

Gil Paz

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA

Outline

- Prehistory (< 2001)
- History (2001 2011)
- Recent Past (2011 2019)
- Future
- Pictures
- Conclusions

Prehistory (< 2001)

Neubert-Rosner bound

• Matthias had an influence on my scientific career even before we met

Neubert-Rosner bound

- Matthias had an influence on my scientific career even before we met
- Neubert-Rosner bound:
 A bound on CKM angle γ using B[±] → π[±]K⁰ and B[±] → π⁰K[±] using SU(3) flavor symmetry
 [Neubert, Rosner, PLB 441 403 (1998), hep-ph/9808493]

Neubert-Rosner bound

- Matthias had an influence on my scientific career even before we met
- Neubert-Rosner bound:
 A bound on CKM angle γ using B[±] → π[±]K⁰ and B[±] → π⁰K[±] using SU(3) flavor symmetry
 [Neubert, Rosner, PLB 441 403 (1998), hep-ph/9808493]
- M.Sc. project: Generalize Neubert-Rosner bound to $B \rightarrow VP$ decays Supervisor: Michael Gronau

- SU(3) flavor symmetry for $B \rightarrow PP$ (excluding $\eta_{1,8}$)
- Wigner Eckart theorem: Five reduced matrix elements
- "Graphical method": Six amplitudes

- SU(3) flavor symmetry for B
 ightarrow PP (excluding $\eta_{1,8}$)
- Wigner Eckart theorem: Five reduced matrix elements
- "Graphical method": Six amplitudes
- SU(3) flavor symmetry for $B \rightarrow VP$
- Wigner Eckart theorem: 10 reduced matrix elements
- "Graphical method": 12 amplitudes [GP, hep-ph/0206312]

- SU(3) flavor symmetry for B
 ightarrow PP (excluding $\eta_{1,8}$)
- Wigner Eckart theorem: Five reduced matrix elements
- "Graphical method": Six amplitudes
- SU(3) flavor symmetry for B
 ightarrow VP
- Wigner Eckart theorem: 10 reduced matrix elements
- "Graphical method": 12 amplitudes [GP, hep-ph/0206312]
- Bottom line: cannot generalize without assumptions beyond *SU*(3) Assumptions require the graphical method

- SU(3) flavor symmetry for $B \rightarrow PP$ (excluding $\eta_{1,8}$)
- Wigner Eckart theorem: Five reduced matrix elements
- "Graphical method": Six amplitudes
- SU(3) flavor symmetry for $B \rightarrow VP$
- Wigner Eckart theorem: 10 reduced matrix elements
- "Graphical method": 12 amplitudes [GP, hep-ph/0206312]
- Bottom line: cannot generalize without assumptions beyond *SU*(3) Assumptions require the graphical method
- Results summarized in [GP, hep-ph/0206312]
 Not published, but cited in the literature, most recently in 2021

From exclusive to inclusive

 Since # graphical amplitudes > # reduced matrix elements there's no meaning to individual graphical amplitudes

From exclusive to inclusive

- Since # graphical amplitudes > # reduced matrix elements there's no meaning to individual graphical amplitudes
- I became disillusioned with exclusive decays using SU(3) and moved to inclusive decays

From exclusive to inclusive

- Since # graphical amplitudes > # reduced matrix elements there's no meaning to individual graphical amplitudes
- I became disillusioned with exclusive decays using *SU*(3) and moved to inclusive decays
- The relation between graphical amplitudes and reduced matrix elements was recently corrected in [He, Wang, Chin. Phys. C 42 103108 (2018), arXiv:1803.04227]

History (2001 – 2011)

Papers with Matthias

- Bosch, Lange, Neubert, GP Nucl. Phys. B 699, 335 (2004) [hep-ph/0402094]
- Bosch, Lange, Neubert, GP
 Phys. Rev. Lett. 93, 221801 (2004) [hep-ph/0403223]
- Bosch, Neubert, GP JHEP 0411, 073 (2004) [hep-ph/0409115]
- Lange, Neubert, GP Phys. Rev. D 72, 073006 (2005) [hep-ph/0504071]
- Lange, Neubert, GP JHEP 0510, 084 (2005) [hep-ph/0508178]
- Lee, Neubert, GP Phys. Rev. D 75, 114005 (2007) [hep-ph/0609224]
- Benzke, Lee, Neubert, GP JHEP 1008, 099 (2010) [arXiv:1003.5012 (hep-ph)]
- Benzke, Lee, Neubert, GP PRL 106, 141801 (2011) [arXiv:1012.3167 (hep-ph)]

• $\bar{B} \to X_c \, \ell \, \bar{\nu}$ is described by a local OPE (See Thomas Mannel's talk on Monday)

- $\bar{B} \to X_c \, \ell \, \bar{\nu}$ is described by a local OPE (See Thomas Mannel's talk on Monday)
- For charmless Inclusive *B* decays
- $ar{B}
 ightarrow X_u \, \ell \, ar{
 u}$ requires cut to remove charm background
- $ar{B}
 ightarrow X_s \gamma$ involves cuts on E_γ

- $\bar{B} \to X_c \, \ell \, \bar{\nu}$ is described by a local OPE (See Thomas Mannel's talk on Monday)
- For charmless Inclusive *B* decays
- $ar{B}
 ightarrow X_u \, \ell \, ar{
 u}$ requires cut to remove charm background
- $ar{B}
 ightarrow X_s \gamma$ involves cuts on E_γ
- For both $M_X^2 \sim m_b \Lambda_{\rm QCD}$ not inclusive enough for a local OPE but inclusive enough for non-local OPE

- $\bar{B} \to X_c \, \ell \, \bar{\nu}$ is described by a local OPE (See Thomas Mannel's talk on Monday)
- For charmless Inclusive *B* decays
- $ar{B}
 ightarrow X_u \, \ell \, ar{
 u}$ requires cut to remove charm background
- $ar{B}
 ightarrow X_s \gamma$ involves cuts on E_γ
- For both $M_X^2 \sim m_b \Lambda_{\rm QCD}$ not inclusive enough for a local OPE but inclusive enough for non-local OPE

$M_X^2 \sim m_b^2$	local OPE	("OPE region")
$M_X^2 \sim m_b \Lambda_{ m QCD}$	Non local OPE	("end point region")
$M_X^2 \sim \Lambda_{ m QCD}^2$	No inclusive description	("resonance region")

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim H \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} H \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- The hard function H and the jet functions J, j_i are perturbative
- The shape functions S and s_i are non-perturbative
- The hard functions are always $\mathcal{O}(1)$

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- The hard function H and the jet functions J, j_i are perturbative
- The shape functions S and s_i are non-perturbative
- The hard functions are always $\mathcal{O}(1)$
- The $Q_i Q_j$ contributions to $\Gamma(\bar{B} \to X_s \gamma)$: Γ_s^{ij} have a more complicated factorization formula

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- The hard function H and the jet functions J, j_i are perturbative
- The shape functions S and s_i are non-perturbative
- The hard functions are always $\mathcal{O}(1)$
- The $Q_i Q_j$ contributions to $\Gamma(\bar{B} \to X_s \gamma)$: Γ_s^{ij} have a more complicated factorization formula
- $H \cdot J \otimes S$: [Bosch, Lange, Neubert, GP Feb. '04]

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- The hard function H and the jet functions J, j_i are perturbative
- The shape functions S and s_i are non-perturbative
- The hard functions are always $\mathcal{O}(1)$
- The $Q_i Q_j$ contributions to $\Gamma(\bar{B} \to X_s \gamma)$: Γ_s^{ij} have a more complicated factorization formula
- $H \cdot J \otimes S$: [Bosch, Lange, Neubert, GP Feb. '04]
- $H \cdot J \otimes s_i$: [Bosch, Neubert, GP Sep. '04]

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{QCD}^{2}}{m_{b}^{2}}\right)$$

- The hard function H and the jet functions J, j_i are perturbative
- The shape functions S and s_i are non-perturbative
- The hard functions are always $\mathcal{O}(1)$
- The $Q_i Q_j$ contributions to $\Gamma(\bar{B} \to X_s \gamma)$: Γ_s^{ij} have a more complicated factorization formula
- $H \cdot J \otimes S$: [Bosch, Lange, Neubert, GP Feb. '04]
- $H \cdot J \otimes s_i$: [Bosch, Neubert, GP Sep. '04]
- Phenomenology: [Bosch, Lange, Neubert, GP Mar. '04], [Lange, Neubert, GP Apr. '05], [Lange, Neubert, GP Aug. '05]

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim H \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} H \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- The hard function H and the jet functions J, j_i are perturbative
- The shape functions S and s_i are non-perturbative
- The hard functions are always $\mathcal{O}(1)$
- The $Q_i Q_j$ contributions to $\Gamma(\bar{B} \to X_s \gamma)$: Γ_s^{ij} have a more complicated factorization formula
- $H \cdot J \otimes S$: [Bosch, Lange, Neubert, GP Feb. '04]
- $H \cdot J \otimes s_i$: [Bosch, Neubert, GP Sep. '04]
- Phenomenology: [Bosch, Lange, Neubert, GP Mar. '04], [Lange, Neubert, GP Apr. '05], [Lange, Neubert, GP Aug. '05]
- -
 ^{ij}
 : [Lee, Neubert, GP '06], [Benzke, Lee, Neubert, GP Mar. '10],
 [Benzke, Lee, Neubert, GP Dec. '10]

In this paper

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S
- Introduced the shape function scheme

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S
- Introduced the shape function scheme
- Phenomenology

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S
- Introduced the shape function scheme
- Phenomenology
- Bauer and Manohar calculated H_u , J at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03]

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S
- Introduced the shape function scheme
- Phenomenology
- Bauer and Manohar calculated H_u , J at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03]
- Later
- Partonic S calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '05]

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S
- Introduced the shape function scheme
- Phenomenology
- Bauer and Manohar calculated H_u , J at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03]
- Later
- Partonic S calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '05]
- J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S
- Introduced the shape function scheme
- Phenomenology
- Bauer and Manohar calculated H_u , J at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03]
- Later
- Partonic S calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '05]
- J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]
- H_u calculated at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]

- In this paper
- H_u , J, and partonic S at $\mathcal{O}(\alpha_s)$ extracted from DeFazio-Neubert
- Evolution equation derived for S
- Introduced the shape function scheme
- Phenomenology
- Bauer and Manohar calculated H_u , J at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03]
- Later
- Partonic S calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '05]
- J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]
- H_u calculated at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]
- J and partonic S calculated at $\mathcal{O}(\alpha_s^3)$ [Brüser, Liu, Stahlhofen '18,'19]
Bosch, Lange, Neubert, GP PRL **93**, 221801 (2004) [hep-ph/0403223]

• This paper suggested to extract $|V_{ub}|$ from the $P_+ = E_X - |\vec{P}_X|$ spectrum of $\vec{B} \to X_u \, \ell \, \bar{\nu}$ See also [Mannel, Recksiegel '99] with partonic shape function

Bosch, Lange, Neubert, GP PRL **93**, 221801 (2004) [hep-ph/0403223]

- This paper suggested to extract $|V_{ub}|$ from the $P_+ = E_X |\vec{P}_X|$ spectrum of $\vec{B} \to X_u \, \ell \, \bar{\nu}$ See also [Mannel, Recksiegel '99] with partonic shape function
- "Offers a simpler construction of shape-function independent relations to the photon spectrum in $\bar{B} \rightarrow X_s \gamma$ "

Bosch, Lange, Neubert, GP PRL **93**, 221801 (2004) [hep-ph/0403223]

- This paper suggested to extract $|V_{ub}|$ from the $P_+ = E_X |\vec{P}_X|$ spectrum of $\vec{B} \to X_u \, \ell \, \bar{\nu}$ See also [Mannel, Recksiegel '99] with partonic shape function
- "Offers a simpler construction of shape-function independent relations to the photon spectrum in $\bar{B} \rightarrow X_s \gamma$ "

P₊ spectrum used for |*V*_{ub}| extraction
 [BaBar, Phys. Rev. D 86, 032004 (2012) arXiv:1112.0702 (hep-ex)]

- S non perturbative object: F.T. of $\langle \bar{B} | \bar{h}(0) ... h(x_{-}) | \bar{B} \rangle$
- Power corrections of the form $H \cdot J \otimes s_i$:

- S non perturbative object: F.T. of $\langle \bar{B} | \bar{h}(0) ... h(x_{-}) | \bar{B} \rangle$
- Power corrections of the form $H \cdot J \otimes s_i$: - u: F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \dots (iD_{\perp})^2(tn) \dots h(x_{-}) \rangle$ "Kinetic"

- S non perturbative object: F.T. of $\langle \bar{B} | \bar{h}(0) ... h(x_{-}) | \bar{B} \rangle$
- Power corrections of the form $H \cdot J \otimes s_i$: - u: F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \dots (iD_{\perp})^2(tn) \dots h(x_{-}) \rangle$ "Kinetic" - t: F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \frac{\#}{2} \dots \gamma_{\perp}^{\mu} n^{\nu} g G_{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromo-E&M"

• Power corrections of the form
$$H \cdot J \otimes s_i$$
:
- u : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \dots (iD_{\perp})^2(tn) \dots h(x_{-}) \rangle$ "Kinetic"
- t : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \frac{\#}{2} \dots \gamma_{\perp}^{\mu} n^{\nu} g G_{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromo-E&M"
- v : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \frac{\#}{2} \dots \sigma_{\mu\nu}^{\perp} g G_{\perp}^{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromomagnetic"

• Power corrections of the form
$$H \cdot J \otimes s_i$$
:
- u : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \dots (iD_{\perp})^2(tn) \dots h(x_{-}) \rangle$ "Kinetic"
- t : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \frac{\#}{2} \dots \gamma_{\perp}^{\mu} n^{\nu} g G_{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromo-E&M"
- v : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \frac{\#}{2} \dots \sigma_{\mu\nu}^{\perp} g G_{\perp}^{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromomagnetic"
- F.T. of $\pi \alpha_s \int_{0}^{\bar{n} \cdot x/2} dt \int_{t}^{\bar{n} \cdot x/2} ds \langle \bar{h}(0) \dots q(tn) \bar{q}(sn) \dots h(x_{-}) \rangle$ "four-quark"

• Power corrections of the form
$$H \cdot J \otimes s_i$$
:
- u : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \dots (iD_{\perp})^2(tn) \dots h(x_{-}) \rangle$ "Kinetic"
- t : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \frac{\#}{2} \dots \gamma_{\perp}^{\mu} n^{\nu} g G_{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromo-E&M"
- v : F.T. of $\int_{0}^{\bar{n} \cdot x/2} dt \langle \bar{h}(0) \frac{\#}{2} \dots \sigma_{\mu\nu}^{\perp} g G_{\perp}^{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromomagnetic"
- F.T. of $\pi \alpha_s \int_{0}^{\bar{n} \cdot x/2} dt \int_{t}^{\bar{n} \cdot x/2} ds \langle \bar{h}(0) \dots q(tn) \bar{q}(sn) \dots h(x_{-}) \rangle$ "four-quark"
• "More is different"

- *S* non perturbative object: F.T. of $\langle \bar{B} | \bar{h}(0) ... h(x_{-}) | \bar{B} \rangle$
- Power corrections of the form $H \cdot J \otimes s_i$: - u: F.T. of $\int_{0}^{t} dt \langle \overline{h}(0) \dots (iD_{\perp})^{2}(tn) \dots h(x_{-}) \rangle$ "Kinetic" - t: F.T. of $\int_{0}^{n \cdot x/2} dt \langle \bar{h}(0) \frac{n}{2} \dots \gamma_{\perp}^{\mu} n^{\nu} g G_{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromo-E&M" - v: F.T. of $\int_{0}^{\bar{h}\cdot x/2} dt \langle \bar{h}(0) \frac{n}{2} \dots \sigma_{\mu\nu}^{\perp} g G_{\perp}^{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromomagnetic" - F.T. of $\pi \alpha_s \int_{0}^{\bar{n} \cdot x/2} dt \int_{t}^{\bar{n} \cdot x/2} ds \langle \bar{h}(0) ... q(tn) \bar{q}(sn) ... h(x_-) \rangle$ "four-quark" "More is different"
- Concurrent work
 [K. Lee, Stewart '04] [Beneke, Campanario, Mannel, Pecjak '04]

- S non perturbative object: F.T. of $\langle \bar{B}|\bar{h}(0)...h(x_{-})|\bar{B}
 angle$
- Power corrections of the form $H \cdot J \otimes s_i$: - u: F.T. of $\int_{0}^{t} dt \langle \overline{h}(0) \dots (iD_{\perp})^{2}(tn) \dots h(x_{-}) \rangle$ "Kinetic" - t: F.T. of $\int_{0}^{n \cdot x/2} dt \langle \bar{h}(0) \frac{n}{2} \dots \gamma_{\perp}^{\mu} n^{\nu} g G_{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromo-E&M" - v: F.T. of $\int_{0}^{\overline{h} \cdot x/2} dt \langle \overline{h}(0) \frac{n}{2} \dots \sigma_{\mu\nu}^{\perp} g G_{\perp}^{\mu\nu}(tn) \dots h(x_{-}) \rangle$ "Chromomagnetic" - F.T. of $\pi \alpha_s \int_{0}^{\bar{n} \cdot x/2} dt \int_{t}^{\bar{n} \cdot x/2} ds \langle \bar{h}(0) ... q(tn) \bar{q}(sn) ... h(x_-) \rangle$ "four-quark" "More is different"
- Concurrent work [K. Lee, Stewart '04] [Beneke, Campanario, Mannel, Pecjak '04]
- See also [Bauer, Luke, Mannel '01 & '02]

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

Putting it all together

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$

$$d\Gamma \sim \frac{H}{J} \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$

$$d\Gamma \sim \frac{H}{J} \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- "Kinematical" $\alpha_s/m_b, \, \alpha_s/m_b^2$ unfactorized and convoluted with S

$$d\Gamma \sim \frac{H}{J} \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- "Kinematical" α_s/m_b , α_s/m_b^2 unfactorized and convoluted with S
- "Hadronic" $1/m_b^2$ from OPE unfactorized and convoluted with S

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- "Kinematical" $\alpha_s/m_b, \ \alpha_s/m_b^2$ unfactorized and convoluted with S
- "Hadronic" $1/m_b^2$ from OPE unfactorized and convoluted with S
- *S* extracted from $\bar{B} \rightarrow X_s \gamma$, s_i modeled (\sim 700 models)

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- "Kinematical" α_s/m_b , α_s/m_b^2 unfactorized and convoluted with S
- "Hadronic" $1/m_b^2$ from OPE unfactorized and convoluted with S
- S extracted from $\bar{B} \rightarrow X_s \gamma$, s_i modeled (\sim 700 models)
- Smoothly merges to local OPE when integrated over phase space

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(\alpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- "Kinematical" $lpha_{s}/m_{b},\,lpha_{s}/m_{b}^{2}$ unfactorized and convoluted with S
- "Hadronic" $1/m_b^2$ from OPE unfactorized and convoluted with S
- S extracted from $\bar{B} \rightarrow X_s \gamma$, s_i modeled (\sim 700 models)
- Smoothly merges to local OPE when integrated over phase space
- Precision determination of $|V_{ub}|$ ("NLO") [Lange, Neubert, GP '05] Error on $|V_{ub}|$: **18%** (PDG 2004) \Rightarrow **8%** (PDG 2006)

Jump to 2021: Inclusive $|V_{ub}|$ from Belle data

- Current extractions used
- BLNP [Lange, Neubert, GP, PRD 72, 073006, (2005)]
- DGE [Andersen, Gardi, JHEP 01, 097, (2006)]
- GGOU [Gambino, Giordano, Ossola, Uraltsev, JHEP 10, 058, (2007)]
- ADFR [Aglietti, Di Lodovico, Ferrera, Ricciardi, EPJC 59, 831, (2009)]

Jump to 2021: Inclusive $|V_{ub}|$ from Belle data

- Current extractions used
- BLNP [Lange, Neubert, GP, PRD 72, 073006, (2005)]
- DGE [Andersen, Gardi, JHEP 01, 097, (2006)]
- GGOU [Gambino, Giordano, Ossola, Uraltsev, JHEP 10, 058, (2007)]
- ADFR [Aglietti, Di Lodovico, Ferrera, Ricciardi, EPJC 59, 831, (2009)]
- Recent work: Inclusive $|V_{ub}|$ from Belle data

[L. Cao et al. [Belle], PRD 104, 012008 (2021)]

• Instead of extracting S we can directly relate spectra

• Instead of extracting S we can directly relate spectra

$$\Gamma_{u}(\Delta) = \underbrace{\int_{0}^{\Delta} dP_{+} \frac{d\Gamma_{u}}{dP_{+}}}_{\text{exp. input}} = |V_{ub}|^{2} \int_{0}^{\Delta} dP_{+} \underbrace{\mathcal{W}(\Delta, P_{+})}_{\text{theory}} \underbrace{\frac{1}{\Gamma_{s}(E_{*})} \frac{d\Gamma_{s}}{dP_{+}}}_{\text{exp. input}},$$

• Instead of extracting S we can directly relate spectra

$$\Gamma_{u}(\Delta) = \underbrace{\int_{0}^{\Delta} dP_{+} \frac{d\Gamma_{u}}{dP_{+}}}_{\text{exp. input}} = |V_{ub}|^{2} \int_{0}^{\Delta} dP_{+} \underbrace{\mathcal{W}(\Delta, P_{+})}_{\text{theory}} \underbrace{\frac{1}{\Gamma_{s}(E_{*})} \frac{d\Gamma_{s}}{dP_{+}}}_{\text{exp. input}},$$

 At the time W(Δ, P₊)_{theory} included α²_s terms at the jet scale Paper's title: "A two-loop relation between inclusive radiative and semileptonic B decay spectra"

• Instead of extracting S we can directly relate spectra

$$\Gamma_{u}(\Delta) = \underbrace{\int_{0}^{\Delta} dP_{+} \frac{d\Gamma_{u}}{dP_{+}}}_{\text{exp. input}} = |V_{ub}|^{2} \int_{0}^{\Delta} dP_{+} \underbrace{\mathcal{W}(\Delta, P_{+})}_{\text{theory}} \underbrace{\frac{1}{\Gamma_{s}(E_{*})} \frac{d\Gamma_{s}}{dP_{+}}}_{\text{exp. input}},$$

- At the time W(Δ, P₊)_{theory} included α²_s terms at the jet scale Paper's title: "A two-loop relation between inclusive radiative and semileptonic B decay spectra"
- Later Björn generalized this to arbitrary spectra of B
 → X_u ℓ ν

 B. O. Lange, JHEP 01, 104 (2006) [hep-ph/0511098]

• Initial goal: classify subleading shape functions unique to $ar{B} o X_{s} \gamma$

• Initial goal: classify subleading shape functions unique to $\bar{B} \rightarrow X_s \gamma$ Project turned out to be more complicated that initially thought

• Initial goal: classify subleading shape functions unique to $\bar{B} \rightarrow X_s \gamma$ Project turned out to be more complicated that initially thought Started in Fall 2004,

• Initial goal: classify subleading shape functions unique to $\bar{B} \rightarrow X_s \gamma$ Project turned out to be more complicated that initially thought Started in Fall 2004, finished in Spring 2010

- Initial goal: classify subleading shape functions unique to $\bar{B} \rightarrow X_s \gamma$ Project turned out to be more complicated that initially thought Started in Fall 2004, finished in Spring 2010
- In the 1990's hints that not all is well:
- $Q_{8g} Q_{8g}$ (Ali, Greub '95; Kapustin, Ligeti, Politzer '95)
- $Q_1 Q_{7\gamma}$ (Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97)
- No local OPE for $\Gamma(\overline{B} \to X_s \gamma)$ (Ligeti, Randall, Wise '97) But effects were thought to be under control or small ...

- Initial goal: classify subleading shape functions unique to $\bar{B} \rightarrow X_s \gamma$ Project turned out to be more complicated that initially thought Started in Fall 2004, finished in Spring 2010
- In the 1990's hints that not all is well:
- $Q_{8g} Q_{8g}$ (Ali, Greub '95; Kapustin, Ligeti, Politzer '95)
- $Q_1 Q_{7\gamma}$ (Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97)
- No local OPE for $\Gamma(\overline{B} \to X_s \gamma)$ (Ligeti, Randall, Wise '97) But effects were thought to be under control or small ...
- Never a systematic study!

- Initial goal: classify subleading shape functions unique to $\bar{B} \rightarrow X_s \gamma$ Project turned out to be more complicated that initially thought Started in Fall 2004, finished in Spring 2010
- In the 1990's hints that not all is well:
- $Q_{8g} Q_{8g}$ (Ali, Greub '95; Kapustin, Ligeti, Politzer '95)
- $Q_1 Q_{7\gamma}$ (Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97)
- No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ (Ligeti, Randall, Wise '97) But effects were thought to be under control or small ...
- Never a systematic study! In fact uncertainty from $Q_{7\gamma} - Q_{8g}$ was missed! (Lee, Neubert, GP '06)

- Initial goal: classify subleading shape functions unique to $\bar{B} \rightarrow X_s \gamma$ Project turned out to be more complicated that initially thought Started in Fall 2004, finished in Spring 2010
- In the 1990's hints that not all is well:
- $Q_{8g} Q_{8g}$ (Ali, Greub '95; Kapustin, Ligeti, Politzer '95)
- $Q_1 Q_{7\gamma}$ (Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97)
- No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ (Ligeti, Randall, Wise '97) But effects were thought to be under control or small ...
- Never a systematic study! In fact uncertainty from $Q_{7\gamma} - Q_{8g}$ was missed! (Lee, Neubert, GP '06)
- Surprising result: Unlike total rate $\Gamma(\bar{B} \to X_u \, | \, \bar{\nu})$ Non perturbative effects in $\Gamma(\bar{B} \to X_s \, \gamma)$ arise at Λ_{QCD} / m_b

- "Resolved photon" contributions at Λ_{QCD}/m_b
- Top line: $Q_{7\gamma} Q_{8g}$
- Bottom left: $Q_{8g} Q_{8g}$
- Bottom right: $Q_1-Q_{7\gamma}$

- "Resolved photon" contributions at Λ_{QCD}/m_b
- Top line: $Q_{7\gamma} Q_{8g}$
- Bottom left: $Q_{8g} Q_{8g}$
- Bottom right: $Q_1 Q_{7\gamma}$
- What do we find from a systematic analysis?
• Considering only $Q_{7\gamma} - Q_{7\gamma}$: factorization formula for $d\Gamma = H \cdot J \otimes S$ (Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01)

- Considering only $Q_{7\gamma} Q_{7\gamma}$: factorization formula for $d\Gamma = H \cdot J \otimes S$ (Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01)
- Considering also other operators ⇒ new factorization formula for dΓ/dE_γ (Benzke, Lee, Neubert, GP '10)
 H · J ⊗ S
 H · J ⊗ S ⊗ J
 H · J ⊗ S ⊗ J

- Considering only $Q_{7\gamma} Q_{7\gamma}$: factorization formula for $d\Gamma = H \cdot J \otimes S$ (Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01)
- Considering also other operators \Rightarrow **new** factorization formula for $d\Gamma/dE_{\gamma}$ (Benzke, Lee, Neubert, GP '10)

• For total rate $\Delta\Gamma \sim \overline{J} \otimes (\overline{J} \otimes)h$, where non perturbative functions h_{ij}

- Considering only $Q_{7\gamma} Q_{7\gamma}$: factorization formula for $d\Gamma = H \cdot J \otimes S$ (Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01)
- Considering also other operators \Rightarrow **new** factorization formula for $d\Gamma/dE_{\gamma}$ (Benzke, Lee, Neubert, GP '10)

• For total rate $\Delta\Gamma \sim \overline{J} \otimes (\overline{J} \otimes)h$, where non perturbative functions h_{ij} $h_{88}(\omega_1, \omega_2)$ F.T. of $\langle \overline{B} | \overline{b}(0) \cdots s(un) \overline{s}(r\overline{n}) \cdots b(0) | \overline{B} \rangle$ $h_{17}(\omega_1)$ F.T. of $\langle \overline{B} | \overline{b}(0) \cdots G(s\overline{n}) \cdots b(0) | \overline{B} \rangle$

 $h_{78}(\omega_1,\omega_2)$ F.T. of $\langle \bar{B}|\bar{b}(0)\cdots b(0)\sum e_q \,\bar{q}(r\bar{n})\cdots q(s\bar{n})|\bar{B}\rangle$

• These gave the largest uncertainty $\sim 5\%$ on $\Gamma(ar{B} o X_{s}\gamma)$

• Resolved photon contributions are Λ_{QCD}/m_b effect

- Resolved photon contributions are $\Lambda_{\rm QCD}/m_b$ effect
- For $\Gamma(ar{B} o X_s \, \gamma)$ direct photon contributions are $\mathcal{O}(1)$ effect
- For $\mathcal{A}_{X_s\gamma}$ direct photon contributions are $lpha_s$ suppressed

- Resolved photon contributions are $\Lambda_{\rm QCD}/m_b$ effect
- For $\Gamma(ar{B} o X_s \, \gamma)$ direct photon contributions are $\mathcal{O}(1)$ effect
- For $\mathcal{A}_{X_{s}\gamma}$ direct photon contributions are $lpha_{s}$ suppressed
- Non perturbative resolved photon contributions **dominant** SM effect [Benzke, Lee, Neubert, GP PRL **106**, 141801 (2011)]

$$-0.6\% < \mathcal{A}_{X_s\gamma}^{\mathrm{SM}} < 2.8\%$$

compared to $\mathcal{A}^{\mathsf{SM}}_{X_{\mathsf{s}}\gamma} pprox 0.5\%$ from perturbative effects alone

- Resolved photon contributions are $\Lambda_{\rm QCD}/m_b$ effect
- For $\Gamma(ar{B} o X_s \, \gamma)$ direct photon contributions are $\mathcal{O}(1)$ effect
- For $\mathcal{A}_{X_s\gamma}$ direct photon contributions are α_s suppressed
- Non perturbative resolved photon contributions **dominant** SM effect [Benzke, Lee, Neubert, GP PRL **106**, 141801 (2011)]

$$-0.6\% < \mathcal{A}_{X_s\gamma}^{\mathsf{SM}} < 2.8\%$$

compared to $\mathcal{A}_{X_{c\gamma}}^{SM} \approx 0.5\%$ from perturbative effects alone • PDG 2022: $\mathcal{A}_{X_{c\gamma}} = 1.5\% \pm 1.1\%$

- Resolved photon contributions are $\Lambda_{\rm QCD}/m_b$ effect
- For $\Gamma(ar{B} o X_s \, \gamma)$ direct photon contributions are $\mathcal{O}(1)$ effect
- For $\mathcal{A}_{X_s\gamma}$ direct photon contributions are $lpha_s$ suppressed
- Non perturbative resolved photon contributions dominant SM effect [Benzke, Lee, Neubert, GP PRL **106**, 141801 (2011)]

$$-0.6\% < \mathcal{A}^{\mathsf{SM}}_{X_{s}\gamma} < 2.8\%$$

compared to $\mathcal{A}^{\sf SM}_{X_{s\gamma}} \approx 0.5\%$ from perturbative effects alone

- PDG 2022: $A_{X_{s}\gamma} = 1.5\% \pm 1.1\%$
- New test of physics beyond the SM

$$\mathcal{A}_{X_s^-\gamma} - \mathcal{A}_{X_s^0\gamma} \approx 4\pi^2 \alpha_s \, \frac{\tilde{\Lambda}_{78}}{m_b} \, \mathrm{Im} \, \frac{C_{8g}}{C_{7\gamma}} \approx 12\% \times \frac{\tilde{\Lambda}_{78}}{100 \, \mathrm{MeV}} \, \mathrm{Im} \, \frac{C_{8g}}{C_{7\gamma}}$$

- BaBar $\Delta \mathcal{A}_{X_s\gamma} = (5.0 \pm 3.9 \pm 1.5)\%$ [BaBar '14]
- Belle $\Delta \mathcal{A}_{X_{s}\gamma} = (3.69 \pm 2.65 \pm 0.76)\%$ [Belle '18]
- PDG average $\Delta {\cal A}_{X_s\gamma} = (4.1 \pm 2.3)\%$ statistically limited

Recent Past (2011 – 2019)

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim H \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} H \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

• Subleading jet functions, j_i , calculated at $\mathcal{O}(\alpha_s)$ [GP '09]:

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- Subleading jet functions, j_i , calculated at $\mathcal{O}(\alpha_s)$ [GP '09]:
- perturbative, arise at α_s/m_b , appear in convolution with LO SF

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- Subleading jet functions, j_i , calculated at $\mathcal{O}(\alpha_s)$ [GP '09]:
- perturbative, arise at α_s/m_b , appear in convolution with LO SF
- do not introduce new hadronic uncertainties

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathbf{H} \cdot \mathbf{J} \otimes S + \frac{1}{m_{b}} \sum_{i} \mathbf{H} \cdot \mathbf{J} \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathbf{H} \cdot \mathbf{j}_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- Subleading jet functions, j_i , calculated at $\mathcal{O}(\alpha_s)$ [GP '09]:
- perturbative, arise at $lpha_s/m_b$, appear in convolution with LO SF
- do not introduce new hadronic uncertainties
- Relaxing cuts: j_i less power suppressed, s_i remain power suppressed

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathbf{H} \cdot \mathbf{J} \otimes S + \frac{1}{m_{b}} \sum_{i} \mathbf{H} \cdot \mathbf{J} \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathbf{H} \cdot \mathbf{j}_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- Subleading jet functions, j_i , calculated at $\mathcal{O}(\alpha_s)$ [GP '09]:
- perturbative, arise at α_s/m_b , appear in convolution with LO SF
- do not introduce new hadronic uncertainties
- Relaxing cuts: j_i less power suppressed, s_i remain power suppressed
- To implement j_i , e.g. for $d\Gamma_s^{77}$, replace the α_s/m_b "kinematic"

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim \mathcal{H} \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} \mathcal{H} \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- Subleading jet functions, j_i , calculated at $\mathcal{O}(\alpha_s)$ [GP '09]:
- perturbative, arise at α_s/m_b , appear in convolution with LO SF
- do not introduce new hadronic uncertainties
- Relaxing cuts: j_i less power suppressed, s_i remain power suppressed
- To implement j_i , e.g. for $d\Gamma_s^{77}$, replace the α_s/m_b "kinematic"

$$W^{\text{Kin.}} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \,\theta(\omega + n \cdot p) \left[\frac{32 \ln \frac{\omega + n \cdot p}{m_b} + 30}{m_b} \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

by

$$W^{\rm SJF} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \ \theta(\omega + n \cdot p) \left[32 \ln \frac{\mu^2}{m_b(\omega + n \cdot p)} - 18 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

- Factorization of the log suggested by Matthias

$$d\Gamma_{u}, d\Gamma_{s}^{77} \sim H \cdot J \otimes S + \frac{1}{m_{b}} \sum_{i} H \cdot J \otimes s_{i} + \frac{1}{m_{b}} \sum_{i} H \cdot j_{i} \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^{2}}{m_{b}^{2}}\right)$$

- Subleading jet functions, j_i , calculated at $\mathcal{O}(\alpha_s)$ [GP '09]:
- perturbative, arise at α_s/m_b , appear in convolution with LO SF
- do not introduce new hadronic uncertainties
- Relaxing cuts: j_i less power suppressed, s_i remain power suppressed
- To implement j_i , e.g. for $d\Gamma_s^{77}$, replace the α_s/m_b "kinematic"

$$W^{\text{Kin.}} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \,\theta(\omega + n \cdot p) \left[\frac{32 \ln \frac{\omega + n \cdot p}{m_b} + 30}{m_b} \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

by

$$\mathcal{N}^{\text{SJF}} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \ \theta(\omega + n \cdot p) \left[32 \ln \frac{\mu^2}{m_b(\omega + n \cdot p)} - 18 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

- Factorization of the log suggested by Matthias
- Although α_s and $1/m_b$ suppressed, effect can be non-negligible e.g. constant change from +30 to -18

Proton Radius Puzzle

Organizers: Carl Carlson (College of William and Mary), Richard Hill (Chicago Univ.), Savely Karshenboim (MPI for Quantum Optics Munich and Pulkovo Observatory St. Petersburg), Marc Vanderhaeghen (JGU Mainz)

June 2 - 6, 2014, Waldthausen Castle near Mainz

• 2014

Proton Radius Puzzle

Organizers: Carl Carlson (College of William and Mary), Richard Hill (Chicago Univ.), Savely Karshenboim (MPI for Quantum Optics Munich and Pulkovo Observatory St. Petersburg), Marc Vanderhaeghen (JGU Mainz)

June 2 - 6, 2014, Waldthausen Castle near Mainz

• 2015

Challenges in Semileptonic B decays

Organizers: Paolo Gambino (Turin Univ.), Andreas Kronfeld (Fermilab), Marcello Rotondo (INFN Padua), Christoph Schwanda (Vienna), Sascha Turczyk (JGU Mainz)

April 20 - 24, 2015, JGU Campus Mainz

• April 2018

• 2014

Proton Radius Puzzle

Organizers: Carl Carlson (College of William and Mary), Richard Hill (Chicago Univ.), Savely Karshenboim (MPI for Quantum Optics Munich and Pulkovo Observatory St. Petersburg), Marc Vanderhaeghen (JGU Mainz)

June 2 - 6, 2014, Waldthausen Castle near Mainz

• 2015

Challenges in Semileptonic B decays

Organizers: Paolo Gambino (Turin Univ.), Andreas Kronfeld (Fermilab), Marcello Rotondo (INFN Padua), Christoph Schwanda (Vienna), Sascha Turczyk (JGU Mainz)

April 20 - 24, 2015, JGU Campus Mainz

• April 2018

Challenges in Semileptonic B Decays

Organizers: Paolo Gambino (University of Turin), Andreas Kronfeld (Fermilab), Marcello Rotondo (INFN - LNF) and Christoph Schwanda (Österreichische Akademie der Wissenschaften)

April 9 - 13, 2018, JGU Campus Mainz

• July 2018

• 2014

Proton Radius Puzzle

Organizers: Carl Carlson (College of William and Mary), Richard Hill (Chicago Univ.), Savely Karshenboim (MPI for Quantum Optics Munich and Pulkovo Observatory St. Petersburg), Marc Vanderhaeghen (JGU Mainz)

June 2 - 6, 2014, Waldthausen Castle near Mainz

• 2015

Challenges in Semileptonic B decays

Organizers: Paolo Gambino (Turin Univ.), Andreas Kronfeld (Fermilab), Marcello Rotondo (INFN Padua), Christoph Schwanda (Vienna), Sascha Turczyk (JGU Mainz)

April 20 - 24, 2015, JGU Campus Mainz

• April 2018

Challenges in Semileptonic B Decays

Organizers: Paolo Gambino (University of Turin), Andreas Kronfeld (Fermilab), Marcello Rotondo (INFN - LNF) and Christoph Schwanda (Österreichische Akademie der Wissenschaften)

April 9 - 13, 2018, JGU Campus Mainz

• July 2018

Precision Measurements and Fundamental Physics: The Proton Radius Puzzle and Beyond

Organizers: Richard Hill (University of Kentucky / Fermilab), Gil Paz (Wayne State University) and Randolf Pohl (JGU Mainz)

July 23 - 27, 2018, JGU Campus Mainz

• Proton radius puzzle \Rightarrow higher dimensional NRQED operators

- Proton radius puzzle \Rightarrow higher dimensional NRQED operators
- Semileptonic B decays \Rightarrow higher dimensional HQET operators
- How to construct such operators?

- Proton radius puzzle \Rightarrow higher dimensional NRQED operators
- Semileptonic B decays \Rightarrow higher dimensional HQET operators
- How to construct such operators? answer given in [Ayesh Gunawardna, GP JHEP 1707 137 (2017)]

- Proton radius puzzle \Rightarrow higher dimensional NRQED operators
- Semileptonic B decays \Rightarrow higher dimensional HQET operators
- How to construct such operators? answer given in [Ayesh Gunawardna, GP JHEP 1707 137 (2017)]
- Construct them by tensor decomposition of HQET matrix elements

- Proton radius puzzle \Rightarrow higher dimensional NRQED operators
- Semileptonic B decays \Rightarrow higher dimensional HQET operators
- How to construct such operators? answer given in [Ayesh Gunawardna, GP JHEP 1707 137 (2017)]
- Construct them by tensor decomposition of HQET matrix elements
- The same operators appear for NRQCD/NRQED

New Result: Dimension 9 HQET operators

• Using this method: SI Dimension 9 HQET operators

New Result: Dimension 9 HQET operators

• Using this method: SI Dimension 9 HQET operators

$$\begin{split} &\frac{1}{2M_{H}} \langle H | \tilde{h} i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} i D^{\mu_{6}} h | H \rangle = a_{12,34}^{(9)} \Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{3}\mu_{4}} \Pi^{\mu_{5}\mu_{6}} + \\ &+ a_{12,35}^{(0)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{3}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} + \Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{2}\mu_{4}} \Pi^{\mu_{5}\mu_{6}} \right) + a_{12,36}^{(9)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{3}\mu_{4}} \Pi^{\mu_{5}\mu_{6}} + \Pi^{\mu_{1}\mu_{4}} \Pi^{\mu_{2}\mu_{3}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} + a_{13,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{2}\mu_{6}} \Pi^{\mu_{4}\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{2}\mu_{3}} \Pi^{\mu_{4}\mu_{6}} \right) + a_{14,25}^{(9)} \Pi^{\mu_{1}\mu_{4}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} + \\ &+ a_{14,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{4}} \Pi^{\mu_{2}\mu_{6}} \Pi^{\mu_{3}\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{2}\mu_{4}} \Pi^{\mu_{3}\mu_{6}} \right) + a_{15,26}^{(9)} \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{2}\mu_{3}} \Pi^{\mu_{3}\mu_{4}} + a_{16,23}^{(9)} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{4}\mu_{5}} + \\ &+ a_{16,24}^{(9)} \left(\Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{4}} \Pi^{\mu_{3}\mu_{5}} + a_{16,25}^{(9)} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{3}\mu_{4}} + b_{12,36}^{(9)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{4}\mu_{6}} \eta^{\mu_{3}} \eta^{\mu_{5}} + \pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{5}\mu_{6}} \eta^{\mu_{2}} \eta^{\mu_{3}\mu_{4}} + b_{12,36}^{(9)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{4}\mu_{6}} \eta^{\mu_{3}} \eta^{\mu_{5}} + \Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{5}\mu_{6}} \eta^{\mu_{2}} \eta^{\mu_{3}\mu_{4}} + \\ &+ b_{12,46}^{(9)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{4}\mu_{6}} \eta^{\mu_{3}} \eta^{\mu_{5}} + \Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{5}\mu_{6}} \eta^{\mu_{2}} \eta^{\mu_{3}} \right) + b_{13,46}^{(9)} \Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{4}\mu_{6}} \eta^{\mu_{2}} \eta^{\mu_{4}} \eta^{\mu_{4}} + \\ &+ b_{13,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{2}\mu_{6}} \eta^{\mu_{3}} \eta^{\mu_{4}} \eta^{\mu_{5}} \eta^{\mu_{2}} \eta^{\mu_{4}} \eta^{$$

New Result: Dimension 9 HQET operators

• Using this method: SI Dimension 9 HQET operators

$$\begin{split} &\frac{1}{2M_{H}} \langle H | \bar{h} \, i D^{\mu_{1}} i D^{\mu_{2}} i D^{\mu_{3}} i D^{\mu_{4}} i D^{\mu_{5}} i D^{\mu_{6}} h | H \rangle = a_{12,34}^{(9)} \Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{3}\mu_{4}} \Pi^{\mu_{5}\mu_{6}} + \\ &+ a_{12,35}^{(0)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{3}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} + \Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{2}\mu_{4}} \Pi^{\mu_{5}\mu_{6}} \right) + a_{12,36}^{(9)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{3}\mu_{4}} \Pi^{\mu_{5}\mu_{6}} \right) + \\ &+ a_{13,25}^{(0)} \Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} + a_{13,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{2}\mu_{6}} \Pi^{\mu_{4}\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{2}\mu_{3}} \Pi^{\mu_{4}\mu_{6}} \right) + a_{14,25}^{(9)} \Pi^{\mu_{1}\mu_{4}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} + \\ &+ a_{14,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{4}} \Pi^{\mu_{2}\mu_{6}} \Pi^{\mu_{3}\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{2}\mu_{4}} \Pi^{\mu_{3}\mu_{6}} \right) + a_{15,26}^{(9)} \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{2}\mu_{6}} \Pi^{\mu_{3}\mu_{4}} + a_{16,23}^{(9)} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{3}} \Pi^{\mu_{4}\mu_{5}} + \\ &+ a_{16,24}^{(9)} \left(\Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{4}} \Pi^{\mu_{3}\mu_{5}} + a_{16,25}^{(0)} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{5}} \Pi^{\mu_{3}\mu_{4}} + \\ &+ a_{12,36}^{(9)} \left(\Pi^{\mu_{1}\mu_{2}} \Pi^{\mu_{4}\mu_{6}} v^{\mu_{3}} v^{\mu_{5}} + \Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{5}\mu_{6}} v^{\mu_{2}} v^{\mu_{3}} \right) + \\ &+ b_{12,46}^{(9)} \left(\Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{6}} v^{\mu_{3}} v^{\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{3}\mu_{6}} v^{\mu_{2}} v^{\mu_{3}} \right) + \\ &+ b_{13,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{3}} \Pi^{\mu_{2}\mu_{6}} v^{\mu_{4}} v^{\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} v^{\mu_{2}} v^{\mu_{3}} \right) + \\ &+ b_{14,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{4}} \Pi^{\mu_{2}\mu_{6}} v^{\mu_{4}} v^{\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} v^{\mu_{2}} v^{\mu_{3}} \right) + \\ &+ b_{14,26}^{(9)} \left(\Pi^{\mu_{1}\mu_{4}} \Pi^{\mu_{2}\mu_{6}} v^{\mu_{4}} v^{\mu_{5}} + \Pi^{\mu_{1}\mu_{5}} \Pi^{\mu_{4}\mu_{6}} v^{\mu_{2}} v^{\mu_{3}} \right) + \\ &+ b_{16,23}^{(9)} \left(\Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{4}} v^{\mu_{4}} v^{\mu_{5}} v^{\mu_{4}} v^{\mu_{5}} + \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{4}\mu_{5}} v^{\mu_{2}} v^{\mu_{5}} \right) + \\ &+ b_{16,25}^{(9)} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{5}} v^{\mu_{4}} v^{\mu_{5}} + \\ &+ b_{16,25}^{(9)} \Pi^{\mu_{1}\mu_{6}} \Pi^{\mu_{2}\mu_{5}} v^{\mu_{4}} v^{\mu_{4}} v^{\mu_{5}} v^{\mu_{5}} v^{\mu_{4}} v^{\mu_{5}} v$$

• There are also multiple color structures

At the current level of precision only the ones above are needed

New Result: Moments of the leading power shape function

 Shape function moments related to HQET parameters The matrix elements decomposition makes their calculation easy

$$2M_B \int d\omega \, \omega^k \, S(\omega) = n_{\mu_1} ... n_{\mu_k} \langle \bar{B}(v) | \bar{h} \, i D^{\mu_1} ... i D^{\mu_k} \, h | \bar{B}(v) \rangle$$

New Result: Moments of the leading power shape function

 Shape function moments related to HQET parameters The matrix elements decomposition makes their calculation easy

$$2M_B \int d\omega \, \omega^k \, S(\omega) = n_{\mu_1} \dots n_{\mu_k} \langle \bar{B}(v) | \bar{h} \, iD^{\mu_1} \dots iD^{\mu_k} \, h | \bar{B}(v) \rangle$$

$$\int d\omega \, S(\omega) = 1, \qquad \int d\omega \, \omega \, S(\omega) = 0, \qquad \int d\omega \, \omega^2 \, S(\omega) = -a^{(5)} = -\lambda_1/3,$$

$$\int d\omega \, \omega^3 \, S(\omega) = -a^{(6)} = -\rho_1/3,$$

$$\int d\omega \, \omega^4 \, S(\omega) = a_{12}^{(7)} + a_{13}^{(7)} + a_{14}^{(7)} - b^{(7)} = m_1/5 - m_2/3,$$

$$\int d\omega \, \omega^5 \, S(\omega) = 2a_{12}^{(8)} + 2a_{13}^{(8)} + 2a_{15}^{(8)} + b_{12}^{(8)} + b_{14}^{(8)} + b_{15}^{(8)} - c^{(8)} =$$

$$= (-8r_1 + 2r_2 + 2r_3 + 2r_4 + r_5 + r_6 + r_7) / 15,$$

$$\int d\omega \, \omega^6 \, S(\omega) = -a_{12,34}^{(9)} - 2a_{12,35}^{(9)} - 2a_{13,25}^{(9)} - 2a_{13,26}^{(9)} - a_{14,25}^{(9)} - 2a_{14,26}^{(9)} - a_{15,26}^{(9)} + a_{16,23}^{(9)} - a_{16,24}^{(9)} - a_{16,25}^{(9)} + 2b_{12,36}^{(9)} + b_{12,36}^{(9)} + b_{13,46}^{(9)} + 2b_{16,23}^{(9)} + b_{16,25}^{(9)} + b_{16,34}^{(9)} - c^{(9)}$$

m_i and *r_i* notation from [Mannel, Turczyk, Uraltsev '10]
 a⁽⁹⁾, *b*⁽⁹⁾, *c*⁽⁹⁾ notation from [Gunawardna, GP '17]

New Result: Dimension 8 NRQCD Lagrangian

 We can now list the dimension 8 NRQCD Lagrangian [Gunawardna, GP JHEP 1707 137 (2017), Kobach, Pal PLB 772 225 (2017)] $\mathcal{L}_{\mathsf{NRQCD}}^{\mathsf{dim}=8} = \psi^{\dagger} \left\{ \dots c_{X1g} \frac{[D^2, \{D', E'\}]}{m_p^4} + c_{X2g} \frac{\{D^2, [D', E']\}}{m_p^4} + c_{X3g} \frac{[D', [D', [D', E']]]}{m_p^4} \right\}$ $+ic_{\chi 4_{a}}g^{2}\frac{\{D^{\prime},\epsilon^{\prime jk}E^{\prime}_{a}B^{k}_{b}\{T^{a},T^{b}\}\}}{2M^{4}}+ic_{\chi 4b}g^{2}\frac{\{D^{\prime},\epsilon^{\prime jk}E^{\prime}_{a}B^{k}_{b}\delta^{ab}\}}{m^{4}}+ic_{\chi 5g}\frac{D^{\prime}\sigma\cdot(D\times E-E\times D)D^{\prime}}{m^{4}}$ $+ic_{X6g}\frac{\epsilon^{yh}\sigma'D^{j}[D',E']D^{h}}{m^{4}}+c_{X7a}g^{2}\frac{\{\sigma+B_{a}T^{a},[D',E']_{b}T^{b}\}}{2M^{4}}+c_{X7b}g^{2}\frac{\sigma+B_{a}[D',E']_{a}}{m^{4}}$ $+c_{X8a}g^{2}\frac{\{E_{a}^{i}T^{a},[D^{i},\sigma\cdot\mathbf{B}]_{b}T^{b}\}}{2M^{4}}+c_{X8b}g^{2}\frac{E_{a}^{i}[D^{i},\sigma\cdot\mathbf{B}]_{a}}{m^{4}}+c_{X9a}g^{2}\frac{\{B_{a}^{i}T^{a},[D^{i},\sigma\cdot\mathbf{E}]_{b}T^{b}\}}{2M^{4}}$ $+c_{X9b}g^{2}\frac{B_{a}'[D',\sigma\cdot E]_{a}}{m^{4}}+c_{X10a}g^{2}\frac{\{E_{a}'T^{a},[\sigma\cdot D,B']_{b}T^{b}\}}{2M^{4}}+c_{X10b}g^{2}\frac{E_{a}'[\sigma\cdot D,B']_{a}}{m^{4}}$ $+c_{X11a}g^2\frac{\{B_a^{\dagger}T^a,[\sigma\cdot D,E^{\dagger}]_bT^b\}}{2M^4}+c_{X11b}g^2\frac{B_a^{\dagger}[\sigma\cdot D,E^{\dagger}]_a}{m_{\alpha}^4}+\tilde{c}_{X12a}g^2\frac{\epsilon^{ijk}\sigma^{j}E_a^{\dagger}[D_t,E^k]_b\{T^a,T^b\}}{2M^4}$ $+\tilde{c}_{X12b}g^2\frac{\epsilon^{ijk}\sigma^{i}E_{a}^{j}[D_{t},E^{k}]_{a}}{m_{p}^{4}}+ic_{X13}g^2\frac{[E^{i},[D_{t},E^{i}]]}{m_{p}^{4}}+ic_{X14}g^2\frac{[B^{i},(D\times E+E\times D)^{i}]}{m_{p}^{4}}$ $+ic_{X15}g^2\frac{[E',(D\times B+B\times D)']}{m^4}+c_{X16}g^2\frac{[\sigma\cdot B,\{D',E'\}]}{m^4}+c_{X17}g^2\frac{[B',\{D',\sigma\cdot E\}]}{m^4}+c_{X18}g^2\frac{[E',\{\sigma\cdot D,B'\}]}{m^4}\Big\}\psi$ - 25 operators

- c_{Xib} start at $\mathcal{O}(\alpha_s)$

Gil Paz (Wayne State University)

Improving the uncertainty of $\bar{B} \rightarrow X_s \gamma$

- Recall that resolved photon contributions give
- largest uncertainty on $\Gamma(ar{B} o X_s \gamma)$
- dominant effect on $\mathcal{A}^{\mathsf{SM}}_{X_{\mathsf{s}}\gamma}$

Improving the uncertainty of $\bar{B} \rightarrow X_s \gamma$

- Recall that resolved photon contributions give
- largest uncertainty on $\Gamma(ar{B} o X_s \gamma)$
- dominant effect on $\mathcal{A}^{\mathsf{SM}}_{X_{\mathsf{s}}\gamma}$
- Use
- Better control of higher dim. operators [Gunawardna, GP '17]
- HQET parameters extraction from [Gambino, Healey, Turczyk '16]
- To improve the estimates of uncertainties [Ayesh Gunawardna, GP JHEP **11** 141 (2019)]
- $\bar{B} \rightarrow X_s \gamma$ uncertainty depends on a soft function $g_{17}(\omega, \omega_1, \mu)$
- Moments in ω and ω_1 are related to HQET parameters

$$\begin{split} \langle \omega^{l} \, \omega_{1}^{k} \, g_{17} \rangle &\equiv \int_{-\infty}^{\bar{\Lambda}} d\omega \, \omega^{l} \int_{-\infty}^{\infty} d\omega_{1} \, \omega^{k} \, g_{17}(\omega, \omega_{1}, \mu) = \left(i v^{\rho} \epsilon_{\rho \mu \alpha_{\perp} \lambda} \bar{n}^{\mu} - g_{\alpha_{\perp} \lambda} \right) (-1)^{k} \\ & \times \quad \frac{1}{2M_{B}} \langle \bar{B} | \bar{h} \left(i n \cdot D \right)^{l} \underbrace{\left[i \bar{n} \cdot D, \left[i \bar{n} \cdot D, \cdots \left[i \bar{n} \cdot D \right], \left[i D^{\alpha}, i \bar{n} \cdot D \right] \cdots \right] \right] s^{\lambda} h | \bar{B} \rangle. \\ & k \text{ times} \end{split}$$

- $\bar{B} \rightarrow X_s \gamma$ uncertainty depends on a soft function $g_{17}(\omega, \omega_1, \mu)$
- Moments in ω and ω_1 are related to HQET parameters

$$\begin{split} \langle \omega' \, \omega_1^k \, g_{17} \rangle &\equiv \int_{-\infty}^{\bar{\Lambda}} d\omega \, \omega' \int_{-\infty}^{\infty} d\omega_1 \, \omega^k \, g_{17}(\omega, \omega_1, \mu) = \left(i v^{\rho} \epsilon_{\rho \mu \alpha_{\perp} \lambda} \bar{n}^{\mu} - g_{\alpha_{\perp} \lambda} \right) (-1)^k \\ &\times \quad \frac{1}{2M_B} \langle \bar{B} | \bar{h} \, (in \cdot D)' \underbrace{\left[i \bar{n} \cdot D, \left[i \bar{n} \cdot D, \cdots \left[i \bar{n} \cdot D \right], \left[i D^{\alpha}, i \bar{n} \cdot D \right] \cdots \right] \right] s^{\lambda} h | \bar{B} \rangle. \\ & k \text{ times} \end{split}$$

• 2010: had *two* non-zero moments [Benzke, Lee, Neubert, GP, '10)] $\langle \omega^0 \omega_1^0 g_{17} \rangle = 0.237 \pm 0.040 \text{ GeV}^2, \quad \langle \omega^1 \omega_1^0 g_{17} \rangle = 0.056 \pm 0.032 \text{ GeV}^3$

- $\bar{B} \rightarrow X_s \gamma$ uncertainty depends on a soft function $g_{17}(\omega, \omega_1, \mu)$
- Moments in ω and ω_1 are related to HQET parameters

$$\langle \omega^{l} \, \omega_{1}^{k} \, g_{17} \rangle \equiv \int_{-\infty}^{\bar{\Lambda}} d\omega \, \omega^{l} \int_{-\infty}^{\infty} d\omega_{1} \, \omega^{k} \, g_{17}(\omega, \omega_{1}, \mu) = \left(i v^{\rho} \epsilon_{\rho \mu \alpha_{\perp} \lambda} \bar{n}^{\mu} - g_{\alpha_{\perp} \lambda} \right) (-1)^{k}$$

$$\times \quad \frac{1}{2M_{B}} \langle \bar{B} | \bar{h} \, (in \cdot D)^{l} \underbrace{\left[i \bar{n} \cdot D, \left[i \bar{n} \cdot D, \cdots \left[i \bar{n} \cdot D \right], \left[i D^{\alpha}, i \bar{n} \cdot D \right] \cdots \right] \right] s^{\lambda} h | \bar{B} \rangle.$$

$$k \text{ times}$$

- 2010: had *two* non-zero moments [Benzke, Lee, Neubert, GP, '10)] $\langle \omega^0 \omega_1^0 g_{17} \rangle = 0.237 \pm 0.040 \text{ GeV}^2, \quad \langle \omega^1 \omega_1^0 g_{17} \rangle = 0.056 \pm 0.032 \text{ GeV}^3$
- 2019: add six non-zero moments [Gunawardna, GP '19]

$$\begin{split} &\langle \omega^0 \, \omega_1^2 \, g_{17} \rangle = 0.15 \pm 0.12 \,\, \text{GeV}^4, \quad \langle \omega^2 \, \omega_1^0 \, g_{17} \rangle = 0.015 \pm 0.021 \,\, \text{GeV}^4 \\ &\langle \omega^3 \, \omega_1^0 \, g_{17} \rangle = 0.008 \pm 0.011 \,\, \text{GeV}^5, \quad \langle \omega^1 \, \omega_1^1 \, g_{17} \rangle = 0.073 \pm 0.059 \,\, \text{GeV}^4 \\ &\langle \omega^2 \, \omega_1^1 \, g_{17} \rangle = -0.034 \pm 0.016 \,\, \text{GeV}^5, \quad \langle \omega^1 \, \omega_1^2 \, g_{17} \rangle = 0.027 \pm 0.014 \,\, \text{GeV}^5. \end{split}$$

- $\bar{B} \rightarrow X_s \gamma$ uncertainty depends on a soft function $g_{17}(\omega, \omega_1, \mu)$
- Moments in ω and ω_1 are related to HQET parameters

$$\langle \omega' \, \omega_1^k \, g_{17} \rangle \equiv \int_{-\infty}^{\bar{\Lambda}} d\omega \, \omega' \int_{-\infty}^{\infty} d\omega_1 \, \omega^k \, g_{17}(\omega, \omega_1, \mu) = \left(i v^{\rho} \epsilon_{\rho \mu \alpha_{\perp} \lambda} \bar{n}^{\mu} - g_{\alpha_{\perp} \lambda} \right) (-1)^k$$

$$\times \quad \frac{1}{2M_B} \langle \bar{B} | \bar{h} \, (in \cdot D)' \underbrace{\left[i \bar{n} \cdot D, \left[i \bar{n} \cdot D, \cdots \left[i \bar{n} \cdot D \right], \left[i D^{\alpha}, i \bar{n} \cdot D \right] \cdots \right] \right] s^{\lambda} h | \bar{B} \rangle.$$

$$k \text{ times}$$

- 2010: had *two* non-zero moments [Benzke, Lee, Neubert, GP, '10)] $\langle \omega^0 \omega_1^0 g_{17} \rangle = 0.237 \pm 0.040 \text{ GeV}^2, \quad \langle \omega^1 \omega_1^0 g_{17} \rangle = 0.056 \pm 0.032 \text{ GeV}^3$
- 2019: add *six* non-zero moments [Gunawardna, GP '19]
 - $$\begin{split} &\langle \omega^0 \, \omega_1^2 \, g_{17} \rangle = 0.15 \pm 0.12 \, \, \text{GeV}^4, \quad \langle \omega^2 \, \omega_1^0 \, g_{17} \rangle = 0.015 \pm 0.021 \, \, \text{GeV}^4 \\ &\langle \omega^3 \, \omega_1^0 \, g_{17} \rangle = 0.008 \pm 0.011 \, \, \text{GeV}^5, \quad \langle \omega^1 \, \omega_1^1 \, g_{17} \rangle = 0.073 \pm 0.059 \, \, \text{GeV}^4 \\ &\langle \omega^2 \, \omega_1^1 \, g_{17} \rangle = -0.034 \pm 0.016 \, \, \text{GeV}^5, \quad \langle \omega^1 \, \omega_1^2 \, g_{17} \rangle = 0.027 \pm 0.014 \, \, \text{GeV}^5. \end{split}$$
- New estimate of uncertainty: Total rate \downarrow 50%, CP asymmetry \uparrow 33%

- $\bar{B}
 ightarrow X_s \gamma$ uncertainty depends on a soft function $g_{17}(\omega, \omega_1, \mu)$
- Moments in ω and ω_1 are related to HQET parameters

$$\langle \omega' \, \omega_1^k \, g_{17} \rangle \equiv \int_{-\infty}^{\bar{\Lambda}} d\omega \, \omega' \int_{-\infty}^{\infty} d\omega_1 \, \omega^k \, g_{17}(\omega, \omega_1, \mu) = \left(i v^{\rho} \epsilon_{\rho \mu \alpha_{\perp} \lambda} \bar{n}^{\mu} - g_{\alpha_{\perp} \lambda} \right) (-1)^k$$

$$\times \quad \frac{1}{2M_B} \langle \bar{B} | \bar{h} \, (in \cdot D)' \underbrace{\left[i \bar{n} \cdot D, \left[i \bar{n} \cdot D, \cdots \left[i \bar{n} \cdot D \right], \left[i D^{\alpha}, i \bar{n} \cdot D \right] \cdots \right] \right] s^{\lambda} h | \bar{B} \rangle.$$

$$k \text{ times}$$

- 2010: had *two* non-zero moments [Benzke, Lee, Neubert, GP, '10)] $\langle \omega^0 \, \omega_1^0 \, g_{17} \rangle = 0.237 \pm 0.040 \text{ GeV}^2, \quad \langle \omega^1 \, \omega_1^0 \, g_{17} \rangle = 0.056 \pm 0.032 \text{ GeV}^3$
- 2019: add six non-zero moments [Gunawardna, GP '19]

$$\begin{split} &\langle \omega^0 \, \omega_1^2 \, g_{17} \rangle = 0.15 \pm 0.12 \, \, \text{GeV}^4, \quad \langle \omega^2 \, \omega_1^0 \, g_{17} \rangle = 0.015 \pm 0.021 \, \, \text{GeV}^4 \\ &\langle \omega^3 \, \omega_1^0 \, g_{17} \rangle = 0.008 \pm 0.011 \, \, \text{GeV}^5, \quad \langle \omega^1 \, \omega_1^1 \, g_{17} \rangle = 0.073 \pm 0.059 \, \, \text{GeV}^4 \\ &\langle \omega^2 \, \omega_1^1 \, g_{17} \rangle = -0.034 \pm 0.016 \, \, \text{GeV}^5, \quad \langle \omega^1 \, \omega_1^2 \, g_{17} \rangle = 0.027 \pm 0.014 \, \, \text{GeV}^5. \end{split}$$

- New estimate of uncertainty: Total rate \downarrow 50%, CP asymmetry \uparrow 33%
- Using different models, some Λ_{QCD}^2/m_b^2 corrections, and larger m_c range, a smaller reduction was found in [Benzke, Hurth '20]

Future

Recent work: Inclusive |V_{ub}| from Belle data
 [L. Cao *et al.* [Belle], PRD **104**, 012008 (2021)]

• State of the art: theoretical framework developed before 2010

Recent work: Inclusive |V_{ub}| from Belle data
 [L. Cao *et al.* [Belle], PRD **104**, 012008 (2021)]

- State of the art: theoretical framework developed before 2010
- Can the theoretical prediction be improved?

Recent work: Inclusive |V_{ub}| from Belle data
 [L. Cao *et al.* [Belle], PRD **104**, 012008 (2021)]

- State of the art: theoretical framework developed before 2010
- Can the theoretical prediction be improved?
- Yes, many NNLO calculations are known:
- H, J at $\mathcal{O}(\alpha_s^2)$, j_i/m_b at $\mathcal{O}(\alpha_s)$, resolved photon contributions
- Not fully combined yet

Recent work: Inclusive |V_{ub}| from Belle data
 [L. Cao *et al.* [Belle], PRD **104**, 012008 (2021)]

- State of the art: theoretical framework developed before 2010
- Can the theoretical prediction be improved?
- Yes, many NNLO calculations are known:
- H, J at $\mathcal{O}(\alpha_s^2)$, j_i/m_b at $\mathcal{O}(\alpha_s)$, resolved photon contributions
- Not fully combined yet

[Gunawardana, Lange, Mannel, Olschewsky, Vos, GP, in progress]

Pictures

2002

(Picture taken by Stefan Bosch)

2002

(Picture taken by Stefan Bosch)

(Picture taken by Stefan Bosch)

BLNP 2002

(Picture taken by Stefan Bosch)

Outside the Grotta Azzurra Capri 2022

(Picture taken by an unknown photographer)

Acknowledgements from my Ph.D Dissertation

ACKNOWLEDGEMENTS

I would like to thank my advisor Matthias Neubert for his help, encouragement and for teaching me to always try to improve the work that we do.

 $(\mathrm{hep-ph}/0607217)$

• Matthias has made a tremendous contributions to Charmless Inclusive *B* decays

- Matthias has made a tremendous contributions to Charmless Inclusive *B* decays
- I had the pleasure of learning from him and collaborating on this topic

- Matthias has made a tremendous contributions to Charmless Inclusive *B* decays
- I had the pleasure of learning from him and collaborating on this topic
- Future progress: Belle II will improve $\bar{B} \rightarrow X_s \gamma$ and inclusive V_{ub}

- Matthias has made a tremendous contributions to Charmless Inclusive *B* decays
- I had the pleasure of learning from him and collaborating on this topic
- Future progress: Belle II will improve $\bar{B} \rightarrow X_s \gamma$ and inclusive V_{ub}
- I look forward to more work in this field

- Matthias has made a tremendous contributions to Charmless Inclusive *B* decays
- I had the pleasure of learning from him and collaborating on this topic
- Future progress: Belle II will improve $\bar{B} \rightarrow X_s \gamma$ and inclusive V_{ub}
- I look forward to more work in this field
- Congratulations to MITP on its 10th anniversary

- Matthias has made a tremendous contributions to Charmless Inclusive *B* decays
- I had the pleasure of learning from him and collaborating on this topic
- Future progress: Belle II will improve $\bar{B} \rightarrow X_s \gamma$ and inclusive V_{ub}
- I look forward to more work in this field
- Congratulations to MITP on its 10th anniversary

Happy Birthday Matthias!