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hopeless SMEFTSM + X

Why should there be any new physics that is light 
and weakly coupled? 
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Light new physics ?
Goldstone bosons
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V (�) = µ2��† + � (��†)2

� = (f + s)eia/f

m2
h = |µ2|m2

s = 4�f2

m2
a = 0

Every spontaneously broken 
continuous symmetry gives rise to 
massless spin-0 fields.
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Since the GB corresponds to the phase of a complex field, it is 
protected by a shift symmetry

it is protected by a shift symmetry

This symmetry forbids a mass term, and all couplings are 
suppressed by the UV scale
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� = (f + s)eia/f
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Goldstone bosons



An exactly massless boson is very problematic. 
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The global symmetry can be broken by 
explicit masses or anomalous effects

Small couplings correspond to small masses and a 
decoupled NP sector.
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The most famous example is the pion

m2
⇡ =

mu +md

f2
⇡

⇤3
QCD ⇡ (140MeV)2

hq̄LqRi = ⇤3
QCD ⇡ GeV3

LQCD = q̄Li /D qL + q̄Ri /D qR +mq q̄LqR

⇢, P,N

⇡

The pion mass is controlled by the explicit breaking 
through light quark masses
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Goldstone bosons
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2 The E↵ective ALP Lagrangian

In this section we summarise the important results from [55] and [30] which are relevant for
the phenomenology of an axion-like particle in flavor observables and in exotic decays of the
Higgs and Z bosons. In particular, we stress that renormalization-group (RG) e↵ects generate
ALP couplings to all gauge bosons, leptons and quarks even if only a single ALP coupling is
present at the UV scale. This has important consequences for the branching ratios of the ALP
to SM particles and ignoring RG e↵ects would lead to di↵erent constraints for any given ALP
model. In addition, many of the ALP searches discussed in Section 3 are relevant for a larger
class of models than one would naively expect from the coupling structure in the UV.

2.1 The ALP Lagrangian at the UV scale

We consider a new pseudoscalar resonance, a, whose couplings to SM fields are protected by
an approximate shift symmetry a ! a + c at the classical level which is only broken by the
mass term m

2
a,0. The most general e↵ective Lagrangian including operators of dimension up

to 5 and invariant under the SM gauge group reads [56]
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(2.1)

Here Ga
µ⌫ , W

A
µ⌫ and Bµ⌫ are the field strength tensors of the SM gauge group SU(3)c, SU(2)L

and U(1)Y , B̃µ⌫ = 1
2✏

µ⌫↵�
B↵� etc. (with ✏

0123 = 1) are the dual field strength tensors, and
↵s = g

2
s/(4⇡), ↵2 = g

2
/(4⇡) and ↵1 = g

0 2
/(4⇡) denote the corresponding coupling parameters.

The sum in the first line extends over the chiral fermion multiplets F of the SM and the Higgs
doublet is denoted by �. The quantities cF are 3⇥3 hermitian matrices in generation space
and together with the ALP couplings to gauge bosons cGG, cWW , cBB and to the Higgs doublet
c�, there are 49 real parameters in the Lagrangian. The five global U(1) symmetries of the
SM (individual lepton numbers, baryon number, and hypercharge) can be used to remove
five of these, resulting in 44 real physical parameters. This can be seen by examining the
transformation of the full Lagrangian under these global symmetries. We define QF as the
charge matrix of the fermion F and Q� as the charge of the Higgs doublet under one of these

symmetries, such that e.g. Q(B)
d  d =

1
3  d gives the baryon number of the down type quarks.

Then a field redefinition

 F ! exp

✓
ic
a

f
QF

◆
 F , � ! exp

✓
ic
a

f
Q�

◆
�, (2.2)

6

Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)

Most general dimension five Lagrangian at the UV scale 

Axionlike particles

All couplings are suppressed by the UV scale f
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Most general dimension five Lagrangian at the UV scale 

Axionlike particles

All couplings are suppressed by the UV scale f

explicit mass term couplings to fermions
coupling to the Higgs current

coupling to gluons
coupling to SU(2)L gauge bosons

coupling to hypercharge

F=Q,u,d,L,e
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This Lagrangian captures all possible ALP coupling structures up 
to dimension 5.

Axionlike particles

It is easy to imagine scenarios in which a single coupling 
dominates:

For example: A UV theory in which the ALP couples only to SU(2)L 
gauge bosons
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Axionlike particles
For example: A UV theory in which the ALP couples only to SU(2)L 
gauge bosons
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ALPs at different scales

unknown UV theory

SM

SM below EW scale 

Chiral Lagrangian
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symmetry 
breaking

MB, Neubert, Renner, Schnubel,  
Thamm,  JHEP 04 (2021) 063 

Chala et al.,   
Eur.Phys.J.C 81 (2021) 2

MB, Neubert, Renner, Schnubel,  
Thamm, 2102.13112, PRL. 127 

https://arxiv.org/abs/2102.13112
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•The gauge boson couplings do not run  

• Neither are there matching contributions at 1-loop 

MB, Neubert, Renner, Schnubel,  
Thamm, 2102.13112

MB, Neubert, Renner, Schnubel,  
Thamm,  JHEP 04 (2021) 063 

Chala et al.,   
Eur.Phys.J.C 81 (2021) 2

section captures the leading contributions in each coupling irrespective of the relative magni-
tude of the ALP–boson and ALP–fermion couplings in the high-energy theory. We emphasize,
however, that in cases where the coe�cients cV V and cF are of similar magnitude, one-loop
diagrams involving the coe�cients cV V have the same scaling as two-loop diagrams involving
the coe�cients cF , see Figure 2. For consistency, we thus include all two-loop contributions
in the gauge couplings in the RG equations for the ALP–fermion couplings.

3 Renormalization-group evolution to the weak scale

The e↵ective Lagrangian (1) is assumed to arise from integrating out some new heavy par-
ticles at a scale ⇤ = 4⇡f far above the weak scale. Assuming the ALP mass is small – of
order 100GeV or less – we can evolve the Wilson coe�cients and operators in the e↵ective
Lagrangian down to the scale of electroweak symmetry breaking by solving their RG equa-
tions. We now derive the explicit form of these equations, working consistently at two-loop
order in gauge couplings and one-loop order in Yukawa interactions. These are the lowest or-
ders at which these interactions contribute to the evolution equations for the ALP couplings.
In models in which the boson couplings are enhanced over the fermion ones, the two-loop
gauge contributions can give rise to the dominant evolution e↵ects. Two-loop corrections in
the Yukawa couplings, or mixed two-loop gauge–Yukawa contributions, are neglected in our
approach. They would give rise to small multiplicative corrections of the fermion couplings,
but they do not introduce new ALP coupling parameters on the right-hand side of the evo-
lution equations. Thus, there is no scenario in which these neglected two-loop contributions
could give rise to dominant e↵ects. Some technical details of our derivations are relegated to
Appendix A. The RG equations for the ALP couplings appearing in the alternative form of
the e↵ective Lagrangian in (9) can be derived from the equations below in a straightforward
way. They are discussed in Appendix B.

3.1 Derivation of the RG evolution equations

Pulling out one factor of ↵i in the definitions of the ALP couplings to gauge fields in (1)
ensures that the Wilson coe�cients cV V are scale independent (at least up to two-loop order
in gauge couplings), i.e.

d

d lnµ
cV V (µ) = 0 ; V = G,W,B . (17)

For the QCD coe�cient cGG this follows from the explicit calculations performed in [77], and
an analogous statement holds for cWW and cBB. This is di↵erent from the case of a scalar
(CP-even) field coupled to two gauge fields, in which the corresponding couplings exhibit a
non-trivial RG evolution starting at two-loop order [78, 79]. We have checked explicitly that
the one-loop diagrams involving the scalar Higgs doublet do not give rise to a scale dependence
of the coe�cients cWW and cBB either. The contributions from these graphs are absorbed by
the renormalization of the gauge couplings.

The Wilson coe�cients cF of the ALP interactions with fermions in (1) are scale-dependent
quantities and satisfy rather complicated RG equations. At one-loop order there are contri-
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Running and matching at the weak scale

• The running and matching of ALP fermion couplings receives 
various contributions

Bardeen et al. Nucl. Phys. B 535,(1998)  
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V f
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t

Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)

i
· 10�3 ,

cdd,ss(mt) ' cdd,ss(⇤) + 0.116 ctt(⇤)�
h
7.08 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

cbb(mt) ' cbb(⇤) + 0.097 ctt(⇤)�
h
7.02 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

ceiei(mt) ' ceiei(⇤) + 0.116 ctt(⇤)�
h
0.37 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.05 c̃BB(⇤)

i
· 10�3 .

(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)

ctt
↵t

⇡
ln

⇤2

m2
t

, (0.20)

7
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Running and matching at the weak scale

The ALP Lagrangian at the weak scale can be written as

4 Transformation to the mass basis

Once the e↵ective Lagrangian has been evolved to the weak scale µw, it is appropriate to
express it in terms of fields defined in the broken phase of the electroweak symmetry, which
correspond to the mass eigenstates of physical particles. This leads to
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(39)
where sw ⌘ sin ✓W and cw ⌘ cos ✓W denote the sine and cosine of the weak mixing angle, and
we have defined [22]

c�� = cWW + cBB , c�Z = c
2
w cWW � s

2
w cBB , cZZ = c

4
w cWW + s

4
w cBB . (40)

All coupling parameters and operators in (39) are now defined at the weak scale µw. Recall
that the Wilson coe�cients cV V are scale independent.

To obtain the ALP interactions with fermions contained in Lferm we must transform the
fermion fields to the mass basis, in which the Yukawa matrices are diagonalized, see (21).
Under the corresponding field redefinitions the flavor matrices cF transform into new hermitian
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(41)

Note that the two matrices kU and kD are connected via the CKM matrix V , such that
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and are therefore not independent. Likewise, the ALP couplings to the neutrinos are identical
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The matrices kF and kf are evaluated at the scale µw. The corresponding expressions can be
obtained from the results compiled in Section 3.2 by recalling that these relations have been
derived in a basis for which all transformation matrices are equal to the unit matrix except
for Ud = V . It thus follows that kU = cQ, kE = k⌫ = cL, ku,d,e = cu,d,e, while kD = V †cQV .

It is instructive to study what the hypothesis of minimal flavor violation [65] implies for the
structure of the ALP–fermion couplings after electroweak symmetry breaking. Transforming
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)

i
· 10�3 ,

cdd,ss(mt) ' cdd,ss(⇤) + 0.116 ctt(⇤)�
h
7.08 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

cbb(mt) ' cbb(⇤) + 0.097 ctt(⇤)�
h
7.02 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

ceiei(mt) ' ceiei(⇤) + 0.116 ctt(⇤)�
h
0.37 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.05 c̃BB(⇤)

i
· 10�3 .

(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)

ctt
↵t

⇡
ln

⇤2

m2
t

, (0.20)
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weak scale, we define the ALP Lagrangian in the broken phase of the electroweak symmetry
in terms of the SM mass eigenstates:
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where sw ⌘ sin ✓W and cw ⌘ cos ✓W denote the sine and cosine of the weak mixing angle, and
[? ]

c�� = cWW + cBB , c�Z = c2w cWW � s2w cBB , cZZ = c4w cWW + s4w cBB . (0.11)

The ALP couplings to fermions are defined in the fermion mass basis and read

Lfermion(µ) =
@µa

f
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ūL kU(µ) �µ uL + ūR ku(µ) �µ uR + d̄L kD(µ) �µ dL + d̄R kd(µ) �µ dR

+ ⌫̄L k⌫(µ) �µ ⌫L + ēL kE(µ) �µ eL + ēR ke(µ) �µ eR
i
. (0.12)

They are related to the flavor matrices cF in (0.1) by the unitary rotations which diagonalize
the SM Yukawa matrices. The two matrices kU and kD are connected via the CKM matrix,
such that

kD = V †kUV , (0.13)

and are therefore not independent. Likewise, the ALP couplings to neutrinos are identical to
those to the left-handed charged leptons, i.e. k⌫ = kE.

The flavor-conserving ALP couplings to axial-vector currents of the SM fermions play a
particularly important role. We define

cfifi(µ) ⌘ [kf (µ)]ii � [kF (µ)]ii . (0.14)

In QCD and electromagnetic processes, the flavor-conserving vector currents are conserved,
and hence the corresponding ALP couplings [kf (µ)]ii + [kF (µ)]ii are unobservable.1 Choosing
f = 1TeV as a reference value, one finds that RG evolution e↵ects from the new-physics scale
⇤ = 4⇡f down to the scale µw = mt modify the ALP coupling to the top quark according to
[? ]

ctt(mt) ' 0.826 ctt(⇤)�
⇥
6.17 c̃GG(⇤) + 0.23 c̃WW (⇤) + 0.02 c̃BB(⇤)

⇤
· 10�3 , (0.15)

where the admixtures from the ALP–boson couplings are expressed in terms of the physical
coupling parameters defined in (0.8) and therefore involve the ALP–fermion couplings as well.

1This is no longer true in weak-interaction processes, where di↵erences of the vectorial couplings to di↵erent
quark flavors can appear in predictions for weak decay amplitudes [? ].
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contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]
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As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)
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are integrated out have been studied in detail in [? ]. One finds that

[ku(µw)]ij = [ku(⇤)]ij ; i, j 6= 3 ,

[kU(µw)]ij = [kU(⇤)]ij ; i, j 6= 3 ,

[kd(µw)]ij = [kd(⇤)]ij ,

[ke(µw)]ij = [ke(⇤)]ij ,

[kE(µw)]ij = [kE(⇤)]ij .

(0.24)

Note that for ku and kU we only need the entries where i, j 6= 3, since the top quark has been
integrated out in the e↵ective theory below the weak scale. For the o↵-diagonal elements of
the coe�cient kD one obtains the more interesting result

⇥
kD(µw)

⇤
ij
=

⇥
kD(⇤)

⇤
ij
� V ⇤

miVnj (�m3 + �n3 � 2�m3�n3)
�
1� e�U(µw,⇤)

�
[kU(⇤)]mn

�
1

6
V ⇤
3iV3j It(µw,⇤) +

⇥
�̂kD(µw)

⇤
ij
,

(0.25)

where the evolution functions U(µw,⇤) and It(µw,⇤) are defined as

U(µw,⇤) = �

Z µw

⇤

dµ

µ

y2t (µ)

32⇡2
, It(µw,⇤) =

Z µw

⇤

dµ

µ

3y2t (µ)

8⇡2
ctt(µ) , (0.26)

while the matching contribution [�̂kD(µw)]ij can be found in eq. (5.7) of [? ]. Via these
evolution functions, ALP couplings to any SM field at the UV scale will, at some loop order,
produce logarithmically-enhanced contributions to flavor-changing down-type quark couplings
below the electroweak scale. We will make use of this important point in Section ?? to place
new constraints on individual ALP couplings defined at the UV scale, by calculating their
flavor e↵ects to leading logarithmic approximation via these equations.

The above results simplify significantly if the ALP Lagrangian at the UV scale ⇤ respects
the principle of minimal flavor violation [? ]. One then finds that [? ]

⇥
kU(µw)

⇤
ij
=

⇥
ku(µw)

⇤
ij
=

⇥
kd(µw)

⇤
ij
=

⇥
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⇤
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=

⇥
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ij
= 0 , (0.27)

whereas
⇥
kD(µw)

⇤
ij
=

⇥
kD(⇤)

⇤
ij
+ V ⇤
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1� xt + xt ln xt

(1� xt)
2

��
,

(0.28)

with xt = m2
t/m

2
W . The explicit solution for the evolution function It(µw,⇤) involves again

the ALP couplings ctt and c̃V V . For the reference scale f = 1TeV, one finds numerically (for
i 6= j)

[kD(mt)]ij ' [kD(⇤)]ij + 0.019V ⇤
tiVtj

h
ctt(⇤)� 0.0032 c̃GG(⇤)� 0.0057 c̃WW (⇤)

i
. (0.29)
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new constraints on individual ALP couplings defined at the UV scale, by calculating their
flavor e↵ects to leading logarithmic approximation via these equations.

The above results simplify significantly if the ALP Lagrangian at the UV scale ⇤ respects
the principle of minimal flavor violation [? ]. One then finds that [? ]

⇥
kU(µw)

⇤
ij
=

⇥
ku(µw)

⇤
ij
=

⇥
kd(µw)

⇤
ij
=

⇥
kE(µw)

⇤
ij
=

⇥
ke(µw)

⇤
ij
= 0 , (0.27)

whereas
⇥
kD(µw)

⇤
ij
=

⇥
kD(⇤)

⇤
ij
+ V ⇤

tiVtj

⇢
�

1

6
It(µw,⇤)

+
↵t(µw)

4⇡


ctt(µw)

✓
1

2
ln

µ2
w

m2
t

�
1

4
�

3

2

1� xt + ln xt

(1� xt)
2

◆

�
3↵

2⇡s2w
c̃WW (µw)

1� xt + xt ln xt

(1� xt)
2

��
,

(0.28)

with xt = m2
t/m

2
W . The explicit solution for the evolution function It(µw,⇤) involves again

the ALP couplings ctt and c̃V V . For the reference scale f = 1TeV, one finds numerically (for
i 6= j)

[kD(mt)]ij ' [kD(⇤)]ij + 0.019V ⇤
tiVtj

h
ctt(⇤)� 0.0032 c̃GG(⇤)� 0.0057 c̃WW (⇤)

i
. (0.29)

9

Flavor violation can come from the UV theory or from the SM
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Running below the EW scale
Running below the weak scale affects only flavor-diagonal ALP 
fermion couplings (running to 2 GeV)

Note the important fact that even under the assumption of minimal flavor violation the coef-
ficients [kD(⇤)]ij are not restricted to be flavor-diagonal. Instead,

⇥
kD(⇤)

⇤
ij
= V ⇤

tiVtj

⇣
[kU(⇤)]33 � [kU(⇤)]11

⌘
, (0.30)

which can be non-zero because minimal flavor violation allows the possibility that [kU(⇤)]33 6=
[kU(⇤)]11.

RG evolution below the weak scale

The flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in the approxi-
mation where the Yukawa couplings of the light quarks are set to zero). The flavor-diagonal
couplings cff (µ) are still scale dependent at low energies due to loop diagrams involving glu-
ons or photons. The evolution of these coe�cients from the scale µw = mt to the low scale
µ0 = 2GeV yields [? ]

cqq(µ0) = cqq(mt) +
h
3.0 c̃GG(⇤)� 1.4ctt(⇤)� 0.6 cbb(⇤)

i
· 10�2

+Q2
q

h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2cbb(⇤)

i
· 10�5 ,

c``(µ0) = c``(mt) +
h
3.9 c̃��(⇤)� 4.7ctt(⇤)� 0.2cbb(⇤)

i
· 10�5 .

(0.31)

SR: Is there a sign error in the coe�cient of c̃GG(⇤)? For an ALP lighter than the
scale µ0, the interactions with hadrons and photons are a↵ected by non-perturbative hadronic
e↵ects. These can be studied in a systematic way using an e↵ective chiral Lagrangian.

0.4 ALP couplings to mesons in the chiral Lagrangian

At the scale µ0 ⇡ 2GeV it is appropriate to match the Lagrangian (0.18) to a chiral e↵ective
theory [? ? ? ? ]. The ALP–gluon coupling in the Lagrangian can be eliminated by
performing a chiral rotation of the quark fields,

q(x) ! exp


�iq�5 cGG

a(x)

f

�
q(x) , (0.32)

where q(x) is a 3-component object containing the light-quark fields u(x), d(x) and s(x). The
transformation parameters q are hermitian matrices, which we choose to be diagonal in the
quark mass basis. The condition Trq = 1 is necessary to remove the ALP–gluon coupling
from the Lagrangian. As long as this condition is satisfied, any choice of q leads to an e↵ective
chiral Lagrangian describing the same physics. One obtains

L
�
e↵ =

f 2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f 2
⇡

4
B0 Tr

⇥
m̂q(a)⌃

† + h.c.
⇤

+
1

2
@µa @µa�

m2
a,0

2
a2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃

µ⌫ ,

(0.33)
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)

i
· 10�3 ,

cdd,ss(mt) ' cdd,ss(⇤) + 0.116 ctt(⇤)�
h
7.08 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

cbb(mt) ' cbb(⇤) + 0.097 ctt(⇤)�
h
7.02 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

ceiei(mt) ' ceiei(⇤) + 0.116 ctt(⇤)�
h
0.37 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.05 c̃BB(⇤)

i
· 10�3 .

(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)

ctt
↵t

⇡
ln

⇤2

m2
t

, (0.20)

7
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Matching to the chiral Lagrangian

The chiral Lagrangian + ALP then reads

Note the important fact that even under the assumption of minimal flavor violation the coef-
ficients [kD(⇤)]ij are not restricted to be flavor-diagonal. Instead,

⇥
kD(⇤)

⇤
ij
= V

⇤
tiVtj

⇣
[kU(⇤)]33 � [kU(⇤)]11

⌘
, (2.30)

which can be non-zero because minimal flavor violation allows the possibility that [kU(⇤)]33 6=
[kU(⇤)]11.

RG evolution below the weak scale

The flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in the approxi-
mation where the Yukawa couplings of the light quarks are set to zero). The flavor-diagonal
couplings cff (µ) are still scale dependent at low energies due to loop diagrams involving glu-
ons or photons. The evolution of these coe�cients from the scale µw = mt to the low scale
µ0 = 2GeV yields [30]

cqq(µ0) = cqq(mt) +
h
3.0 c̃GG(⇤) � 1.4ctt(⇤) � 0.6 cbb(⇤)

i
· 10�2

+Q
2
q

h
3.9 c̃��(⇤) � 4.7ctt(⇤) � 0.2cbb(⇤)

i
· 10�5

,

c``(µ0) = c``(mt) +
h
3.9 c̃��(⇤) � 4.7ctt(⇤) � 0.2cbb(⇤)

i
· 10�5

.

(2.31)

SR: Is there a sign error in the coe�cient of c̃GG(⇤)? For an ALP lighter than the
scale µ0, the interactions with hadrons and photons are a↵ected by non-perturbative hadronic
e↵ects. These can be studied in a systematic way using an e↵ective chiral Lagrangian.

2.4 ALP couplings to mesons in the chiral Lagrangian

At the scale µ0 ⇡ 2GeV it is appropriate to match the Lagrangian (2.18) to a chiral e↵ective
theory [32, 64, 65, 77]. The ALP–gluon coupling in the Lagrangian can be eliminated by
performing a chiral rotation of the quark fields,

q(x) ! exp


�iq�5 cGG

a(x)

f

�
q(x) , (2.32)

where q(x) is a 3-component object containing the light-quark fields u(x), d(x) and s(x). The
transformation parameters q are hermitian matrices, which we choose to be diagonal in the
quark mass basis. The condition Trq = 1 is necessary to remove the ALP–gluon coupling
from the Lagrangian. As long as this condition is satisfied, any choice of q leads to an e↵ective
chiral Lagrangian describing the same physics. One obtains

L�
e↵ =

f
2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f
2
⇡

4
B0 Tr

⇥
m̂q(a)⌃

† + h.c.
⇤

+
1

2
@
µ
a @µa �

m
2
a,0

2
a
2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃

µ⌫
,

(2.33)

15where
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Matching to the chiral Lagrangian

2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��

q

�
e�i��

q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
e↵ =

f2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f2
⇡

4
B0Tr

⇥
m̂q(a)⌃

†+h.c.
⇤

+
1

2
@µa @µa �

m2
a,0

2
a2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

This matching is not new. It has first been performed by Georgi, 
Kaplan and Randall, but they used 
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symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which
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son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp
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q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)
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where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that
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�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-
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where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp
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where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term
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up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0
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with the mixing angle
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a (ĉuu � ĉdd)
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where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

missing the additional contribution from the ALP in the current:

This is an important omission and can be cross-checked by 
demanding independence of physical observables from the 
unphysical kappa parameters.
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Matching to the chiral Lagrangian

The chiral Lagrangian + ALP then reads

Note the important fact that even under the assumption of minimal flavor violation the coef-
ficients [kD(⇤)]ij are not restricted to be flavor-diagonal. Instead,

⇥
kD(⇤)

⇤
ij
= V

⇤
tiVtj

⇣
[kU(⇤)]33 � [kU(⇤)]11

⌘
, (2.30)

which can be non-zero because minimal flavor violation allows the possibility that [kU(⇤)]33 6=
[kU(⇤)]11.

RG evolution below the weak scale

The flavor o↵-diagonal Wilson coe�cients do not run below the weak scale (in the approxi-
mation where the Yukawa couplings of the light quarks are set to zero). The flavor-diagonal
couplings cff (µ) are still scale dependent at low energies due to loop diagrams involving glu-
ons or photons. The evolution of these coe�cients from the scale µw = mt to the low scale
µ0 = 2GeV yields [30]

cqq(µ0) = cqq(mt) +
h
3.0 c̃GG(⇤) � 1.4ctt(⇤) � 0.6 cbb(⇤)

i
· 10�2

+Q
2
q

h
3.9 c̃��(⇤) � 4.7ctt(⇤) � 0.2cbb(⇤)

i
· 10�5

,

c``(µ0) = c``(mt) +
h
3.9 c̃��(⇤) � 4.7ctt(⇤) � 0.2cbb(⇤)

i
· 10�5

.

(2.31)

SR: Is there a sign error in the coe�cient of c̃GG(⇤)? For an ALP lighter than the
scale µ0, the interactions with hadrons and photons are a↵ected by non-perturbative hadronic
e↵ects. These can be studied in a systematic way using an e↵ective chiral Lagrangian.

2.4 ALP couplings to mesons in the chiral Lagrangian

At the scale µ0 ⇡ 2GeV it is appropriate to match the Lagrangian (2.18) to a chiral e↵ective
theory [32, 64, 65, 77]. The ALP–gluon coupling in the Lagrangian can be eliminated by
performing a chiral rotation of the quark fields,

q(x) ! exp


�iq�5 cGG

a(x)

f

�
q(x) , (2.32)

where q(x) is a 3-component object containing the light-quark fields u(x), d(x) and s(x). The
transformation parameters q are hermitian matrices, which we choose to be diagonal in the
quark mass basis. The condition Trq = 1 is necessary to remove the ALP–gluon coupling
from the Lagrangian. As long as this condition is satisfied, any choice of q leads to an e↵ective
chiral Lagrangian describing the same physics. One obtains

L�
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f
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⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f
2
⇡

4
B0 Tr

⇥
m̂q(a)⌃
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⇤

+
1

2
@
µ
a @µa �

m
2
a,0

2
a
2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃

µ⌫
,

(2.33)
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by

Lji
µ = �

if2
⇡

4
e
i(��

qi
���

qj
)a/f ⇥

⌃ (Dµ⌃)†
⇤ji

3 �
if2

⇡

4


1 + i(�qi � �qj � qi + qj ) cGG
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f

� ⇥
⌃ @µ⌃

†⇤ji

+
f2
⇡

4

@µa

f

⇥
k̂Q �⌃ k̂q⌃

†⇤ji . (13)

This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second

⇡�⇡� ⇡�

g8

K�

K�

a

K�

⇡�

⇡�⇡�

a

K�

a
⇡0

K� ⇡�

a

K�

K�

g8 g8

a

g8

a

g8

⌘

FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
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kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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Weak decays into axions in �PT

1 ALP-meson mixing and physical states

Starting with a very simple Lagrangian with only couplings of the ALP to gluons in the UV
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and rotate the ALP-gluon coupling away through a redefinition of the quark fields
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The chiral Lagrangian is constructed by identifying the currents in the quark theory and
identify them with the currents in the chiral Lagrangian,
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Besides the phase factor rescaling the quark fields (2) this also implies a shift of the covariant
derivative in the chiral theory
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{ĉqq,⌃}

= iDµ⌃�
@µa

2f
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !
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octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
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kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.

The e↵ective chiral Lagrangian (7) can also be used
to study flavor-changing processes such as K�

! ⇡�a
and ⇡�

! e�⌫̄ea, which in the SM are mediated by the
weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second

⇡�⇡� ⇡�

g8

K�

K�

a

K�

⇡�

⇡�⇡�

a

K�

a
⇡0

K� ⇡�

a

K�

K�

g8 g8

a

g8

a

g8

⌘

FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
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The kappa dependence reads
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only to condition (3). We study in detail how the depen-
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In the literature ALP (or axion) pion mixing is sometimes 
introduced as a measurable quantity, but this is not correct
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2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��

q

�
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q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form
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(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
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,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
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�
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where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
e↵ =

f2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f2
⇡

4
B0Tr

⇥
m̂q(a)⌃

†+h.c.
⇤

+
1

2
@µa @µa �

m2
a,0

2
a2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

2

symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
kQ + ��

q

�
e�i��

q a/f ,

k̂q(a) = ei�
+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
e↵ =

f2
⇡

8
Tr

⇥
Dµ⌃ (Dµ⌃)†

⇤
+

f2
⇡

4
B0Tr

⇥
m̂q(a)⌃

†+h.c.
⇤

+
1

2
@µa @µa �

m2
a,0

2
a2 + ĉ��

↵

4⇡

a

f
Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

AK+!a⇡+ 6= ✓AK+!⇡0⇡+
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The full amplitude is completely general 

4

D4 3 �
N8

f
cGG m2

K (�u � �d) ,

D5 3
N8

f
cGG m2

⇡ (�u � �s) , (15)

while the last diagram is scheme independent. Via the
mixing angles ✓⇡a and ✓⌘a the results for D1 and D2 de-
pend on the q parameters, see (10). The expressions for
D4 and D5, on the other hand, depend only on the �q
parameters. Only the third diagram, in which the ALP
is emitted from the weak-interaction vertex, depends on
both sets of parameters. In the sum of all contribu-
tions the dependence on the auxiliary parameters cancels
(apart from an unambiguous contribution proportional to
u + d + s = 1). But this cancellation only works if
the derivative ALP interactions in (13) are included.

Adding up all contributions, we obtain for the decay
amplitude (for mu = md)

iAK�!⇡�a =
N8

4f


16cGG

(m2
K � m2

⇡)(m
2
K � m2

a)

4m2
K � m2

⇡ � 3m2
a

+ 6(cuu + cdd � 2css)m2
a

m2
K � m2

a

4m2
K � m2

⇡ � 3m2
a

+ (2cuu + cdd + css) (m
2
K � m2

⇡ � m2
a) + 4cssm2

a

+ (kd + kD � ks � kS) (m
2
K + m2

⇡ � m2
a)

�

�
m2

K � m2
⇡

2f
[kq + kQ]

23 . (16)

Note that the transition K�
! ⇡�a proceeds via the

dynamically enhanced octet operator, whereas the corre-
sponding decay K�

! ⇡�⇡0 receives contributions from
the 27-plet operator with isospin change �I = 3

2 only.
This e↵ect is well known and is referred to as “octet en-
hancement” [9, 10]. Attempts to estimate the K�

! ⇡�a
decay rate as ✓2

⇡a times the K�
! ⇡�⇡0 rate miss this

important e↵ect. Another interesting feature of the re-
sult (16) is its dependence on the flavor-conserving ALP
vector couplings (kd + kD) and (ks + kS) to down and
strange quarks. In the presence of the weak interactions
the currents d̄�µd and s̄�µs are not individually con-
served (unlike in QCD), and hence these couplings can
have observable e↵ects.

In order to compare our result (16) with some previous
calculations, we work to leading order in the ratio m̄/ms,
consider the limit where m2

a ⌧ m2
K and assume the case

of a minimal flavor-violating ALP, for which css = cdd
and kd + kD = ks + kS [19]. We then obtain the simple
result (still with mu = md, neglecting the small 27-plet
contributions, and setting 1/fa = �2cGG/f)

AK�!⇡�a ⇡
im2

K

2fa

"
N8

✓
1 +

cuu + cdd
2cGG

◆
�

[kq + kQ]
23

2cGG

#
.

(17)
Barring cancellations, the contribution proportional to
N8 dominates as long as |[kq + kQ]23/cGG| ⌧ 3 · 10�7,

which we assume from now on. Eliminating the parame-
ter N8 via the KS ! ⇡+⇡� decay amplitude, we obtain

Br(K�
! ⇡�a)

Br(KS ! ⇡+⇡�)
⇡

⌧K�

⌧KS

f2
⇡

8f2
a


1 +

cuu + cdd
2cGG

�2

. (18)

For a long-lived ALP with mass ma ⌧ m⇡, the upper
limit Br(K�

! ⇡�X) < 2.0 · 10�10 (90% CL) reported
by NA62 [30] from a search for a feebly interacting new
particle X implies

1

fa

����1 +
cuu + cdd
2cGG

���� <
1

31.9TeV
. (19)

Estimating the weak-interaction contribution to the de-
cay amplitude from kinetic ALP–meson mixing (see e.g.
[14–16]) corresponds to retaining only the first two dia-
grams in Figure 1, evaluated with the default choice of q

parameters. Under the approximations described above
this leads to

AK�!⇡�a ⇡
iN8m2

a

8fa

✓
1�

cuu � cdd
2cGG

◆
, (20)

which underestimates the amplitude by a factor
m2

a/(4m
2
K) and predicts the wrong sign for the contri-

bution proportional to cuu. If mass mixing with the ⌘0 is
included, one finds an additional small contribution pro-
portional to sin ✓⌘⌘0 m2

⇡/m2
K [15, 16] relative to the lead-

ing term in our result. The authors of [13] performed a
more careful evaluation of the K�

! ⇡�a decay rate for
the case of a QCD axion (m2

a ⇡ 0) without couplings to
matter (cqq = 0). In this case diagrams D1 and D2 van-
ish when one adopts the default choice of q parameters,
and the graphs D4 and D5 vanish if one chooses �q = 0.
In the evaluation of the third diagram the authors omit-
ted the derivative couplings of the axion shown by the
last term in (13). They obtained (this formula was not
explicitly shown in the paper, but we have derived it from
their arguments and the presented numerical result)

AK�!⇡�a ⇡
iN8m2

K

4fa

mu

mu + md
. (21)

This contribution to the amplitude is smaller than the
corresponding term in (17) by a factor mu

2(mu+md) ⇡ 0.16,
corresponding to an underestimation of the branching ra-
tio by about a factor 37. (In [13] the authors state that
they have derived the same result in a di↵erent scheme
with �q = q, in which the ALP is removed from the
weak-interaction vertex. With their omission, we can-
not reproduce that the two treatments lead to the same
expression.)
We have also applied our matching prescription (13) to

derive the ⇡�
! e�⌫̄ea decay amplitude, finding again a

result that is independent of the choice of the �q and q

The GKR paper only considered a gluon couplings and in that 
case the (wrong) result is smaller by a factor

mu

2(mu +md)
= 0.16
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Including all contributions one finds numerically

For a given benchmark the prediction can be read off, e.g. 

cGG•only         :  The “chiral contribution” (g8) dominates    
cWW•only          : The “RGE ” contribution dominates         

decays are given at leading order by

�(K� ! ⇡
�
a) =

1

16⇡mK

��A(K� ! ⇡
�
a)
��2 �1/2

✓
m

2
⇡

m2
K

,
m

2
a

m2
K

◆
, (3.3)

�(KL ! ⇡
0
a) =

1

16⇡mK

⇥
A(KL ! ⇡

0
a)
⇤2
�
1/2

✓
m

2
⇡

m2
K

,
m

2
a

m2
K

◆
, (3.4)

where
�(ri, rj) = 1 + r

2
i + r

2
j � 2ri � 2rj � 2rirj . (3.5)

The amplitude A(K� ! ⇡
�
a) is given in (2.44) and the amplitude for KL ! ⇡

0
a gets

a contribution proportional to CP violation from kaon decay and from CP violation from
mixing, SR: in the below equation, maybe should rewrite so that it’s clear that the
strong phase plays no role? Also the numerical KL amplitude needs checking. Is
there a more standard notation for the CKM angles or is this ok?

iA(KL ! ⇡
0
a) =

p
2
⇣
Im[iA(K0 ! ⇡

0
a)] � ✏Re[iA(K0 ! ⇡

0
a)]

⌘
, (3.6)

where ✏ = 2.3 · 10�3 |✏| = 2.23 · 10�3 is the CP impurity paramter? [86] and the amplitude
iA(K0 ! ⇡

0
a) is given in (2.45). It is important to emphasize that kaon decays into ALPs

are dependent on all couplings in the Lagrangian (2.18), and that in general an ALP with
couplings defined at ⇤ will generate contributions to the amplitudes (2.44) and (2.45) both
via the weak octet operator and via the explicit flavor changing couplings [kd + kD]12. Both
contributions can be important even if the ALP couplings at ⇤ are flavor conserving, since
flavor violating e↵ects are generated by running and matching to the scale of the measurement.
For example, for couplings defined at ⇤ = 4⇡f , f = 1 TeV, and with ma = 0, and assuming
flavor universal and diagonal fermion couplings, we find the amplitude for charged kaon decay
is numerically

iA(K� ! ⇡
�
a) = 10�11 GeV


1TeV

f

�
e
i(�8+�s)

h
� 3.3 cGG � 1.6

�
c
ii
u (⇤) + c

ii
d (⇤)

�
+ 3.2ciiQ(⇤)

+ 6.8 · 10�4
cWW + 4.1 · 10�5

cBB � 1.1 · 10�3
c
ii
L(⇤) + 1.2 · 10�4

c
ii
e (⇤)

i

+ 10�11 GeV


1TeV

f

�
e
�i�s

h
� 0.24cGG � 0.37ciid (⇤) + 76 ciiu(⇤) � 75 ciiQ(⇤)

� 0.12cWW � 6.3 · 10�4
cBB + 1.6 · 10�2

c
ii
L(⇤) � 1.9 · 10�3

c
ii
e (⇤)

i
, (3.7)

where �s and �s are the angles of the relevant CKM unitarity triangle, defined as

�s = arg


�VcdV

⇤
cs

VtdV
⇤
ts

�
, �s = arg


�VudV

⇤
us

VcdV
⇤
cs

�
. (3.8)

Under the same assumptions, the amplitude for KL decay is

iA(KL ! ⇡
0
a) = 10�11 GeV


1TeV

f

� h
� 7.5 · 10�3

cGG � 7.9 · 10�4
c
ii
u(⇤) � 7.4 · 10�3

c
ii
d (⇤)
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We can now use these results to put 
limits on ALPs. Lets consider the 
case of a pure SU(2) coupling in the 
UV  

decays reconsideredK� ! ⇡�a

Current limits from  
K+ ! ⇡+ + invisible

K+ ! ⇡+ + ��

E949, Phys Lett B623 (2005) 
NA62 Phys. Lett B536 (2014)

Observable Mass Range [MeV] Measurement SM prediction

Br(K+ ! ⇡
+
��) m�� < 108 < 8.3 ⇥ 10�9 [136] 6.1 ⇥ 10�9 [215]

Br(K+ ! ⇡
+
��) 220 < m�� < 354 (9.65 ± 0.63) ⇥ 10�7 [137] (10.8 ± 1.7) ⇥ 10�7 [215]†

Br(K0
L ! ⇡

0
��) m�� < 110 < 0.6 ⇥ 10�8 [138] (8+7

�5) ⇥ 10�8 [216]⇤
Br(K0

L ! ⇡
0
��) m�� < 363 (1.29 ± 0.03 ± 0.05) ⇥ 10�6 [139] 1.5 ⇥ 10�6 [216]

Table 4: Observables relevant for photonic decays of the ALP. (†: calculated from results in the given
reference. Error bars estimated from varying parameter ĉ between its quoted errors.) (⇤: calculated
from results in the given reference. Error bars estimated from varying parameter aV between its
quoted errors.)

Observable Mass Range [MeV] Measurement SM prediction

Br(K+ ! ⇡
+
a(e+e�)) ma < 100 < 8 ⇥ 10�7 [217] -

Br(KL ! ⇡
0
e
+
e
�) 140 < mee < 362 < 2.8 ⇥ 10�10 [218]

�
3.1+1.2

�0.8

�
⇥ 10�11 [219]

Br(B+ ! ⇡
+
e
+
e
�) 140 < mee < 5140 < 8.0 ⇥ 10�8 [220] (2.26+0.23

�0.19) ⇥ 10�8 [221]

dBr/dq2(B0 ! K
⇤0
e
+
e
�)[0.0004,0.05] 20 < mee < 224 (4.2 ± 0.5) ⇥ 10�6 GeV�2 [140] (3.3 ± 0.7) ⇥ 10�6 GeV�2

dBr/dq2(B0 ! K
⇤0
e
+
e
�)[0.05,0.15] 224 < mee < 387 (2.6 ± 1.0) ⇥ 10�7 GeV�2 [140] (3.9 ± 0.8) ⇥ 10�7 GeV�2

RK⇤ [0.045, 1.1] 212 < mee < 1049 0.66+0.11
�0.07 ± 0.03 [222] 0.906 ± 0.028 [152]

Br(D0 ! ⇡
0
e
+
e
�) mee < 1730 (†) < 4 ⇥ 10�6 [223] 1.9 ⇥ 10�9 [224]

Br(D+ ! ⇡
+
e
+
e
�) 200 < mee < 1730 (⇤) < 1.1 ⇥ 10�6 [225] 9.4 ⇥ 10�9 [224]

Br(D+
s ! K

+
e
+
e
�) 200 < mee < 1475 (⇤) < 3.7 ⇥ 10�6 [225] 9.0 ⇥ 10�10 [224]

Table 5: Observables relevant for electronic decays of the ALP. Bounds are at 90% CL. Here we only
include observables for which the electron invariant mass can be below or near the dimuon threshold,
on the grounds that above it muonic observables will generically provide stronger bounds. Predictions
without accompanying citations have been calculated using flavio [226]. In the measurements of
the D(s) branching ratios, cuts are applied to exclude the region around the � resonance. For
the Babar measurements with a (⇤), the excluded region is 950 < mee < 1050 MeV, while the
BESIII measurement with a (†) excludes the region 935 < mee < 1053 MeV. Since the long-distance
contributions to these decays peak around this excluded resonance, we take the SM prediction to be
only due to the short-distance contributions, as calculated in Ref. [224].

95

where · indicates that there is no entry, i.e. the corresponding operator in (C.1) cannot be
constructed. The Yukawa matrix can then have the approximate block-diagonal structure

Y =

0

BB@

z 0 0

0 x y

0 y x

1

CCA . (C.9)

O↵-diagonal couplings involving the electron and either the muon or the tau can be forbidden
if electrons are odd under a discrete Z2 and the other leptons are even or they can negligibly
small if a � 1. This Yukawa coupling can be diagonalized with the blockdiagonal matrices

U = V =

0

BB@

1 0 0

0 1p
2

1p
2

0 � 1p
2

1p
2

1

CCA . (C.10)

In this case the ALP coupling matrices read

kL =

0

BB@

a 0 0

0 0 b

0 b 0

1

CCA , k` =

0

BB@

�a 0 0

0 0 b

0 b 0

1

CCA . (C.11)

The ALP can have a large flavor-diagonal coupling to electrons, which can address �ae and a
sizable o↵-diagonal coupling to muons and taus, which can address �aµ with the right sign.

D Measurements and SM predictions for flavor observ-
ables

The measured values and SM predictions for observables used to derive constraints are given
in Tables 3 to 9.

Observable Mass Range [MeV] Measurement SM prediction

Br(K+ ! ⇡
+
X) 0 < m⌫⌫ < 261 (⇤) [209] (search) -

Br(K+ ! ⇡
+
X) 110 < mX < 155 [210] (search) -

Br(KL ! ⇡
0
⌫̄⌫) 0 < m⌫⌫ < 261 < 3.0 ⇥ 10�9 [211] (3.4 ± 0.6) ⇥ 10�11[212]

Br(B+ ! K
+
⌫̄⌫) 0 < m⌫⌫ < 4785 < 1.6 ⇥ 10�5 [213] (4.0 ± 0.5) ⇥ 10�6 [214]

Br(B0 ! K
⇤0
⌫̄⌫) 0 < m⌫⌫ < 4387 < 1.8 ⇥ 10�5 [135] (9.2 ± 1.0) ⇥ 10�6 [214]

Br(⌥ ! �a(invisible)) ma < 9200 [125] (search) -

Table 3: Observables relevant for a long lived ALP. Bounds are at 90% CL. (⇤): cuts are applied
to exclude the region around m⇡ (100 < m⌫⌫̄ < 161 MeV).
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Conclusions

An axion could be the only light remnant of a heavy new 
physics sector out of reach of the LHC

Flavor bounds uniquely constrain axionlike particles with 
masses between 100 MeV and 10 GeV

In the coming years searches for light new physics will probe a 
large range of parameter space where we’ve never looked
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Flavour-violating couplings to leptons
Without tree-level flavour violating couplings to leptons there are 
no loop-induced LFV ALP couplings, because the SM conserves 
lepton flavour

a
`i

`j

a a

W
±

W
±

di di

d̄j d̄j

t

t̄

t

Figure 1: One-loop diagrams contributing to the flavor-changing ALP–quark couplings in the down
sector.

2.1 Loop-induced quark flavor-changing ALP couplings

Flavor-changing ALP–fermion interactions arise at one-loop order from loops involving W

bosons even if we assume that the UV theory does not contain new sources of flavor or
CP violation beyond those present in the SM. The largest e↵ects are those involving loops
containing the top quark. The relevant diagrams are shown in Figure 1. Introducing the
variable xt = m

2

t/m
2

W , we find for the loop-induced couplings in the down sector

(KD)
e↵

ij = (KD)ij (µ) +
y
2

t

16⇡2

⇢
V

⇤
miVnj (KU)mn (�m3 + �n3)


�1

4
ln

µ
2

m2

t

+
3

8

1 � x
2

t + 2 ln xt

(1 � xt)2

�

+ V
⇤
tiVtj (KU)33 + V

⇤
tiVtj (Ku)33


1

2
ln

µ
2

m2

t

� 7 � 8xt + x
2

t + 6 ln xt

4 (1 � xt)
2

�

� 6g2 CWW V
⇤
tiVtj

1 � xt + xt ln xt

(1 � xt)
2

�
,

(Kd)
e↵

ij = (Kd)ij ,
(14)

where we have neglected the light quark masses. The presence of UV divergences in these
expressions signals that the couplings (KD)ij(µ) must contain flavor non-diagonal terms pro-
portional to the relevant entries of the CKM matrix in order to cancel the scale dependence
of the one-loop corrections. In the MFV case, where KU is diagonal, the above expression
reduces to (recall that ctt = (Ku)33 � (KU)33):

(KD)
e↵

ij = (KD)ij (µ) +
y
2

t

16⇡2
V

⇤
tiVtj

⇢
ctt


1

2
ln

µ
2

m2

t

� 7 � 8xt + x
2

t + 6 ln xt

4 (1 � xt)
2

�

� 6g2 CWW
1 � xt + xt ln xt

(1 � xt)
2

�
.

(15)

The term proportional to CWW in this result agrees with a corresponding expression derived in
[13]. However, the parametrically leading term proportional to ctt, which is enhanced by a large
logarithm, was not considered in this reference. Numerically, we obtain with µ = ⇤ = 1TeV

(KD)
e↵

ij = (KD)ij (⇤) + V
⇤
tiVtj [0.01 ctt � 0.004CWW ] . (16)
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Figure 5: Diagrams contributing to LFV electromagnetic form factors.

magnetic moments of leptons is therefore negligible. The contribution of �(Z ! a�) to the
total Z width results in the constraint |cdd|/⇤ & 442/TeV. The excluded parameter space is
shown gray in Figure 4. Higgs decays are strongly suppressed for ALP couplings to down-type
quarks, because the amplitudes are directly proportional to the Yukawa coupling of the b
quark.

4 Probes of flavor-changing ALP couplings to leptons

[Add a new plot and/or discussion of the case where all diagonal and o↵-diagonal cou-
plings are 1, and plot constraints on Lambda?]

In the SM, lepton flavor violating (LFV) couplings are not present, because in the absence
of neutrino masses the SM respects an exact lepton flavor symmetry. E↵ects from MFV-
type ALP couplings in the lepton sector are therefore absent or proportional to neutrino
masses. Even if ALP tree-level couplings are lepton flavor violating, from eq.(8) it follows that
these couplings are suppressed by the lepton masses. Given the large hierarchy in charged
lepton masses, loop e↵ects can be important if the lepton in the loop is heavier than the
external lepton(s). In observables probing lepton flavor-violating decays like µ ! e�, µ ! 3e
or tau decays, the contributions from electromagnetic form factors may dominate over LFV
four fermion interactions. ALPs contribute to the electromagnetic form factors through the
diagrams shown in Figure 5. The associated calculations are presented in full in Appendix B.

The diagrams on the left and in the center of Figure 5 allow only for a single lepton
flavor change, whereas for the diagram on the right of Figure 5, both ALP-vertices can change
the lepton flavor, such that the heaviest lepton in this loop becomes the largest scale in the
calculation. We use the same symbols for the form factors independent of the external leptons;
the correct meaning should become clear from the context.

In the following we discuss constraints from lepton flavor changing observables. The con-
straints from various measurements on tree-level LFV couplings are collected in Table 2 and
shown in Figure 9, 11 and Figure 12 for a single LFV coupling. In the following subsections
we provide formulae and details on how these constraints were derived.
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Bounds from mu-e couplings
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cµe =

q
|(ke)µµ|2 + |(kE)µµ|2

c``/f = 1 TeV�1
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µ ! eee

µ ! eee
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µN ! eN

µ ! ea�

Figure 36: Bounds on ALP mediated flavor o↵-diagonal transitions between muons and electrons
with cµe ⌘

p
|(kE)21|2 + |(ke)21|2, assuming universal ALP couplings to leptons cee/f = cµµ/f =

c⌧⌧/f = 1TeV�1 and all other Wilson coe�cients zero at tree level.

We further show constraints from µ ! ea ! e�� transitions where the ALP is boosted such
that the opening angle between the two collimated photons from the ALP decay is below the
angular resolution of the experiment. The excluded parameter space is obtained from the limit
set by the MEG collaboration [190] and is shown in light orange in Figure 36. The parameter
space for which the anomalous magnetic moment of the electron can be explained by the
heavier muon in the loop requires couplings of Re

⇥
(kE)⇤21(ke)21

⇤
. �1 which is excluded for

all values of ma. The corresponding parameter space is shown in yellow. An explanation of
the anomalous magnetic moment of the muon is only possible for ma > mµ and ruled out by
µ ! e� and µ ! eee for all values of ma as indicated by the orange contour. In Figure 36 we
also show projections for future lepton flavor experiments indicated by the dashed lines. The
dashed blue and orange contours show the sensitivity reach of MEGII [190] and the dashed
red and purple contours indicate the future sensitivity of Mu3E [191]. The lifetime of the ALP
strongly a↵ects the reach of the di↵erent experiments. The constraint from the measurement of
Muonium-antimuonium oscillations from the MACS experiment [168] shown in gray is weaker
than other constraints throughout the ALP mass range, but relevant for masses ma > mµ,
because they are independent of c``, whereas both the constraints from µ ! eee and µ ! e�

vanish for cee ! 0 [160]. The form factors (A) entering the µ ! 3e and µ ! e� amplitudes
also contribute to µ ! e conversion in µN ! eN transitions, because under the assumption
that only ALP couplings to leptons are present at tree-level only diagrams with internal
photons contribute. The constraint from the SINDRUM-II collaboration [] shown in green
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Figure 37: Bounds on ALP mediated flavor o↵-diagonal transitions between muons and electrons
with cµe ⌘

p
|(kE)21|2 + |(ke)21|2, assuming universal ALP couplings to leptons cee/f = cµµ/f =

c⌧⌧/f and ma = 10 MeV and 1 GeV, respectively. All other Wilson coe�cients are set to zero at
tree level.

in Fig. 36 is therefore weaker throughout the parameter space and not enhanced by on-shell
ALP exchange. For the ALP couplings considered here, even the significant improvement in
sensitviity expected at Mu2e [] and COMET [] shown by the green dashed contour cannot
compete with the constraints from µ ! 3e and µ ! e�. Another important constraint arises
from ALP contributions to Muonium-antimuonium oscillations. Although the constraint from
the measurement at the MACS experiment [] shown in gray in Fig. 36 is weaker than other
experimental searches for any ALP mass shown in Fig. 36 it is the only constraint that is
completely independent from the diagonal lepton couplings c``/f .

In Figure 37 we show the exclusion contours and sensitivity reach of the various experi-
mental searches in the cµµ � cµe plane for fixed ALP masses. An explanation of �ae or �aµ is
only possible for ma > mµ and requires very small values of cµe < 10�4. Otherwise it is ruled
out by the constraint from muonium-antimuonium oscillations [160].

Constraints on the lepton flavor-changing coupling c⌧µ ⌘
p

|(kE)32|2 + |(ke)32|2 are shown
in Figure 38. Flavor o↵-diagonal couplings of the ALP to muons and electrons, or to taus and
electrons are assumed to be zero. The decay ⌧ ! µ� is induced by the form factors F2(0)
and F

5
2 (0) given in (4.32) and the parameter space excluded by the limit from Babar [192] is

shown in light blue. The decay ⌧ ! µee is excluded for o↵-shell ALPs for c⌧µ/f & 10TeV�1

and depicted in dark green. For on-shell ALPs, the constraints are significantly stronger and
searches for the decays ⌧ ! µee and ⌧ ! µµµ, shown in dark green and purple, are excluded
for values down to c⌧µ/f & 10�6 � 10�4TeV�1 for ma > 2mµ and ma > 2me, respectively.
For both decays the most stringent measurements come from Belle [193]. ALP decays into

75

Cs
Cs



Bounds from tau-mu couplings

46

⌧ ! µ + inv.

�aµ

⌧ ! µµµ
⌧ ! µ�

⌧ ! µ�e�

⌧ ! µee

Figure 38: Bounds on ALP mediated flavor o↵-diagonal transitions between taus and muons with
c⌧µ ⌘

p
|(kE)32|2 + |(ke)32|2, assuming universal ALP couplings to leptons cee/f = cµµ/f = c⌧⌧/f =

1 TeV�1 and all other Wilson coe�cients zero at tree level.

photons are constrained for collimated photons when they cannot be distinguished from a
single photon.

We further show the constraint from invisible ALP decays obtained by the ARGUS collab-
oration [194, 195] in light green in Figure 38. Here, invisible decays are defined again as the
ALP leaving the detector before decaying and details are given in Appendix D.2. For masses
2mµ < ma < m⌧ , the constraint is weaker, because the decay width of the ALP is determined
by the partial decay width into muons. Below the muon pair threshold, the constraint is
constant in ma. While the ALP lifetime changes significantly for ma < 2me the bound on
c⌧µ is una↵ected because almost 100% of the ALPs produced decay outside the detector for
a ! e

+
e
� and a ! ��. The decay chain ⌧ ! µa ! µ�� can be constrained by searches for

⌧ ! µ� if the photon pair cannot be resolved by the detector. The corresponding exclusion re-
gion is shown in yellow. For smaller ALP masses the constraint is weaker, because the lifetime
of the ALP increases. For masses ma < 2me this e↵ect is even stronger and overcomes the fact
that the branching ratio into photons is Br(a ! ��) = 1 in this mass region. The ALP con-
tribution to the anomalous magnetic moment of the muon is dominated by the diagram with
a tau in the loop. In contrast to flavor conserving ALP couplings, which are purely axial, this
diagram can contribute with the right sign to address the tension between the measurement
and the SM prediction if Re

⇥
(ke)23(kE)⇤23

⇤
> 0. However, the parameter space for which the

ALP contribution is large enough to explain the tension, shown here in orange, is excluded
by searches for ⌧ ! µ� decays. Finally, we show projections for the sensitivity of future
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Figure 39: Bounds on ALP mediated flavor o↵-diagonal transitions between taus and electrons with
c⌧e ⌘

p
|(kE)31|2 + |(ke)31|2, assuming universal ALP couplings to leptons cee/f = cµµ/f = c⌧⌧/f =

1 TeV�1 and all other Wilson coe�cients zero at tree level.

ALP searches by dashed contours. The dashed red line corresponds to the reach of the future
high energy e

+
e
� collider FCC-ee for ⌧ ! µ� and ⌧ ! 3µ [196]. The blue and green dashed

contours are projections for the sensitivity for ⌧ ! 3µ at LHCb and Belle II [197], respectively.

Figure 39 shows the bounds on a dominant LFV coupling c⌧e ⌘
p

|(kE)31|2 + |(ke)31|2.
The constraints look similar to those on c⌧µ shown in Figure 38. We again assume all other
flavor-violating ALP couplings to vanish. BaBar searches for ⌧ ! e� [192] exclude the pa-
rameter space in light blue. Searches for the three-body decays ⌧ ! eµµ and ⌧ ! 3e from
Belle [193] only yield meaningful limits for on-shell ALPs and are shown in light red and
purple, respectively. The lower limit on ma is a consequence of the experimental cuts used to
suppress backgrounds. ALPs with macroscopic decay lengths are excluded by the search for
⌧ ! e+ invisible by ARGUS [194, 195] shown in light green. The yellow parameter space is
excluded by the limit on the ⌧ ! e� branching ratio obtained by BaBar [192]. For boosted
ALPs, ⌧ ! ea ! e��, where the photon pair cannot be reconstructed by the detector, sets a
strong limit. The large contribution from the tau loop to the anomalous magnetic moment of
the electron can explain the observed deviation from the SM prediction in the orange region.
The limit on ⌧ ! e� does not exclude this e↵ect, but the limits from ⌧ ! eµµ and ⌧ ! e+X

searches constrain such an explanation for almost all masses with ma < m⌧ .
Our results may be compared with constraints obtained in the recent work of Ref. [51].

Many of our bounds are very similar to theirs (accounting for di↵erences in coupling normal-
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