$tar{b}$	$m_S > m_t + m_b$
S^{\pm}	$W^{\pm}\gamma, W^{\pm}Z$	Fermiophobic
$S^{\pm\pm}$	$t \overline{b} W^{\pm}$	$m_S > m_t + m_b + M_W$
$S^{\pm\pm}$	$W^{\pm}W^{\pm}$	Fermiophobic

[2203.07270] (Snowmass 2021)

$$pp \to T_{2/3}\bar{T}_{2/3} \to (tS^0) + X \to (t\gamma\gamma) + X$$

Di-photon signal for a specific model: EW Coset : SU(5)/SO(5)

EW pNGBs: $\mathbf{14} \rightarrow (\mathbf{3}, \mathbf{3}) + (\mathbf{2}, \mathbf{2}) + (\mathbf{1}, \mathbf{1}) \rightarrow \mathbf{3}_{\pm 1} + \mathbf{3}_0 + \mathbf{2}_{\pm 1/2} + \mathbf{1}_0$

VLQs (top-partners): $\Psi \equiv \mathbf{10}_{\frac{2}{3}} \rightarrow (\mathbf{2}, \mathbf{2})_{\frac{2}{3}} + (\mathbf{3}, \mathbf{1})_{\frac{2}{3}} + (\mathbf{1}, \mathbf{3})_{\frac{2}{3}} \rightarrow \mathbf{2}_{\frac{1}{6}} + \mathbf{2}_{\frac{7}{6}} + \mathbf{3}_{\frac{2}{3}} + \mathbf{1}_{-\frac{1}{3}} + \mathbf{1}_{\frac{2}{3}} + \mathbf{1}_{\frac{5}{3}}$

 $\sigma (pp \to (t/\bar{t}\gamma\gamma) + X) \sim 2.4 \text{ fb}, \ M = 1.35 \text{ TeV}$

More inclusive cross-sections involving diphoton (resonant / non-resonant) can go up to around 10 fb

[Ongoing ATLAS search]

More Exotics: Model with triplets

$$Q = (Y_{8/3}, X_{5/3}, T_{2/3}) : 3_{5/3} \qquad S = (S^{++}, S^{+}, S^{0}) : 3_1$$

Coset (G/H)	VLQ (irrep under H)	pNGB (irrep under H)
$\frac{\mathrm{SO}(5)}{\mathrm{SO}(4)} imes \mathrm{U}(1)_{\mathrm{X}}$	$9_{2/3} \rightarrow (3,3)_{2/3} \rightarrow 3_{-1/3} + 3_{2/3} + 3_{5/3}$	$4 \to (2,2) \to 2_{\pm 1/2}$
$rac{\mathrm{SU}(5)}{\mathrm{SO}(5)} imes \mathrm{U}(1)_{\mathrm{X}}$	$\begin{split} 14_{2/3} &\to (1,1)_{2/3} + (2,2)_{2/3} + (3,3)_{2/3} \\ &\to 1_{2/3} + 2_{1/6} + 2_{7/6} + 3_{-1/3} + 3_{2/3} + 3_{5/3} \end{split}$	$14 \to (1,1) + (2,2) + (3,3) \to 1_0 + 2_{\pm 1/2} + 3_0 + 3_{\pm 1}$

More Exotics: Model with triplets

$$Q = (Y_{8/3}, X_{5/3}, T_{2/3}) : 3_{5/3} \qquad S = (S^{++}, S^{+}, S^{0}) : 3_1$$

- VLQs are **nearly degenerate** as mixing with SM quarks are sub-leading
- One-loop mass splitting for VLQs ~ 50 GeV (considering QCD and QED contributions)
- Scalar triplet does not receive vev in accordance with EWPT
- Partial compositeness: couplings with 3rd gen quarks only
- Mimics SO(5)/SO(4) model when $m_Q \ll m_S$ and SU(5)/SO(5) if $m_Q \gg m_S$

Model independent EFT

$$\mathcal{L}_{\rm NP}^{d \le 4} = |D_{\mu}S|^2 - m_S^2 |S|^2 + \bar{Q} \left(iD - m_Q\right) Q + \lambda_R \bar{Q}_L S t_R + \text{h.c.}$$

$$\mathcal{L}_{\rm NP}^{d=5} = \frac{\tilde{y}_t}{\Lambda} \bar{q}_L S^{\dagger} H t_R + \frac{\tilde{y}_b}{\Lambda} \bar{q}_L S H^c b_R + \frac{\tilde{\lambda}_1}{\Lambda} H^{\dagger} i \tau^2 \bar{Q}_L H^* t_R + \frac{\tilde{\lambda}_2}{\Lambda} \bar{q}_L S^{\dagger} Q_R H^c + \text{h.c.}$$

Model independent EFT

$$\mathcal{L}_{NP}^{d\leq 4} = |D_{\mu}S|^{2} - m_{S}^{2}|S|^{2} + \bar{Q}\left(iD - m_{Q}\right)Q + \lambda_{R}\bar{Q}_{L}St_{R} + h.c.$$

$$\mathcal{L}_{NP}^{d=5} = \frac{\tilde{y}_{t}}{\Lambda}\bar{q}_{L}S^{\dagger}Ht_{R} + \frac{\tilde{y}_{b}}{\Lambda}\bar{q}_{L}SH^{c}b_{R} + \frac{\tilde{\lambda}_{1}}{\Lambda}H^{\dagger}i\tau^{2}\bar{Q}_{L}H^{*}t_{R} + \frac{\tilde{\lambda}_{2}}{\Lambda}\bar{q}_{L}S^{\dagger}Q_{R}H^{c} + h.c.$$

$$\frac{T_{2/3}}{\sim \mathcal{O}(v^{2}/\Lambda^{2})} \xrightarrow{T_{2/3}} \xrightarrow{b} \mathcal{O}(v/\Lambda)$$

$$SM \text{ decays are subleading due to}$$

suppressed mixing

Model independent EFT

VLQ decays and branching ratios

VLQ decays and branching ratios

Limits @ LHC Run 2

- Limits obtained with searches implemented in MadAnalysis5
- Most sensitive searches are 4top + SSL and multilepton search by CMS
- Dedicated VLQ searches may improve the limits

Searches	Kinematics	\mathbf{SR}	N_l	$N_{\rm OSSF}$	N_b	N_{j}
1908.06463 CMS	$H_T^j > 300 { m ~GeV}$	SR7	2 same-sign	_	3	≥ 8
4t + SSL	$p_T > 50 {\rm GeV}$	SR8	2 same-sign	_	≥ 4	≥ 5
1911.04968 CMS multi-lepton	$M_{\text{OSSF}} > 106 \text{ GeV}$ $L_T + \not\!\!\!E_T \in$ $[875, 1000] \text{ GeV}$	3L above-Z	3	1	_	_

Limits @ LHC Run 2

Final state characterization

• We select two benchmark points allowed by current limits:

 $m_Q = 1700 \text{ GeV} \gg m_S = 600 \text{ GeV} (SRL)$ $m_Q = 1700 \text{ GeV}, m_S = 1600 \text{ GeV} (SRS)$

Final state characterization

• We select two benchmark points allowed by current limits:

 $m_Q = 1700 \text{ GeV} \gg m_S = 600 \text{ GeV} (\text{SRL})$ $m_Q = 1700 \text{ GeV}, m_S = 1600 \text{ GeV} (\text{SRS})$

• For SRL: (BSM decays dominate)

VLQ pair	No. fron	of b-jets n VLQ d	W^{\pm} ecay	Contributing decays	Product of BRs
	N_b	N_{W^+}	$N_{W^{-}}$		
$Y_{8/3} + \bar{Y}_{8/3}$	6	3	3	$\begin{array}{c} Y_{8/3} \rightarrow t + S^{++} \\ \rightarrow t + W^+ + S^+ \\ \rightarrow b + W^+ + S^{++} \end{array}$	>92%
	6	2	2	$X_{5/3} \to t + S^+$	> 50%
$X_{5/3} + \bar{X}_{5/3}$	6	3	3	$\begin{array}{c} X_{5/3} \rightarrow t + S^+ \\ \rightarrow t + W^- + S^{++} \end{array}$	> 18%
	4	2	2	$\begin{array}{c} X_{5/3} \rightarrow t + S^+ \\ \rightarrow t + W^+ \end{array}$	> 12%
	6	3	3	$T_{2/3} \to t + (S^0 \to t\bar{t})$	> 9%
$T_{2/3} + \bar{T}_{2/3}$	6	< 3	< 3	$\begin{array}{c} T_{2/3} \rightarrow t + S^0 \\ \rightarrow t + (Z \rightarrow b\bar{b}) \\ \rightarrow t + (h \rightarrow b\bar{b}) \end{array}$	> 53%
	4	≥1	≥ 1	$\begin{array}{c} T_{2/3} \rightarrow t + S^0 \\ \rightarrow t + Z \\ \rightarrow t + h \end{array}$	> 11%

- Same sign leptons
- Multiple jets
- Multiple b-jets

Proposed signal region

SR	$(m_Q, m_S) { m GeV}$	$N_{\rm SSL}$	N_j	N_b	$p_T(l_0)$	$m_{ m eff}$
SRL	$(1700,\!600)$	> 1	> 3	≥ 2	_	> 2100 CoV or > 2300 CoV
SRS	(1700, 1600)	<u> </u>	$1 \geq 0$	≥ 1	$\geq 170 { m ~GeV}$	$\geq 2100 \text{ GeV}$ or $\geq 2300 \text{ GeV}$

- Choice of SR:
 - maximize signal from full multiplet
 - Multiplicity cuts (NSSL, Nj, Nb)
 - reject background efficiently
 - Kinematic cuts (meff)

Proposed signal region

SR	$(m_Q, m_S) { m GeV}$	$N_{\rm SSL}$	N_j	N_b	$p_T(l_0)$	$m_{ m eff}$
SRL	$(1700,\!600)$	> 1	> 3	≥ 2	—	> 2100 CoV or > 2300 CoV
SRS	(1700, 1600)	<u> </u>	≤ 0	≥ 1	$\geq 170 { m ~GeV}$	$\geq 2100 \text{ GeV}$ of $\geq 2300 \text{ GeV}$

- Choice of SR:
 - maximize signal from full multiplet
 - Multiplicity cuts (NSSL, Nj, Nb)
 - reject background efficiently
 - Kinematic cuts (meff)
- Major backgrounds:
 - $-4t, t\bar{t}V + \leq 2j, t\bar{t} + \leq 3j, t\bar{t}b\bar{b}, VVV$
- Scope for further optimization: machine learning?
- Background modelling near tail of distributions

Sensitivity @ Run 3

- Exclusion with fairly large systematic uncertainties when **full multiplet** is considered
- Proposed SRs perform better than 300/fb projections of most sensitive SRs from recast

HL-LHC Prospects

- Pushing for discovery: if **entire multiplet** contributes to the SR (<20% systematics)
- Introducing mass-split $\sim 50 \text{ GeV}$ for VLQs does not alter the conclusions significantly

Feynrules implementation

Fields	Spin	$SU(3)_c$	$U(1)_{ m em}$
S_i^0	0	1	0
S_i^{\pm}	0	1	± 1
$S_i^{\pm\pm}$	0	1	± 2
$U_{-4/3}$	1/2	3	-4/3
$B^{'}$	1/2	3	-1/3
T	1/2	3	2/3
$X_{5/3}$	1/2	3	5/3
$Y_{8/3}$	1/2	3	8/3

Features:

- 1. Generic particle content
- 2. Modular structure: switch off unwanted parts
- 3. Suitable for NLO (QCD) simulation
- 4. Non-SM decays of VLQs included
- 5. Available on Feynrules webpage (NLO section)

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{QQV} + \mathcal{L}_{QqV} + \mathcal{L}_{QQS} + \mathcal{L}_{QqfS} + \mathcal{L}_{qqS} + \mathcal{L}_{SSV} + \mathcal{L}_{SSVV} + \mathcal{L}_{SVV}$$

Vector like quarks + exotic pNGBs: https://feynrules.irmp.ucl.ac.be/wiki/NLOModels

AB, D B Franzosi, G Cacciapaglia et. al. [2203.07270] (Snowmass 2021)

All simulation banners are available on arxiv: 2311.17877

Summary

- Planning time for Run 3 and beyond: what are the priorities?
- VLQ pair production limited by energy, single production by statistics: pair production is still important, for suppressed couplings with SM particles

Summary

- Planning time for Run 3 and beyond: what are the priorities?
- VLQ pair production limited by energy, single production by statistics: pair production is still important, for suppressed couplings with SM particles
- Future directions to explore:
 - exotic decays of VLQs: often dominate BR, new channels
 - categorize most probable final states: maximize signal over background
 - exploit ongoing searches in similar final states: **limits from non-dedicated search**
 - consider multiplet structure of VLQs: gain in signal at high mass
- A case study: VLQ and complex scalar triplets, novel decay channels, sensitive at Run 3, and HL-LHC

Summary

- Planning time for Run 3 and beyond: what are the priorities?
- VLQ pair production limited by energy, single production by statistics: pair production is still important, for suppressed couplings with SM particles
- Future directions to explore:
 - exotic decays of VLQs: often dominate BR, new channels
 - categorize most probable final states: maximize signal over background
 - exploit ongoing searches in similar final states: **limits from non-dedicated search**
 - consider multiplet structure of VLQs: gain in signal at high mass
- A case study: VLQ and complex scalar triplets, novel decay channels, sensitive at Run 3, and HL-LHC

Vector like quarks + exotic pNGBs: https://feynrules.irmp.ucl.ac.be/wiki/NLOModels

AB, D B Franzosi, G Cacciapaglia et. al. [2203.07270] (Snowmass 2021)

All simulation banners are available on arxiv: 2311.17877

BACKUP

AB, S Dasgupta, T S Ray [2105.01093]

Simplified Lagrangian and couplings

$$\mathcal{L}_{Q^2+S^2} = \bar{Q} \left(i D \!\!\!/ - m_Q \right) Q + \left(|D_\mu S|^2 - m_S^2 |S|^2 \right),$$

$$\mathcal{L}_{Q} = \frac{e}{\sqrt{2}s_{W}} \left[\kappa_{T,L}^{W} \bar{T}_{2/3} W^{+} P_{L} b + \kappa_{X,L}^{W} \bar{X}_{5/3} W^{+} P_{L} t + L \leftrightarrow R \right] + \text{h.c.} \\ + \frac{e}{s_{W} c_{W}} \left[\kappa_{T,L}^{Z} \bar{T}_{2/3} Z P_{L} t + L \leftrightarrow R \right] + \text{h.c.} + h \left[\kappa_{T,L}^{h} \bar{T}_{2/3} P_{L} t + L \leftrightarrow R \right] + \text{h.c.}$$

$$\begin{aligned} \mathcal{L}_{S} &= S^{0} \left[\lambda_{t,L}^{S^{0}} \bar{t} P_{L} t + \lambda_{b,L}^{S^{0}} \bar{b} P_{L} b + \kappa_{T,L}^{S^{0}} \bar{T}_{2/3} P_{L} t + \kappa_{TT,L}^{S^{0}} \bar{T}_{2/3} P_{L} T_{2/3} + L \leftrightarrow R \right] + \text{h.c.} \\ &+ S^{++} \left[\kappa_{Y,L}^{S^{++}} \bar{Y}_{8/3} P_{L} t + \kappa_{X,L}^{S^{++}} \bar{X}_{5/3} P_{L} b + \kappa_{YT,L}^{S^{++}} \bar{Y}_{8/3} P_{L} T_{2/3} + L \leftrightarrow R \right] + \text{h.c.} \\ &+ S^{+} \left[\lambda_{L}^{S^{+}} \bar{t} P_{L} b + \kappa_{X,L}^{S^{+}} \bar{X}_{5/3} P_{L} t + \kappa_{T,L}^{S^{+}} \bar{T}_{2/3} P_{L} b + \kappa_{XT,L}^{S^{+}} \bar{X}_{5/3} P_{L} T_{2/3} \right. \\ &+ \kappa_{YX,L}^{S^{+}} \bar{Y}_{8/3} P_{L} X_{5/3} + L \leftrightarrow R \right] + \text{h.c.} \end{aligned}$$

Simplified Lagrangian and couplings

$\lambda_L^{S^+}$	$\lambda_R^{S^+}$	$\lambda_{t,L}^{S^0}$	$\lambda_{t,R}^{S^0}$	$\lambda_{b,L}^{S^0}$	$\lambda_{b,R}^{S^0}$	$\kappa_{X,L}^{S^+}$	$\kappa_{X,R}^{S^+}$
-0.123	0.123	0.174	0	0	0.174	-0.087	1
$\kappa_{T,L}^{S^+}$	$\kappa_{T,R}^{S^+}$	$\kappa_{Y,L}^{S^{++}}$	$\kappa^{S^{++}}_{Y,R}$	$\kappa_{X,L}^{S^{++}}$	$\kappa_{X,R}^{S^{++}}$	$\kappa^{S^0}_{T,L}$	$\kappa_{T,R}^{S^0}$
0.123	0	0	1	0.123	0	-0.174	1
$\kappa^h_{T,L}$	$\kappa^h_{T,R}$	$\kappa^W_{T,L}$	$\kappa^W_{T,R}$	$\kappa^W_{X,L}$	$\kappa^W_{X,R}$	$\kappa^Z_{T,L}$	$\kappa^Z_{T,R}$
0.015	0.246	0	0	0	0.031	0	-0.043
$\kappa^{S^+}_{XT,L}$	$\kappa^{S^+}_{XT,R}$	$\kappa_{YX,L}^{S^+}$	$\kappa_{YX,R}^{S^+}$	$\kappa_{YT,L}^{S^{++}}$	$\kappa_{YT,R}^{S^{++}}$	$\kappa^{S^0}_{TT,L}$	$\kappa^{S^0}_{TT,R}$
0	0.022	0	0	0	-0.022	0	-0.022

Decay widths

Cross-sections and efficiencies

SR	Backgrounds	$\sigma~[{\rm fb}]$	$\epsilon(m_{\rm eff} > 2100 { m ~GeV})$	$\epsilon(m_{\rm eff} > 2300 {\rm ~GeV})$
SRL SRS	$t\bar{t}V + \leq 2j$ (with $\sqrt{\hat{s}} \geq 1200$ GeV)	838	1.20×10^{-4} 9.43×10^{-5}	5.24×10^{-5} 3.24×10^{-5}
SRL SRS	4t	5.32	3.20×10^{-4} 2.00×10^{-4}	1.70×10^{-4} 1.20×10^{-4}
BP/SR	Signal	$\sigma~[{\rm fb}]$	$\epsilon(m_{\rm eff} > 2100 { m ~GeV})$	$\epsilon(m_{\rm eff} > 2300 {\rm ~GeV})$
BPL/SRL	$Y_{8/3}$ pair $X_{5/3}$ pair $T_{2/3}$ pair	3.07 3.21 3.19	0.092 0.051 0.030	0.079 0.044 0.026
BPS/SRS	$Y_{8/3}$ pair $X_{5/3}$ pair $T_{2/3}$ pair	3.15 3.19 3.16	0.088 0.035 0.025	0.077 0.031 0.022

Exclusion / Discovery prospects

- Signal and background are governed by independent Poisson statistics
- Discovery significance: $H_{\text{data}} = H_{S+B}, \ H_0 = H_B$

$$Z_{\rm disc} = \sqrt{2} \left[(S+B) \ln \left(\frac{(S+B)(B+\sigma_B^2)}{B^2 + (S+B)\sigma_B^2} \right) - \frac{B^2}{\sigma_B^2} \ln \left(1 + \frac{\sigma_B^2 S}{B(B+\sigma_B^2)} \right) \right]^{1/2}$$

• Exclusion significance: $H_{\text{data}} = H_B, \ H_0 = H_{S+B}$

$$Z_{\text{exc}} = \left[2 \left\{ S - B \ln \left(\frac{B + S + x}{2B} \right) - \frac{B^2}{\sigma_B^2} \ln \left(\frac{B - S + x}{2B} \right) \right\} - (B + S - x) \left(1 + \frac{B}{\sigma_B^2} \right) \right]^{1/2}$$

Discovery : $Z_{\text{disc}} > 5$
Exclusion : $Z_{\text{exc}} > 1.645$
$$x \equiv \sqrt{(S + B)^2 - \frac{4SB\sigma_B^2}{B + \sigma_B^2}}$$

N Kumar, S P Martin, 1510.03456

. . .

Sensitivity @ Run 3

HL-LHC Prospects

- Discovery possible when entire multiplet contributes to the SR (<20% systematics)
- Exclusion possible for entire triplet even with >30% systematics
- SRL, SRS perform better than signal regions for most sensitive recast

Introducing mass-splitting

 Introducing mass-split ~50 GeV for VLQs does not alter the conclusions significantly