COMPOSITE

Phenomenology of Resonances

Avik Banerjee

Tata Institute of Fundamental Research Mumbai, India

07.03.2024
nitp

Composite Resonances

Composite Resonances

$$
\text { Accessible @ HL-LHC } \begin{aligned}
& \text { Dedicated direct } \\
& \text { searches }
\end{aligned}
$$

Composite Resonances

Composite Resonances

EFT/Flavor/ Future collider

Differential distributions/ Future collider

Accessible @ HL-LHC Dedicated direct searches

Composite Higgs: global symmetries

$$
\begin{array}{cc}
{\left[\frac{G}{H}\right]_{\mathrm{EW}}} & \times\left[\frac{G}{H}\right]_{\text {color }}
\end{array} \begin{array}{ccc}
\langle\psi \psi\rangle & U(1) \\
\frac{S U(4)}{S p(4)} \quad \frac{S U(5)}{S O(5)} & \frac{S U(4) \times S U(4)}{S U(4)} & \frac{S U(6)}{S p(6)} \\
\frac{S U(6)}{S O(6)} & \frac{S U(3) \times S U(3)}{S U(3)}
\end{array}
$$

Composite Higgs: global symmetries

$$
\begin{array}{rlrl}
{\left[\frac{G}{H}\right]_{\mathrm{EW}} \times\left[\frac{G}{H}\right]_{\text {color }}} & \times \quad U(1) \\
\langle\psi \psi\rangle & \langle\chi \chi\rangle \\
\frac{S U(4)}{S p(4)} & \frac{S U(5)}{S O(5)} & \frac{S U(4) \times S U(4)}{S U(4)} & \frac{S U(6)}{S p(6)} \\
\frac{S U(6)}{S O(6)} & \frac{S U(3) \times S U(3)}{S U(3)}
\end{array}
$$

$$
\begin{aligned}
\mathbf{A}_{2} \text { of } S p(4) & \rightarrow(1,1)+(2,2) & \mathbf{A}_{2} \text { of } S p(6) & \rightarrow 8+3+\overline{3} \\
\mathbf{S}_{2} \text { of } S O(5) & \rightarrow(1,1)+(2,2)+(3,3) & \mathbf{S}_{2} \text { of } S O(6) & \rightarrow 8+6+\overline{6} \\
\text { Ad of } S U(4)_{D} & \rightarrow(1,1)+2 .(2,2)+(3,1)+(1,3) & & \text { Ad of } S U(3)
\end{aligned}>8
$$

Coset	HC	ψ	χ	$-q_{\chi} / q_{\psi}$	Baryon	Name	Lattice
$\underline{\mathrm{SU}(5)} \times \frac{\mathrm{SU}(6)}{\text { (}}$	$\begin{array}{\|l} \mathrm{SO}(7) \\ \mathrm{SO}(9) \end{array}$	$5 \times \mathbf{F}$	$6 \times \mathbf{S p}$	$\begin{gathered} 5 / 6 \\ 5 / 12 \end{gathered}$	$\psi \chi \chi$	$\begin{aligned} & \text { M1 } \\ & \text { M2 } \end{aligned}$	
$\mathrm{SO}(5) \times \mathrm{SO}(6)$	$\begin{aligned} & \mathrm{SO}(7) \\ & \mathrm{SO}(9) \end{aligned}$	$5 \times \mathbf{S p}$	$6 \times \mathrm{F}$	$\begin{aligned} & 5 / 6 \\ & 5 / 3 \end{aligned}$	$\psi \psi \chi$	$\begin{aligned} & \text { M3 } \\ & \text { M4 } \end{aligned}$	
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(6)}{\mathrm{Sp}(6)}$	$\mathrm{Sp}(4)$	$5 \times \mathbf{A}_{2}$	$6 \times \mathbf{F}$	5/3	$\psi \chi \chi$	M5	\checkmark
$\frac{\mathrm{SU}(5)}{\mathrm{SO}(5)} \times \frac{\mathrm{SU}(3)^{2}}{\mathrm{SU}(3)}$	$\begin{array}{\|l\|} \mathrm{SU}(4) \\ \mathrm{SO}(10) \end{array}$	$\begin{aligned} & 5 \times \mathbf{A}_{2} \\ & 5 \times \mathbf{F} \end{aligned}$	$\begin{aligned} & 3 \times(\mathbf{F}, \overline{\mathbf{F}}) \\ & 3 \times(\mathbf{S p}, \overline{\mathbf{S p}}) \end{aligned}$	$\begin{gathered} 5 / 3 \\ 5 / 12 \end{gathered}$	$\psi \chi \chi$	$\begin{aligned} & \text { M6 } \\ & \text { M7 } \end{aligned}$	\checkmark
$\frac{\mathrm{SU}(4)}{\mathrm{Sp}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	$\begin{aligned} & \mathrm{Sp}(4) \\ & \mathrm{SO}(11) \end{aligned}$	$\begin{aligned} & 4 \times \mathbf{F} \\ & 4 \times \mathbf{S p} \end{aligned}$	$\begin{aligned} & 6 \times \mathbf{A}_{2} \\ & 6 \times \mathbf{F} \end{aligned}$	$\begin{aligned} & 1 / 3 \\ & 8 / 3 \end{aligned}$	$\psi \psi \chi$	$\begin{aligned} & \text { M8 } \\ & \text { M9 } \end{aligned}$	\checkmark
$\frac{\mathrm{SU}(4)^{2}}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(6)}{\mathrm{SO}(6)}$	$\begin{aligned} & \mathrm{SO}(10) \\ & \mathrm{SU}(4) \end{aligned}$	$\begin{aligned} & 4 \times(\mathbf{S p}, \overline{\mathbf{S p}} \\ & 4 \times(\mathbf{F}, \overline{\mathbf{F}}) \end{aligned}$	$\begin{aligned} & 6 \times \mathbf{F} \\ & 6 \times \mathbf{A}_{2} \end{aligned}$	$\begin{aligned} & 8 / 3 \\ & 2 / 3 \end{aligned}$	$\psi \psi \chi$	$\begin{aligned} & \text { M10 } \\ & \text { M11 } \end{aligned}$	\checkmark
$\frac{\mathrm{SU}(4)^{2}}{\mathrm{SU}(4)} \times \frac{\mathrm{SU}(3)^{2}}{\mathrm{SU}(3)}$	$\mathrm{SU}(5)$	$4 \times(\mathbf{F}, \overline{\mathbf{F}})$	$3 \times\left(\mathbf{A}_{2}, \overline{\mathbf{A}_{2}}\right)$	4/9	$\psi \psi \chi$	M12	

G Cacciapaglia, G Ferretti et. al. [1902.06890]

Spin-1/2 resonances

Partial compositeness: top-partners

- Physical states are mixture of elementary and composite degrees of freedom
- Top quark is more composite compared to lighter quarks

Examples

Spin	Symbol	Quantum numbers$\left[S U(3)_{c} \times S U(2)_{L}\right]_{U(1)_{Y}}$	Components	Composite Higgs models			
				$\frac{S O(5)}{S O(4)}$	$\frac{S U(4)}{S p(4)}$	$\frac{S U(5)}{S O(5)}$	$\frac{S U(4)^{2}}{S U(4)}$
0	η	$(1,1){ }_{0}$	η	-	\checkmark	\checkmark	\checkmark
	Φ	$(1,2){ }_{1 / 2}$	$\binom{\phi^{ \pm}}{\phi^{0}}$	-	-	-	\checkmark
	Δ	$(1,3){ }_{0}$	$\left(\begin{array}{ll}\Delta^{0} & \Delta^{+} \\ \Delta^{-} & \Delta^{0}\end{array}\right)$	-	-	\checkmark	\checkmark
	Σ	$(1,3){ }_{1}$	$\left(\begin{array}{cc}\Sigma^{+} & \Sigma^{++} \\ \Sigma^{0} & \Sigma^{-}\end{array}\right)$	-	-	\checkmark	-
1/2	$T_{2 / 3}$	$(3,1)_{2 / 3}$	$T_{2 / 3}$	\checkmark	\checkmark	\checkmark	\checkmark
	$B_{-1 / 3}$	$(3,1)_{-1 / 3}$	$B_{-1 / 3}$	\checkmark	\checkmark	\checkmark	\checkmark
	$\Psi_{2_{1 / 6}}$	$(3,2)_{1 / 6}$	$\left(T_{2 / 3}, B_{-1 / 3}\right)$	\checkmark	\checkmark	\checkmark	\checkmark
	$\Psi_{2_{7 / 6}}$	$(3,2)_{7 / 6}$	$\left(X_{5 / 3}, T_{2 / 3}\right)$	\checkmark	\checkmark	\checkmark	\checkmark
	$\Psi_{3-1 / 3}$	$(3,3)_{-1 / 3}$	$\left(T_{2 / 3}, B_{-1 / 3}, U_{-4 / 3}\right)$	\checkmark	-	\checkmark	-
	$\Psi_{3_{2 / 3}}$	$(3,3)_{2 / 3}$	$\left(X_{5 / 3}, T_{2 / 3}, B_{-1 / 3}\right)$	\checkmark	\checkmark	\checkmark	\checkmark
	$\Psi_{3_{5 / 3}}$	$(3,3)_{5 / 3}$	$\left(Y_{8 / 3}, X_{5 / 3}, T_{2 / 3}\right)$	\checkmark	-	\checkmark	-

For fermions in higher $\mathrm{SU}(3)$ irreps: G Cacciapaglia, T Flacke, M Kunkel, W Porod [2112.00019]

Modelling resonances

Modelling resonances

Model dependent chiral EFT: use global symmetries

Simplified model:
$\mathrm{SU}(3) \mathrm{xU}(1)$ invariant
Lagrangian invariant Lagrangian
$\mathcal{L}_{\mathrm{pNGB}}=\frac{f^{2}}{2} \operatorname{tr}\left[\left(D_{\mu} \Sigma\right)^{\dagger}\left(D^{\mu} \Sigma\right)\right] \quad \mathcal{L}_{\text {elem. }}=\bar{q}_{L} i D q_{L}+\bar{t}_{R} i D t_{R}+\bar{b}_{R} i D b_{R} \quad \quad \mathcal{L}_{\mathrm{P.C.}}=\kappa_{L} f \overline{\hat{q}}_{L} \Sigma \Psi_{R}+\kappa_{R} f \bar{\Psi}_{L} \Sigma \hat{t}_{R}$

$$
\mathcal{L}=\mathcal{L}_{\mathrm{pNGB}}+\mathcal{L}_{\text {anom. }}+\mathcal{L}_{\text {elem. }}+\mathcal{L}_{\Psi^{2}}+\mathcal{L}_{\mathrm{P} . \mathrm{C} .}-V_{\text {pot }}
$$

$$
\mathcal{L}_{W Z W}=\frac{i \operatorname{dim}(\psi)}{48 \pi^{2}} \int\left(d A A d U U^{\dagger}+A d A d U U^{\dagger}+\ldots\right) \quad V_{\text {pot. }}=B_{m} \operatorname{tr}\left[\epsilon^{*} U+\text { h.c. }\right]+B_{g} \operatorname{tr}\left[g^{2} T_{L}^{a} U T_{L}^{a *} U^{\dagger}\right]+\ldots
$$

$$
\mathcal{L}_{\Psi^{2}}=\operatorname{tr}[\bar{\Psi} i D \Psi]-M \operatorname{tr}[\bar{\Psi} \Psi]+\lambda \operatorname{tr}[\bar{\Psi} \partial \Sigma \Psi]
$$

Ingredients: $\quad \mathrm{pNGB} \operatorname{matrix}(\Sigma), \mathrm{VLQ} \operatorname{irrep}(\Psi)$, Quark embeddings $\left(\hat{q}_{L}, \hat{t}_{R}, \hat{b}_{R}\right)$

Modelling resonances

Model dependent chiral EFT: use global symmetries

Simplified model:
$\mathrm{SU}(3) \mathrm{xU}(1)$ invariant Lagrangian invariant Lagrangian

$$
\mathcal{L}_{Q^{2}+S^{2}}=\bar{Q}\left(i D-m_{Q}\right) Q+\left(\left|D_{\mu} S\right|^{2}-m_{S}^{2}|S|^{2}\right)
$$

$$
\mathcal{L}_{Q}=\left[\kappa_{T, L}^{W} \bar{T}_{2 / 3} W^{+} P_{L} b+\kappa_{X, L}^{W} \bar{X}_{5 / 3} W^{+} P_{L} t+\ldots\right]+\left[\kappa_{T, L}^{Z} \bar{T}_{2 / 3} Z P_{L} t+\ldots\right]+h\left[\kappa_{T, L}^{h} \bar{T}_{2 / 3} P_{L} t+\ldots\right]
$$

$\mathcal{L}_{\mathrm{NP}}=\mathcal{L}_{Q^{2}+S^{2}}+\mathcal{L}_{Q}+\mathcal{L}_{S}$

$$
\begin{aligned}
\mathcal{L}_{S} & =S^{0}\left[\lambda_{t, L}^{S^{0}} \bar{t} P_{L} t+\lambda_{b, L}^{s^{0}} \bar{b} P_{L} b+\kappa_{T, L}^{s^{0}} \bar{T}_{2 / 3} P_{L} t+\kappa_{T T, L}^{S^{0}} \bar{T}_{2 / 3} P_{L} T_{2 / 3}+\ldots\right]+S^{++}\left[\kappa_{X, L}^{S^{++}} \bar{X}_{5 / 3} P_{L} b+\ldots\right] \\
& +S^{+}\left[\lambda_{L}^{S+} \bar{t} P_{L} b+\kappa_{X, L}^{S^{+}} \bar{X}_{5 / 3} P_{L} t+\kappa_{T, L}^{S^{+}} \bar{T}_{2 / 3} P_{L} b+\kappa_{X T, L}^{S+} \bar{X}_{5 / 3} P_{L} T_{2 / 3}+\ldots\right]
\end{aligned}
$$

All coupling strengths are free parameters

Modelling resonances

$$
\begin{gathered}
\mathcal{L}_{N P}^{\leq 4}=\bar{\Psi}\left(i D-m_{\Psi}\right) \Psi+\left|D_{\mu} S\right|^{2}-V(S, H)+\lambda \bar{\Psi} f+y_{H} \bar{\Psi} f H+y_{S} \bar{\Psi} f S+\tilde{y}_{S} \bar{\Psi} \Psi S+\text { h.c. } \\
\mathcal{L}=\mathcal{L}_{S M}+\mathcal{L}_{N P}^{\leq 4}+\mathcal{L}_{N P}^{5}+\ldots
\end{gathered}
$$

Coupling order fixed
Full SM mutiplets considered

Bridge between concrete models and simplified models

$$
\begin{array}{cc}
\hline \Psi+\text { SM fields } & \Psi+S+\text { SM fields } \\
\hline \bar{\Psi} \sigma^{\mu \nu} \Psi X_{\mu \nu} & \bar{\Psi} f H S \\
\bar{\Psi} \sigma^{\mu \nu} f X_{\mu \nu} & \bar{\Psi} f S^{2} \\
\bar{\Psi} f H^{2} & \bar{\Psi} \Psi S^{2} \\
\bar{\Psi} \Psi H^{2} & \\
\hline
\end{array}
$$

Spectra of Top-partners

Spectra of Top-partners

- n -2 degenerate VLQs with mass M
- 2 heavy:

$$
\frac{\Delta M}{M} \sim \frac{\kappa^{2} f^{2}}{M^{2}} \text { or, } \frac{\kappa^{2} v^{2}}{M^{2}}
$$

- Mixing of lighter generation of quarks with the VLQs are negligibly small

$$
m_{1,2} \sim y v \quad m_{3} \sim \frac{\kappa_{L} \kappa_{R} f v}{M}+y v \gg y v
$$

Spectra of Top-partners

Electric charge

- Degenerate states are the lightest with off-diagonal terms in self energy
- One loop mass-splitting can be comparable to the decay widths

Interesting quantum interference problem between channels for a pair production process

$$
\sigma(p p \rightarrow \mathcal{T} \overline{\mathcal{T}} \rightarrow A \bar{B})^{\mathrm{NWA}}{ }^{\underline{\mathrm{A}}} N_{\mathcal{T} \sigma}(p p \rightarrow \mathcal{T} \overline{\mathcal{T}}) \mathcal{B} \mathcal{R}_{2}(\overline{\mathcal{T}} \overline{\mathcal{T}} \rightarrow A \bar{B})
$$

Non-trivial correlations between the two final states

$$
\mathcal{B R}_{2}(\mathcal{T} \overline{\mathcal{T}} \rightarrow A \bar{B}) \neq \mathcal{B R}(\mathcal{T} \rightarrow A) \mathcal{B R}(\overline{\mathcal{T}} \rightarrow \bar{B})
$$

Any applications in SM physics?

- Degenerate states are the lightest with off-diagonal terms in self energy
- One loop mass-splitting can be comparable to the decay widths

Interesting quantum interference problem between channels for a pair production process

$$
\sigma(p p \rightarrow \mathcal{T} \overline{\mathcal{T}} \rightarrow A \bar{B})^{\mathrm{N}}{ }^{\mathrm{WA}} N_{\mathcal{T} \sigma}(p p \rightarrow \mathcal{T} \overline{\mathcal{T}}) \mathcal{B} \mathcal{R}_{2}(\mathcal{T} \overline{\mathcal{T}} \rightarrow A \bar{B})
$$

Non-trivial correlations between the two final states

$$
\mathcal{B R}_{2}(\mathcal{T} \overline{\mathcal{T}} \rightarrow A \bar{B}) \neq \mathcal{B R}(\mathcal{T} \rightarrow A) \mathcal{B R}(\overline{\mathcal{T}} \rightarrow \bar{B})
$$

Any applications in SM physics?

Vector-like quark searches at LHC

ATLAS Heavy Particle Searches* - 95\% CL Upper Exclusion Limits

$$
\text { Status: March } 2023 \quad \int \mathcal{L} d t=(3.6-139) \mathrm{fb}^{-1}
$$

ATLAS Preliminary

- Limits on VLQ mass $\sim 1.5 \mathrm{TeV}$
- Caveats: simplified model (often with single VLQ), purely SM decays of VLQs

Single production of VLQs

- Limits from single production:

Cross-section proportional to coupling to SM particles

Maximum sensitivity for large width

- Pair production: limited by energy at high mass, Single production: sensitive at large width

VLQ production

- Pair production:
- driven by QCD,
- σ depends on VLQ mass (NWA)

VLQ production

- Pair production:
- driven by QCD,
- σ depends on VLQ mass (NWA)
- Single production:
- σ proportional to couplings of VLQs with SM particles
- where is the crossing?

Pair production - still important?

- Single production is suppressed if:
- Narrow width
- VLQ couplings with SM particles are forbidden/ suppressed
- Example: Composite Higgs motivated VLQ triplet with $\mathrm{Y}=5 / 3$
- $\quad Q_{3_{5 / 3}}=\left(Y_{8 / 3}, X_{5 / 3}, T_{2 / 3}\right)$

Pair production - still important?

- Single production is suppressed if:
- Narrow width
- VLQ couplings with SM particles are forbidden/ suppressed
- Example: Composite Higgs motivated VLQ triplet with $\mathrm{Y}=5 / 3$
- $Q_{3_{5 / 3}}=\left(Y_{8 / 3}, X_{5 / 3}, T_{2 / 3}\right)$

Pair production is necessary: exploit the multiplet structure to gain in signal σ

Decays to exotics

VLQ	SM Decays	BSM Decays
$U_{-4 / 3}$	$b W^{-}$	$b S^{-}, t S^{--}$
$B_{-1 / 3}$	$t W^{-}, b h, b Z$	$t S^{-}, b S^{0}$
$T_{2 / 3}$	$t h, t Z, b W^{+}$	$t S^{0}, b S^{+}$
$X_{5 / 3}$	$t W^{+}$	$t S^{+}, b S^{++}$
$Y_{8 / 3}$	$t W^{+} W^{+}$	$t S^{++}$

Scalar	Final state	Condtions
S^{0}	$t \bar{t}$	$m_{S}>2 m_{t}$
S^{0}	$b \bar{b}$	$m_{S}<2 m_{t}$
S^{0}	$\gamma \gamma, Z \gamma, W^{+} W^{-}, Z Z$	Fermiophobic
$S^{ \pm}$	$t \bar{b}$	$m_{S}>m_{t}+m_{b}$
$S^{ \pm}$	$W^{ \pm} \gamma, W^{ \pm} Z$	Fermiophobic
$S^{ \pm \pm}$	$t \bar{b} W^{ \pm}$	$m_{S}>m_{t}+m_{b}+M_{W}$
$S^{ \pm \pm}$	$W^{ \pm} W^{ \pm}$	Fermiophobic

Decays to exotics

[2203.07270] (Snowmass 2021)

VLQ	SM Decays	BSM Decays
$U_{-4 / 3}$	$b W^{-}$	$b S^{-}, t S^{--}$
$B_{-1 / 3}$	$t W^{-}, b h, b Z$	$t S^{-}, b S^{0}$
$T_{2 / 3}$	$t h, t Z, b W^{+}$	$t S^{0}, b S^{+}$
$X_{5 / 3}$	$t W^{+}$	$t S^{+}, b S^{++}$
$Y_{8 / 3}$	$t W^{+} W^{+}$	$t S^{++}$

Scalar	Final state	Condtions
S^{0}	$t \bar{t}$	$m_{S}>2 m_{t}$
S^{0}	$b \bar{b}$	$m_{S}<2 m_{t}$
S^{0}	$\gamma \gamma, Z \gamma, W^{+} W^{-}, Z Z$	Fermiophobic
$S^{ \pm}$	$t \bar{b}$	$m_{S}>m_{t}+m_{b}$
$S^{ \pm}$	$W^{ \pm} \gamma, W^{ \pm} Z$	Fermiophobic
$S^{ \pm \pm}$	$t \bar{b} W^{ \pm}$	$m_{S}>m_{t}+m_{b}+M_{W}$
$S^{ \pm \pm}$	$W^{ \pm} W^{ \pm}$	Fermiophobic

$$
p p \rightarrow T_{2 / 3} \bar{T}_{2 / 3} \rightarrow\left(t S^{0}\right)+X \rightarrow(t \gamma \gamma)+X
$$

Di-photon signal for a specific model: EW Coset : $S U(5) / S O(5)$
EW pNGBs: $\mathbf{1 4} \rightarrow(\mathbf{3}, \mathbf{3})+(\mathbf{2}, \mathbf{2})+(\mathbf{1}, \mathbf{1}) \rightarrow \mathbf{3}_{ \pm 1}+\mathbf{3}_{0}+\mathbf{2}_{ \pm 1 / 2}+\mathbf{1}_{0}$
VLQs (top-partners): $\Psi \equiv \mathbf{1 0}_{\frac{2}{3}} \rightarrow(\mathbf{2}, \mathbf{2})_{\frac{2}{3}}+\left(\mathbf{3}, \mathbf{1}_{\frac{2}{3}}+(\mathbf{1}, \mathbf{3})_{\frac{2}{3}} \rightarrow \mathbf{2}_{\frac{1}{6}}+\mathbf{2}_{\frac{7}{6}}+\mathbf{3}_{\frac{2}{3}}+\mathbf{1}_{-\frac{1}{3}}+\mathbf{1}_{\frac{2}{3}}+\mathbf{1}_{\frac{5}{3}}\right.$

$$
\sigma(p p \rightarrow(t / \bar{t} \gamma \gamma)+X) \sim 2.4 \mathrm{fb}, M=1.35 \mathrm{TeV}
$$

More inclusive cross-sections involving diphoton (resonant / non-resonant) can go upto around 10 fb
[Ongoing ATLAS search]

More Exotics: Model with triplets

$$
Q=\left(Y_{8 / 3}, X_{5 / 3}, T_{2 / 3}\right): 3_{5 / 3} \quad S=\left(S^{++}, S^{+}, S^{0}\right): 3_{1}
$$

Coset (G / H)	VLQ (irrep under H)	pNGB (irrep under H)
$\frac{\mathrm{SO}(5)}{\mathrm{SO}(4)} \times \mathrm{U}(1) \mathrm{X}$	$9_{2 / 3} \rightarrow(3,3)_{2 / 3} \rightarrow 3_{-1 / 3}+3_{2 / 3}+3_{5 / 3}$	$4 \rightarrow(2,2) \rightarrow 2_{ \pm 1 / 2}$

$$
\begin{array}{lrlr}
\mathrm{SU}(5) \\
\frac{\mathrm{SO}(5)}{} \times \mathrm{U}(1)_{\mathrm{X}} \mathrm{X} & 14_{2 / 3} & \rightarrow(1,1)_{2 / 3}+(2,2)_{2 / 3}+(3,3)_{2 / 3} & \\
& \rightarrow 1_{2 / 3}+2_{1 / 6}+2_{7 / 6}+3_{-1 / 3}+3_{2 / 3}+3_{5 / 3} & & \rightarrow(1,1)+(2,2)+(3,3) \\
1_{0}+2_{ \pm 1 / 2}+3_{0}+3_{ \pm 1}
\end{array}
$$

More Exotics: Model with triplets

$$
Q=\left(Y_{8 / 3}, X_{5 / 3}, T_{2 / 3}\right): 3_{5 / 3} \quad S=\left(S^{++}, S^{+}, S^{0}\right): 3_{1}
$$

- VLQs are nearly degenerate as mixing with SM quarks are sub-leading
- One-loop mass splitting for VLQs $\sim 50 \mathrm{GeV}$ (considering QCD and QED contributions)
- Scalar triplet does not receive vev in accordance with EWPT
- Partial compositeness: couplings with $3^{\text {rd }}$ gen quarks only
- Mimics $\mathrm{SO}(5) / \mathrm{SO}(4)$ model when $m_{Q} \ll m_{S}$ and $\mathrm{SU}(5) / \mathrm{SO}(5)$ if $m_{Q} \gg m_{S}$

Model independent EFT

$$
\begin{gathered}
\mathcal{L}_{\mathrm{NP}}^{d \leq 4}=\left|D_{\mu} S\right|^{2}-m_{S}^{2}|S|^{2}+\bar{Q}\left(i D-m_{Q}\right) Q+\lambda_{R} \bar{Q}_{L} S t_{R}+\text { h.c. } \\
\mathcal{L}_{\mathrm{NP}}^{d=5}=\frac{\tilde{y}_{t}}{\Lambda} \bar{q}_{L} S^{\dagger} H t_{R}+\frac{\tilde{y}_{b}}{\Lambda} \bar{q}_{L} S H^{c} b_{R}+\frac{\tilde{\lambda}_{1}}{\Lambda} H^{\dagger} i \tau^{2} \bar{Q}_{L} H^{*} t_{R}+\frac{\tilde{\lambda}_{2}}{\Lambda} \bar{q}_{L} S^{\dagger} Q_{R} H^{c}+\text { h.c. }
\end{gathered}
$$

Model independent EFT

$$
\begin{aligned}
& T_{2 / 3}, X_{5 / 3}, Y_{8 / 3} \longrightarrow \sim^{t} \sim \mathcal{O}(1) \\
& S^{0}, S^{+}, S^{++} \\
& \mathcal{L}_{\mathrm{NP}}^{d \leq 4}=\left|D_{\mu} S\right|^{2}-m_{S}^{2}|S|^{2}+\bar{Q}\left(i D-m_{Q}\right) Q+\lambda_{R} \bar{Q}_{L} S t_{R}+\text { h.c. } \\
& \mathcal{L}_{\mathrm{NP}}^{d=5}=\frac{\tilde{y}_{t}}{\Lambda} \bar{q}_{L} S^{\dagger} H t_{R}+\frac{\tilde{y}_{b}}{\Lambda} \bar{q}_{L} S H^{c} b_{R}+\frac{\tilde{\lambda}_{1}}{\Lambda} H^{\dagger} i \tau^{2} \bar{Q}_{L} H^{*} t_{R}+\frac{\tilde{\lambda}_{2}}{\Lambda} \bar{q}_{L} S^{\dagger} Q_{R} H^{c}+\text { h.c. } \\
& \xrightarrow[\sim \mathcal{O}\left(v^{2} / \Lambda^{2}\right)]{T_{2 / 3}} t \\
& \text { SM decays are } \\
& \text { subleading due to } \\
& \text { suppressed mixing }
\end{aligned}
$$

Model independent EFT

$$
\begin{aligned}
& T_{2 / 3}, X_{5 / 3}, Y_{8 / 3} \longrightarrow \quad{ }^{t} \sim \mathcal{O}(1) \\
& S^{0}, S^{+}, S^{++} \\
& \mathcal{L}_{\mathrm{NP}}^{d \leq 4}=\left|D_{\mu} S\right|^{2}-m_{S}^{2}|S|^{2}+\bar{Q}\left(i D-m_{Q}\right) Q+\lambda_{R} \bar{Q}_{L} S t_{R}+\text { h.c. } \\
& \mathcal{L}_{\mathrm{NP}}^{d=5}=\frac{\tilde{y}_{t}}{\Lambda} \bar{q}_{L} S^{\dagger} H t_{R}+\frac{\tilde{y}_{b}}{\Lambda} \bar{q}_{L} S H^{c} b_{R}+\frac{\tilde{\lambda}_{1}}{\Lambda} H^{\dagger} i \tau^{2} \bar{Q}_{L} H^{*} t_{R}+\frac{\tilde{\lambda}_{2}}{\Lambda} \bar{q}_{L} S^{\dagger} Q_{R} H^{c}+\text { h.c. } \\
& \xrightarrow[\sim \mathcal{O}\left(v^{2} / \Lambda^{2}\right)]{T_{2 / 3}} \\
& \text { SM decays are } \\
& \text { subleading due to } \\
& \text { suppressed mixing }
\end{aligned}
$$

VLQ decays and branching ratios

$m_{Q}>m_{S}+m_{t}:$ BSM decays dominate $m_{Q}<m_{S}+m_{t}:$ SM decays dominate

VLQ decays and branching ratios

$m_{Q}>m_{S}+m_{t}:$ BSM decays dominate $m_{Q}<m_{S}+m_{t}$: SM decays dominate

$$
\begin{aligned}
& B R\left(S^{0} \rightarrow t \bar{t}\right) \sim B R\left(S^{0} \rightarrow b \bar{b}\right) \sim 50 \% \\
& B R\left(S^{+} \rightarrow t \bar{b}\right) \sim 100 \% \\
& B R\left(S^{++} \rightarrow t \bar{b} W^{+}\right) \sim 100 \%
\end{aligned}
$$

Limits @ LHC Run 2

- Limits obtained with searches implemented in MadAnalysis5
- Most sensitive searches are 4top + SSL and multilepton search by CMS
- Dedicated VLQ searches may

Searches	Kinematics	SR	N_{l}	$N_{\text {OSSF }}$	N_{b}	N_{j}
1908.06463	$\begin{aligned} & H_{T}^{j}>300 \mathrm{GeV} \\ & p_{T}>50 \mathrm{GeV} \end{aligned}$	SR7	2 same-sign	-	3	≥ 8
$4 \mathrm{t}+\mathrm{SSL}$		SR8	2 same-sign	-	≥ 4	≥ 5
1911.04968 CMS multi-lepton	$\begin{aligned} & M_{\mathrm{OSSF}}>106 \mathrm{GeV} \\ & L_{T}+\not \oiint_{T} \in \\ & {[875,1000] \mathrm{GeV}} \end{aligned}$	3L above-Z	3	1	-	-

Limits @ LHC Run 2

- Limits obtained with searches implemented in MadAnalysis5
- Most sensitive searches are 4top + SSL and multilepton search by CMS
- Dedicated VLQ searches may

Searches	Kinematics	SR	N_{l}	$N_{\text {OSSF }}$	N_{b}	N_{j}
1908.06463	$\begin{aligned} & H_{T}^{j}>300 \mathrm{GeV} \\ & \not p_{T}>50 \mathrm{GeV} \end{aligned}$	SR7	2 same-sign	-	3	≥ 8
$4 \mathrm{t}+\mathrm{SSL}$		SR8	2 same-sign	-	≥ 4	≥ 5
1911.04968 CMS multi-lepton	$\begin{aligned} & M_{\mathrm{OSSF}}>106 \mathrm{GeV} \\ & L_{T}+\mathbb{E}_{T} \in \\ & {[875,1000] \mathrm{GeV}} \\ & \hline \end{aligned}$	3L above-Z	3	1	-	-

SM decays dominate

BSM decays dominate

Stronger limits with full multiplet

How to improve in Run 3?

Final state characterization

- We select two benchmark points allowed by current limits:

$$
m_{Q}=1700 \mathrm{GeV} \gg m_{S}=600 \mathrm{GeV}(\mathrm{SRL}) \quad m_{Q}=1700 \mathrm{GeV}, m_{S}=1600 \mathrm{GeV}(\mathrm{SRS})
$$

Final state characterization

- We select two benchmark points allowed by current limits:

$$
m_{Q}=1700 \mathrm{GeV} \gg m_{S}=600 \mathrm{GeV}(\mathrm{SRL}) \quad m_{Q}=1700 \mathrm{GeV}, m_{S}=1600 \mathrm{GeV}(\mathrm{SRS})
$$

- For SRL: (BSM decays dominate)

VLQ pair	No. of b-jets, $W^{ \pm}$ from VLQ decay			Contributing decays	Product of BRs
	N_{b}	$N_{W^{+}}$	$N_{W^{-}}$		
$Y_{8 / 3}+\bar{Y}_{8 / 3}$	6	3	3	$\begin{aligned} Y_{8 / 3} & \rightarrow t+S^{++} \\ & \rightarrow t+W^{+}+S^{+} \\ & \rightarrow b+W^{+}+S^{++} \end{aligned}$	> 92%
$X_{5 / 3}+\bar{X}_{5 / 3}$	6	2	2	$X_{5 / 3} \rightarrow t+S^{+}$	> 50%
	6	3	3	$\begin{aligned} X_{5 / 3} & \rightarrow t+S^{+} \\ & \rightarrow t+W^{-}+S^{++} \end{aligned}$	> 18\%
	4	2	2	$\begin{aligned} & X_{5 / 3} \rightarrow t+S^{+} \\ & \rightarrow t+W^{+} \\ & \hline \end{aligned}$	> 12%
$T_{2 / 3}+\bar{T}_{2 / 3}$	6	3	3	$T_{2 / 3} \rightarrow t+\left(S^{0} \rightarrow t \bar{t}\right)$	> 9%
	6	<3	<3	$\begin{aligned} T_{2 / 3} & \rightarrow t+S^{0} \\ & \rightarrow t+(Z \rightarrow b \bar{b}) \\ & \rightarrow t+(h \rightarrow b \bar{b}) \end{aligned}$	> 53%
	4	≥ 1	≥ 1	$\begin{aligned} & T_{2 / 3} \rightarrow t+S^{0} \\ & \rightarrow t+Z \\ & \rightarrow t+h \\ & \hline \end{aligned}$	> 11\%

- Same sign leptons
- Multiple jets
- Multiple b-jets

Proposed signal region

SR	$\left(m_{Q}, m_{S}\right) \mathrm{GeV}$	$N_{\text {SSL }}$	N_{j}	N_{b}	$p_{T}\left(l_{0}\right)$	$m_{\text {eff }}$
SRL	(1700,600)	≥ 1	≥ 3	≥ 2	-	$\geq 2100 \mathrm{GeV} \text { or } \geq 2300 \mathrm{GeV}$
SRS	$(1700,1600)$			≥ 1	170 GeV	

- Choice of SR:
- maximize signal from full multiplet
- Multiplicity cuts (NSSL, Nj, Nb)
- reject background efficiently
- Kinematic cuts (meff)

Proposed signal region

SR	$\left(m_{Q}, m_{S}\right) \mathrm{GeV}$	$N_{\text {SSL }}$	N_{j}	N_{b}	$p_{T}\left(l_{0}\right)$	$m_{\text {eff }}$
SRL	(1700,600)	≥ 1		≥ 2	-	$\geq 2100 \mathrm{GeV} \text { or } \geq 2300 \mathrm{GeV}$
SRS	$(1700,1600)$			≥ 1	$\geq 170 \mathrm{GeV}$	

- Choice of SR:
- maximize signal from full multiplet
- Multiplicity cuts ($\mathrm{NSSL}, \mathrm{Nj}, \mathrm{Nb}$)
- reject background efficiently
- Kinematic cuts (meff)
- Major backgrounds:
${ }^{-} 4 t, t \bar{t} V+\leq 2 j, t \bar{t}+\leq 3 j, t \bar{t} b \bar{b}, V V V$
- Scope for further optimization: machine learning?

- Background modelling near tail of distributions

Sensitivity @ Run 3

- Exclusion with fairly large systematic uncertainties when full multiplet is considered
- Proposed SRs perform better than $300 / \mathrm{fb}$ projections of most sensitive SRs from recast

HL-LHC Prospects

- Pushing for discovery: if entire multiplet contributes to the SR ($<20 \%$ systematics)
- Introducing mass-split ~ 50 GeV for VLQs does not alter the conclusions significantly

Feynrules implementation

Fields	Spin	$S U(3)_{c}$	$U(1)_{\mathrm{em}}$
S_{i}^{0}	0	$\mathbf{1}$	0
$S_{i}^{ \pm}$	0	$\mathbf{1}$	± 1
$S_{i}^{ \pm}$	0	$\mathbf{1}$	± 2
$U_{-4 / 3}$	$1 / 2$	$\mathbf{3}$	$-4 / 3$
B	$1 / 2$	$\mathbf{3}$	$-1 / 3$
T	$1 / 2$	$\mathbf{3}$	$2 / 3$
$X_{5 / 3}$	$1 / 2$	$\mathbf{3}$	$5 / 3$
$Y_{8 / 3}$	$1 / 2$	$\mathbf{3}$	$8 / 3$

Features:

1. Generic particle content
2. Modular structure: switch off unwanted parts
3. Suitable for NLO (QCD) simulation
4. Non-SM decays of VLQs included
5. Available on Feynrules webpage (NLO section)

$$
\mathcal{L}=\mathcal{L}_{S M}+\mathcal{L}_{Q Q V}+\mathcal{L}_{Q q V}+\mathcal{L}_{Q Q S}+\mathcal{L}_{Q q f S}+\mathcal{L}_{q q S}+\mathcal{L}_{S S V}+\mathcal{L}_{S S V V}+\mathcal{L}_{S V V}
$$

Vector like quarks + exotic pNGBs: https://feynrules.irmp.ucl.ac.be/wiki/NLOModels

AB, D B Franzosi, G Cacciapaglia et. al. [2203.07270] (Snowmass 2021)

Summary

- Planning time for Run 3 and beyond: what are the priorities?
- VLQ pair production limited by energy, single production by statistics:
pair production is still important, for suppressed couplings with SM particles

Summary

- Planning time for Run 3 and beyond: what are the priorities?
- VLQ pair production limited by energy, single production by statistics:
pair production is still important, for suppressed couplings with SM particles
- Future directions to explore:
- exotic decays of VLQs: often dominate BR, new channels
- categorize most probable final states: maximize signal over background
- exploit ongoing searches in similar final states: limits from non-dedicated search
- consider multiplet structure of VLQs: gain in signal at high mass
- A case study: VLQ and complex scalar triplets, novel decay channels, sensitive at Run 3, and HL-LHC

Summary

- Planning time for Run 3 and beyond: what are the priorities?
- VLQ pair production limited by energy, single production by statistics:
pair production is still important, for suppressed couplings with SM particles
- Future directions to explore:
- exotic decays of VLQs: often dominate BR, new channels
- categorize most probable final states: maximize signal over background
- exploit ongoing searches in similar final states: limits from non-dedicated search
- consider multiplet structure of VLQs: gain in signal at high mass
- A case study: VLQ and complex scalar triplets, novel decay channels, sensitive at Run 3, and HL-LHC

Vector like quarks + exotic pNGBs: https://feynrules.irmp.ucl.ac.be/wiki/NLOModels
AB, D B Franzosi, G Cacciapaglia et. al. [2203.07270] (Snowmass 2021)
All simulation banners are available on arxiv: 2311.17877

BACKUP

$$
p p \rightarrow Z^{*} \rightarrow Z h \rightarrow l^{+} l^{-} b \bar{b}
$$

AB, S Dasgupta, T S Ray [2105.01093]

Simplified Lagrangian and couplings

$$
\begin{aligned}
\mathcal{L}_{Q^{2}+S^{2}} & =\bar{Q}\left(i \not D-m_{Q}\right) Q+\left(\left|D_{\mu} S\right|^{2}-m_{S}^{2}|S|^{2}\right) \\
\mathcal{L}_{Q} & =\frac{e}{\sqrt{2} s_{W}}\left[\kappa_{T, L}^{W} \bar{T}_{2 / 3} W^{+} P_{L} b+\kappa_{X, L}^{W} \bar{X}_{5 / 3} W^{+} P_{L} t+L \leftrightarrow R\right]+\text { h.c. } \\
& +\frac{e}{s_{W} c_{W}}\left[\kappa_{T, L}^{Z} \bar{T}_{2 / 3} \not \subset P_{L} t+L \leftrightarrow R\right]+\text { h.c. }+h\left[\kappa_{T, L}^{h} \bar{T}_{2 / 3} P_{L} t+L \leftrightarrow R\right]+\text { h.c. } \\
\mathcal{L}_{S} & =S^{0}\left[\lambda_{t, L}^{S^{0}} \bar{t}_{L} t+\lambda_{b, L}^{S^{0}} \bar{b} P_{L} b+\kappa_{T, L}^{S_{0}^{0}} \bar{T}_{2 / 3} P_{L} t+\kappa_{T T, L}^{S^{0}} \bar{T}_{2 / 3} P_{L} T_{2 / 3}+L \leftrightarrow R\right]+\text { h.c. } \\
& +S^{++}\left[\kappa_{Y, L}^{S^{++}} \bar{Y}_{8 / 3} P_{L} t+\kappa_{X, L}^{S^{++}} \bar{X}_{5 / 3} P_{L} b+\kappa_{Y T, L}^{\left.S^{++} \bar{Y}_{8 / 3} P_{L} T_{2 / 3}+L \leftrightarrow R\right]+ \text { h.c. }}\right. \\
& +S^{+}\left[\lambda_{L}^{S^{+}} \bar{t} P_{L} b+\kappa_{X, L}^{S+} \bar{X}_{5 / 3} P_{L} t+\kappa_{T, L}^{S+} \bar{T}_{2 / 3} P_{L} b+\kappa_{X T, L}^{S+} \bar{X}_{5 / 3} P_{L} T_{2 / 3}\right. \\
& \left.+\kappa_{Y X, L}^{S^{+}} \bar{Y}_{8 / 3} P_{L} X_{5 / 3}+L \leftrightarrow R\right]+ \text { h.c. }
\end{aligned}
$$

Simplified Lagrangian and couplings

$\lambda_{L}^{S^{+}}$	$\lambda_{R}^{S^{+}}$	$\lambda_{t, L}^{S^{0}}$	$\lambda_{t, R}^{S^{0}}$	$\lambda_{b, L}^{S^{0}}$	$\lambda_{b, R}^{S^{0}}$	$\kappa_{X, L}^{S^{+}}$	$\kappa_{X, R}^{S^{+}}$
-0.123	0.123	0.174	0	0	0.174	-0.087	1
$\kappa_{T, L}^{S^{+}}$	$\kappa_{T, R}^{S^{+}}$	$\kappa_{Y, L}^{S^{++}}$	$\kappa_{Y, R}^{S^{++}}$	$\kappa_{X, L}^{S^{++}}$	$\kappa_{X, R}^{S^{++}}$	$\kappa_{T, L}^{S^{0}}$	$\kappa_{T, R}^{S^{0}}$
0.123	0	0	1	0.123	0	-0.174	1
$\kappa_{T, L}^{h}$	$\kappa_{T, R}^{h}$	$\kappa_{T, L}^{W}$	$\kappa_{T, R}^{W}$	$\kappa_{X, L}^{W}$	$\kappa_{X, R}^{W}$	$\kappa_{T, L}^{Z}$	$\kappa_{T, R}^{Z}$
0.015	0.246	0	0	0	0.031	0	-0.043
$\kappa_{X T, L}^{S^{+}}$	$\kappa_{X T, R}^{S^{+}}$	$\kappa_{Y X, L}^{S^{+}}$	$\kappa_{Y X, R}^{S^{+}}$	$\kappa_{Y T, L}^{S^{++}}$	$\kappa_{Y T, R}^{S^{++}}$	$\kappa_{T T, L}^{S^{0}}$	$\kappa_{T T, R}^{S^{0}}$
0	0.022	0	0	0	-0.022	0	-0.022

Decay widths

Cross-sections and efficiencies

SR	Backgrounds	$\sigma[\mathrm{fb}]$	$\epsilon\left(m_{\text {eff }}>2100 \mathrm{GeV}\right)$	$\epsilon\left(m_{\mathrm{eff}}>2300 \mathrm{GeV}\right)$
SRL	$t \bar{t} V+\leq 2 j$		838	1.20×10^{-4}
SRS	(with $\sqrt{\hat{s}} \geq 1200 \mathrm{GeV})$		9.43×10^{-5}	5.24×10^{-5}
SRL	$4 t$	5.32	3.20×10^{-4}	3.24×10^{-5}
SRS			2.00×10^{-4}	1.70×10^{-4}
BP/SR	Signal	$\sigma[\mathrm{fb}]$	$\epsilon\left(m_{\text {eff }}>2100 \mathrm{GeV}\right)$	$\epsilon\left(m_{\mathrm{eff}}>2300 \mathrm{GeV}\right)$
	$Y_{8 / 3}$ pair	3.07	0.092	0.079
BPL/SRL	$X_{5 / 3}$ pair	3.21	0.051	0.044
	$T_{2 / 3}$ pair	3.19	0.030	0.026
	$Y_{8 / 3}$ pair	3.15	0.088	0.077
BPS/SRS	$X_{5 / 3}$ pair	3.19	0.035	0.031
	$T_{2 / 3}$ pair	3.16	0.025	0.022

Exclusion / Discovery prospects

- Signal and background are governed by independent Poisson statistics
- Discovery significance: $H_{\text {data }}=H_{S+B}, H_{0}=H_{B}$

$$
Z_{\mathrm{disc}}=\sqrt{2}\left[(S+B) \ln \left(\frac{(S+B)\left(B+\sigma_{B}^{2}\right)}{B^{2}+(S+B) \sigma_{B}^{2}}\right)-\frac{B^{2}}{\sigma_{B}^{2}} \ln \left(1+\frac{\sigma_{B}^{2} S}{B\left(B+\sigma_{B}^{2}\right)}\right)\right]^{1 / 2}
$$

- Exclusion significance: $H_{\text {data }}=H_{B}, H_{0}=H_{S+B}$
$Z_{\mathrm{exc}}=\left[2\left\{S-B \ln \left(\frac{B+S+x}{2 B}\right)-\frac{B^{2}}{\sigma_{B}^{2}} \ln \left(\frac{B-S+x}{2 B}\right)\right\}-(B+S-x)\left(1+\frac{B}{\sigma_{B}^{2}}\right)\right]^{1 / 2}$

Discovery: $Z_{\text {disc }}>5$

$$
x \equiv \sqrt{(S+B)^{2}-\frac{4 S B \sigma_{B}^{2}}{B+\sigma_{B}^{2}}}
$$

Exclusion : $Z_{\text {exc }}>1.645$

Sensitivity @ Run 3

HL-LHC Prospects

- Discovery possible when entire multiplet contributes to the SR ($<20 \%$ systematics)
- Exclusion possible for entire triplet even with $>30 \%$ systematics
- SRL, SRS perform better than signal regions for most sensitive recast

Introducing mass-splitting

- Introducing mass-split ~ 50 GeV for VLQs does not alter the conclusions significantly

