Opportunities with B_{c} semileptonic decays

Fulvia De Fazio

INFN Bari

Pushing the limits of theoretical physics

10th anniversary of MITP
Mainz, May 12th, 2023
based on works in collaboration with
P. Colangelo, F. Loparco, N. Losacco, M. Novoa-Brunet

- Semileptonic B_{c} decays: motivations
- Spin symmetry + NRQCD : relations among FF in the SM and BSM
- Application to $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi$ and $\mathrm{B}_{\mathrm{c}} \rightarrow \eta_{\mathrm{c}}$ form factors
- Application to B_{c} to P -wave charmonia and insights on $\mathrm{X}(3872)$
- Other semileptonic B_{c} decays: $\mathrm{c} \rightarrow \mathrm{s}, \mathrm{d}$ transitions
- Summary

> $\mathrm{b} \rightarrow \mathrm{c}$ transitions
- Precisely measure $\left|\mathrm{V}_{\mathrm{cb}}\right|$: insights on the tension from inclusive/exclusive determinations
- Anomalies shown up in modes induced by b \rightarrow c ℓv_{ℓ} transition
$\xrightarrow{\square}$ Look for new modes/observables/correlations
> other quark-level transitions (e.g. c \rightarrow s,d)
- do anomalies show up?
$\xrightarrow{\square}$ Look for new modes/observables/correlations

Semileptonic B_{c} decays

B_{c}

- discovered at Tevatron in 1998
- $\mathrm{m}_{\mathrm{Bc}}=6.274 .47+/-0.27+/-0.17 \mathrm{GeV}$
- $\tau_{\mathrm{Bc}}=0.510+/-0.009 \mathrm{ps}$
- decays weakly
- possible modes: annihilation, b transitions, c transitions (dominant)

Motivations:

1. explore BSM effects
2. $B_{c} \rightarrow$ charmonium: probe the structure of the charmonia produced in the decay

control of theoretical uncertainties in phenomenological analyses requires reliable determination of the hadronic form factors

- NP exists at a high scale $\Lambda \gg M_{w}$
- NP gauge group contains the SM group
- SM gauge fields contained
- $S M$ an effective theory at the scale M_{w}

Buchmuller et al,NPB 268 (1986) 621 Grzadkowski et al., JHEP 10 (2010) 085

Weinberg operator: v oscillations
\uparrow

accidental symmetries

- violates accidental symmetries
- source of (SM) CP violation
- fermion mass terms

Generalized effective Hamiltonian

$$
\begin{aligned}
H_{\mathrm{eff}}^{b \rightarrow c} \bar{\nu}=\frac{G_{F}}{\sqrt{2}} V_{c b}[(1 & \left.+\epsilon_{V}^{\ell}\right)\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)\left(\bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& +\epsilon_{R}^{\ell}\left(\bar{c} \gamma_{\mu}\left(1+\gamma_{5}\right) b\right)\left(\bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& +\epsilon_{S}^{\ell}(\bar{c} b)\left(\bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& +\epsilon_{P}^{\ell}\left(\bar{c} \gamma_{5} b\right)\left(\bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& \left.+\epsilon_{T}^{\ell}\left(\bar{c} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b\right)\left(\bar{\ell} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) \nu_{\ell}\right)\right]
\end{aligned}
$$

complex
lepton flavour dependent couplings

Generalized effective Hamiltonian

$$
\begin{aligned}
H_{\mathrm{eff}}^{b \rightarrow c \ell \bar{\nu}}=\frac{G_{F}}{\sqrt{2}} V_{c b}[(1 & \left.+\epsilon_{V}^{\ell}\right)\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)\left(\bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& +\epsilon_{R}^{\ell}\left(\bar{c} \gamma_{\mu}\left(1+\gamma_{5}\right) b\right)\left(\bar{\ell} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& +\epsilon_{S}^{\ell}(\bar{c} b)\left(\bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& +\epsilon_{P}^{\ell}\left(\bar{c} \gamma_{5} b\right)\left(\bar{\ell}\left(1-\gamma_{5}\right) \nu_{\ell}\right) \\
& \left.+\epsilon_{T}^{\ell}\left(\bar{c} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b\right)\left(\bar{\ell} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) \nu_{\ell}\right)\right]
\end{aligned}
$$

larger set of form factors required wrt the SM case
complex
lepton flavour dependent couplings
$\Rightarrow \mathrm{B}_{\mathrm{c}} \rightarrow \eta_{\mathrm{c}}, \mathrm{J} / \psi$

Motivations:

1. explore BSM effects

1S-wave charmonia $\quad J^{P C}=\left(0^{--}, 1^{-}\right)$
$>\mathrm{B}_{\mathrm{c}} \rightarrow \eta_{\mathrm{c}}, \mathrm{J} / \psi$
$>\mathrm{B}_{\mathrm{c}} \rightarrow \chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 1}, \chi_{\mathrm{c} 2}, \mathrm{~h}_{\mathrm{c}}$
$>\mathrm{B}_{\mathrm{c}} \rightarrow \chi^{\prime}{ }_{\mathrm{c} 0}, \chi^{\prime}{ }_{\mathrm{c} 1}, \chi^{\prime}{ }_{\mathrm{c} 2}, \mathrm{~h}^{\prime}{ }_{\mathrm{c}}$

1S-wave charmonia $\quad J^{P C}=\left(0^{--}, 1^{-}\right)$
1P-wave charmonia $\quad \mathrm{JPC}=\left(0^{++}, 1^{++}, 2^{++}, 1^{+-}\right)$
2P-wave charmonia $\mathrm{JPC}^{\mathrm{P}}=\left(0^{++}, 1^{++}, 2^{++}, 1^{+-}\right)$

Motivations:

1. explore BSM effects
2. $B_{c} \rightarrow$ charmonium: probe the structure of the charmonia produced in the decay
\rightarrow question: can $X(3872)$ be identified with $\chi_{c 1}(2 P)$?

A few details on $X(3872)$

X(3872)

- discovered by Belle in 2003, confirmed by CDF, DO, BaBar,...
- in $2015 \mathrm{LHCb}: \mathrm{J}^{\mathrm{P}}=1^{++} \quad \square$ candidate for identification with $\chi_{\mathrm{c} 1}$ (2P)
- other possible interpretations - tetraquark
- D D* molecule (proximity to the threshold)
- isospin violation disfavours the charmonium interpretation (but phase space suppression is at work)
- the preference of $\psi(2 S) \gamma$ wrt $J / \psi \gamma$ favours the interpretation as $\chi_{c 1}(2 P)$
look for further information:
does $X(3872)$ fulfill the expectations for the production of $\chi_{c 1}(2 P)$ in semileptonic B_{c} decays?

Semileptonic B_{c} decays to charmonium

$$
\begin{array}{rlrl}
B_{c} \rightarrow \eta_{c}: & & & \mathrm{NP} \\
\left\langle\eta_{c}\left(v^{\prime}\right)\right| \bar{Q}^{\prime} \gamma_{\mu} Q\left|B_{c}(v)\right\rangle & =\sqrt{m_{P} m_{B_{c}}}\left[h_{+}(w)\left(v+v^{\prime}\right)_{\mu}+h_{-}(w)\left(v-v^{\prime}\right)_{\mu}\right] & & \\
\left\langle\eta_{c}\left(v^{\prime}\right)\right| \bar{Q}^{\prime} Q\left|B_{c}(v)\right\rangle & =\sqrt{m_{P} m_{B_{c}}} h_{S}(w)(1+w) & w=v \cdot v^{\prime} \\
\left\langle\eta_{c}\left(v^{\prime}\right)\right| \bar{Q}^{\prime} \sigma_{\mu \nu} Q\left|B_{c}(v)\right\rangle & =-i \sqrt{m_{P} m_{B_{c}}} h_{T}(w)\left(v_{\mu} v_{\nu}^{\prime}-v_{\nu} v_{\mu}^{\prime}\right) &
\end{array}
$$

$$
\begin{aligned}
& B_{c} \rightarrow J / \psi: \\
&\left\langle J / \psi\left(v^{\prime}, \epsilon\right)\right| \bar{Q}^{\prime} \gamma_{\mu} Q\left|B_{c}(v)\right\rangle=i \sqrt{m_{V} m_{B_{c}}} h_{V}(w) \epsilon_{\mu \nu \alpha \beta} \epsilon^{* \nu} v^{\prime \alpha} v^{\beta} \\
&\left\langle J / \psi\left(v^{\prime}, \epsilon\right)\right| \bar{Q}^{\prime} \gamma_{\mu} \gamma_{5} Q\left|B_{c}(v)\right\rangle=\sqrt{m_{V} m_{B_{c}}}\left[h_{A_{1}}(w)(1+w) \epsilon_{\mu}^{*}-h_{A_{2}}(w)\left(\epsilon^{*} \cdot v\right) v_{\mu}-h_{A_{3}}(w)\left(\epsilon^{*} \cdot v\right) v_{\mu}^{\prime}\right] \\
&\left\langle J / \psi\left(v^{\prime}, \epsilon\right)\right| \bar{Q}^{\prime} \gamma_{5} Q\left|B_{c}(v)\right\rangle=-\sqrt{m_{V} m_{B_{c}}} h_{P}(w)\left(\epsilon^{*} \cdot v\right) \\
&\left\langle J / \psi\left(v^{\prime}, \epsilon\right)\right| \bar{Q}^{\prime} \sigma_{\mu \nu} Q\left|B_{c}(v)\right\rangle=-\sqrt{m_{V} m_{B_{c}}} \epsilon^{\mu \nu \alpha \beta}\left[h_{T_{1}}(w) \epsilon_{\alpha}^{*}\left(v+v^{\prime}\right)_{\beta}+h_{T_{2}}(w) \epsilon_{\alpha}^{*}\left(v-v^{\prime}\right)_{\beta}\right. \\
&\left.+h_{T_{3}}(w)\left(\epsilon^{*} \cdot v\right) v_{\alpha} v_{\beta}^{\prime}\right]
\end{aligned}
$$

Semileptonic B_{c} decays to charmonium

$$
\begin{aligned}
& \left\langle h_{c}\left(v^{\prime}, \epsilon\right)\right| \bar{c} b\left|B_{c}(v)\right\rangle=\sqrt{m_{h_{c}} m_{B_{c}}}\left(\epsilon^{*} \cdot v\right) f_{S}(w) \\
& \left\langle h_{c}\left(v^{\prime}, \epsilon\right)\right| \bar{c} \sigma_{\mu \nu} b\left|B_{c}(v)\right\rangle=i \sqrt{m_{h_{c}} m_{B_{c}}}\left[f_{T_{1}}(w)\left(\epsilon_{\mu}^{*}\left(v+v^{\prime}\right)_{\nu}-\epsilon_{\nu}^{*}\left(v+v^{\prime}\right)_{\mu}\right)\right. \\
& +f_{T_{2}}(w)\left(\epsilon_{\mu}^{*}\left(v-v^{\prime}\right)_{\nu}-\epsilon_{\nu}^{*}\left(v-v^{\prime}\right)_{\mu}\right) \\
& \left.+f_{T 3}(w)\left(\epsilon^{*} \cdot v\right)\left(v_{\mu} v_{\nu}^{\prime}-v_{\nu} v_{\mu}^{\prime}\right)\right] \text {. } \\
& B_{c} \rightarrow \chi_{c 2}: \\
& \left\langle\chi_{c 2}\left(v^{\prime}, \eta\right)\right| \bar{c} \gamma_{\mu} b\left|B_{c}(v)\right\rangle=\sqrt{m_{\chi c 2} m_{B_{c}}} i k_{V}(w) \epsilon_{\mu \alpha \beta \sigma} \eta^{* \alpha \tau} v_{\tau} v^{\beta} v^{\prime \sigma} \\
& \left\langle\chi_{c 2}\left(v^{\prime}, \eta\right)\right| \bar{c} \gamma_{\mu} \gamma_{5} b\left|B_{c}(v)\right\rangle=\sqrt{m_{\chi_{c 2}} m_{B_{c}}}\left[k_{A_{1}}(w) \eta_{\mu \alpha}^{*} v^{\alpha}+\eta_{\alpha \beta}^{*} v^{\alpha} v^{\beta}\left(k_{A_{2}}(w) v_{\mu}+k_{A_{3}}(w) v_{\mu}^{\prime}\right)\right] \\
& \left\langle\chi_{c 2}\left(v^{\prime}, \eta\right)\right| \bar{c} \gamma_{5} b\left|B_{c}(v)\right\rangle=\sqrt{m_{\chi_{c 2}} m_{B_{c}}} k_{P}(w) \eta_{\alpha \beta}^{*} v^{\alpha} v^{\beta} \\
& \left\langle\chi_{c 2}\left(v^{\prime}, \eta\right)\right| \bar{\sigma} \sigma_{\mu \nu} \gamma_{5} b\left|B_{c}(v)\right\rangle=i \sqrt{m_{\chi_{c 2}} m_{B_{c}}}\left[k_{T_{1}}(w)\left(\eta_{\mu}^{* \alpha} v_{\alpha} v_{\nu}-\eta_{\nu}^{* \alpha} v_{\alpha} v_{\mu}\right)+\right. \\
& \left.+k_{T_{2}}(w)\left(\eta_{\mu}^{* \alpha} v_{\alpha} v_{\nu}^{\prime}-\eta_{\nu}^{* \alpha} v_{\alpha} v_{\mu}^{\prime}\right)+k_{T_{3}}(w) \eta_{\alpha \beta}^{*} v^{\alpha} v^{\beta}\left(v_{\mu} v_{\nu}^{\prime}-v_{\nu} v_{\mu}^{\prime}\right)\right]
\end{aligned}
$$

HQ limit: decoupling of the HQ

- Heavy-light mesons $\rightarrow \mathrm{HQ}$ spin \& flavour symmetry
- Heavy-heavy mesons \rightarrow HQ spin symmetry
relations among the FF in selected kinematical ranges
Heavy-light mesons:
FF of weak matrix elements between heavy-light mesons are all described by the Isgur-Wise function

Heavy-heavy meson decays

\qquad IR divergent for 2 HQs with the same v

- Infrared divergences regulated in the HQ limit by the kinetic energy operator O_{π}

Thacker and Lepage, PRD43 (1991) 196

- O_{π} breaks flavour symmetry \rightarrow only spin symmetry

Systems with heavy quarks: effective theories at work

- expansion parameters for a system with 2 Heavy Quarks: 1. relative HQ 3-velocity (hadron rest-frame) (NRQCD)

2. inverse $H Q$ mass $1 / m_{Q}(H Q E T)$

- HQ field:

$$
\begin{gathered}
Q(x)=e^{-i m_{Q} v \cdot x} \psi(x)=e^{-i m_{Q} v \cdot x}\left(\psi_{+}(x)+\psi_{-}(x)\right) \quad \psi_{ \pm}(x)=P_{ \pm} \psi(x)=\frac{1 \pm \not \psi^{\prime}}{2} \psi(x) \\
Q(x)=e^{-i m_{Q} v \cdot x}\left(1+\frac{i \not D_{\perp}}{2 m_{Q}}+\frac{(-i v \cdot D)}{2 m_{Q}} \frac{i \not D_{\perp}}{2 m_{Q}}+\ldots\right) \psi_{+}(x) \quad D_{\perp \mu}=D_{\mu}-(v \cdot D) v_{\mu} \\
\mathcal{L}_{Q C D}=\bar{\psi}_{+}(x)\left(i v \cdot D+\frac{\left(i D_{\perp}\right)^{2}}{2 m_{Q}}+\frac{g}{4 m_{Q}} \sigma \cdot G_{\perp}+\frac{i \not D_{\perp}}{2 m_{Q}} \frac{(-i v \cdot D)}{2 m_{Q}}\left(i \not D_{\perp}\right)+\ldots\right) \psi_{+}(x)
\end{gathered}
$$

$$
\begin{array}{l|ll}
\hline \text { power counting in NRQCD } & \psi_{+} \sim \tilde{v}^{3 / 2} & \\
D_{\perp} \sim \tilde{v} & D_{t} \sim \tilde{v}^{2} \\
E_{i}=G_{0 i} \sim \tilde{v}^{3} & B_{i}=\frac{1}{2} \epsilon_{i j k} G^{j k} \sim \tilde{v}^{4}
\end{array}
$$

$$
\begin{array}{cl}
\hline \mathcal{L}_{Q C D}=\bar{\psi}_{+}(x)\left(i v \cdot D+\frac{\left(i D_{\perp}\right)^{2}}{2 m_{Q}}+\frac{g}{4 m_{Q}} \sigma \cdot G_{\perp}+\frac{i \not D_{\perp}}{2 m_{Q}} \frac{(-i v \cdot D)}{2 m_{Q}}\left(i \not D_{\perp}\right)+\ldots\right) \psi_{+}(x) \\
\mathcal{O}\left(\tilde{v}^{2}\right) \mathrm{LO} & \mathcal{O}\left(\tilde{v}^{4}\right) \mathrm{NLO} \\
\mathcal{L}_{0}=\bar{\psi}_{+}(x)\left(i v \cdot D+\frac{\left(i D_{\perp}\right)^{2}}{2 m_{Q}}\right) \psi_{+}(x) & \mathcal{L}_{1}=\mathcal{L}_{1,1}+\mathcal{L}_{1,2}
\end{array}
$$

$$
\langle C| \bar{Q}^{\prime} \Gamma Q\left|B_{c}\right\rangle \quad C=\eta_{c}, J / \psi \quad C=\chi_{c 0}, \chi_{c 1}, \chi_{c 2}, h_{c}
$$

follow the same steps as for heavy-light mesons
I. expand the current:

$$
\bar{Q}^{\prime}(x) \Gamma Q(x)=J_{0}+\left(\frac{J_{1,0}}{2 m_{Q}}+\frac{J_{0,1}}{2 m_{Q^{\prime}}}\right)+\left(-\frac{J_{2,0}}{4 m_{Q}^{2}}-\frac{J_{0,2}}{4 m_{Q^{\prime}}^{2}}+\frac{J_{1,1}}{4 m_{Q} m_{Q^{\prime}}}\right)
$$

$$
\begin{array}{ll}
J_{0}=\bar{\psi}_{+}^{\prime} \Gamma \psi_{+} & \\
J_{1,0}=\bar{\psi}_{+}^{\prime} \Gamma i \vec{D}_{\perp} \psi_{+} & J_{0,1}=\bar{\psi}_{+}^{\prime}\left(-i \overleftarrow{\not D}_{\perp}^{\prime}\right) \Gamma \psi_{+} \\
J_{2,0}=\bar{\psi}_{+}^{\prime} \Gamma(i v \cdot \vec{D}) i \overrightarrow{D D}_{\perp} \psi_{+} & J_{0,2}=\bar{\psi}_{+}^{\prime} i{\overleftarrow{म D^{\prime}} \perp}_{\perp}\left(i v^{\prime} \cdot \overleftarrow{D}\right) \Gamma \psi_{+} \quad J_{1,1}=\bar{\psi}_{+}^{\prime}\left(-i \overleftarrow{D^{\prime}} \perp\right) \Gamma\left(i \overrightarrow{म D}_{\perp}\right) \psi_{+}
\end{array}
$$

II: exploit spin symmetry:
doublet of negative parity states:

$$
\begin{aligned}
& \left(B_{c}, B_{c}^{*}\right) \longrightarrow \mathcal{M}(v)=P_{+}(v)\left[B_{c}^{* \mu} \gamma_{\mu}-B_{c} \gamma_{5}\right] P_{-}(v) \\
& \left(\eta_{c}, J / \psi\right) \longrightarrow \mathcal{M}^{\prime}\left(v^{\prime}\right)=P_{+}\left(v^{\prime}\right)\left[\Psi^{* \mu} \gamma_{\mu}-\eta_{c} \gamma_{5}\right] P_{-}\left(v^{\prime}\right)
\end{aligned}
$$

4-plet of positive parity states $\quad\left(\chi_{c 0,1,2}, h_{c}\right)$

$$
\mathcal{M}^{\prime \mu}\left(v^{\prime}\right)=P_{+}\left(v^{\prime}\right)\left[\chi_{c 2}^{\mu \nu} \gamma_{\nu}+\frac{1}{\sqrt{2}} \chi_{c 1, \gamma} \epsilon^{\mu \alpha \beta \gamma} v_{\alpha}^{\prime} \gamma_{\beta}+\frac{1}{\sqrt{3}} \chi_{c 0}\left(\gamma^{\mu}-v^{\prime \mu}\right)+h_{c}^{\mu} \gamma_{5}\right] P_{-}\left(v^{\prime}\right) \quad v_{\mu}^{\prime} \mathcal{M}^{\mu}=0
$$

analogous for 2P charmonia
III. trace formalism:

$$
\langle C| \bar{Q}^{\prime} \Gamma D_{\mu_{1}} D_{\mu_{2}} \ldots Q\left|B_{c}\right\rangle=-\operatorname{Tr}\left[\mathcal{F}_{\mu_{1} \mu_{2} \ldots} . \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]
$$

∇
universal functions: the same for all the members of the multiplet of final states relations among the various modes

Form Factors in the effective theory

III. trace formalism: at LO in the HQ expansion all the matrix elements involve a single universal function

$$
\left\langle M^{\prime}\left(v^{\prime}\right)\right| J_{0}|M(v)\rangle=\Xi(w) v_{\mu} \operatorname{Tr}\left[\overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]
$$

Form Factors in the effective theory

III. trace formalism: At LO in the HQ expansion all the matrix elements involve a single universal function

$$
\left\langle M^{\prime}\left(v^{\prime}\right)\right| J_{0}|M(v)\rangle=\Xi(w) v_{\mu} \operatorname{Tr}\left[\overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]
$$

$O\left(1 / m_{Q}\right)$

$$
\begin{aligned}
\left\langle M^{\prime}\left(v^{\prime}\right)\right| \bar{\psi}_{+}^{\prime} \Gamma i \vec{D}_{\alpha} \psi_{+}|M(v)\rangle & =-\operatorname{Tr}\left[\Sigma_{\mu \alpha}^{(b)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right] \\
\left\langle M^{\prime}\left(v^{\prime}\right)\right| \bar{\psi}_{+}^{\prime}\left(-i \overleftarrow{D}_{\alpha}\right) \Gamma \psi_{+}|M(v)\rangle & =-\operatorname{Tr}\left[\Sigma_{\mu \alpha}^{(c)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]
\end{aligned}
$$

$$
\Sigma_{\mu \alpha}^{(Q)}=\Sigma_{1}^{(Q)} g_{\mu \alpha}+\Sigma_{2}^{(Q)} v_{\mu} v_{\alpha}+\Sigma_{3}^{(Q)} v_{\mu} v_{\alpha}^{\prime}+\Sigma_{4}^{(Q)} v_{\mu} \gamma_{\alpha}+\Sigma_{5}^{(Q)} \gamma_{\mu} v_{\alpha}+\Sigma_{6}^{(Q)} \gamma_{\mu} v_{\alpha}^{\prime}+\Sigma_{7}^{(Q)} i \sigma_{\mu \alpha}
$$

constraints:

$$
\begin{aligned}
& \Sigma_{i}^{(b)}(w)-\Sigma_{i}^{(c)}(w)=0 \quad i=1,4,5,6,7 \\
& \Sigma_{2}^{(b)}(w)-\Sigma_{2}^{(c)}(w)=\tilde{\Lambda} \Xi, \\
& \Sigma_{3}^{(b)}(w)-\Sigma_{3}^{(c)}(w)=-\tilde{\Lambda}^{\prime} \Xi(w) .
\end{aligned}
$$

Form Factors in the effective theory

III. trace formalism: At LO in the HQ expansion all the matrix elements involve a single universal function

$$
\left\langle M^{\prime}\left(v^{\prime}\right)\right| J_{0}|M(v)\rangle=\Xi(w) v_{\mu} \operatorname{Tr}\left[\overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]
$$

$O\left(1 / m_{Q}\right)$

$$
\begin{aligned}
\left\langle M^{\prime}\left(v^{\prime}\right)\right| \bar{\psi}_{+}^{\prime} \Gamma i \vec{D}_{\alpha} \psi_{+}|M(v)\rangle & =-\operatorname{Tr}\left[\Sigma_{\mu \alpha}^{(b)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right] \\
\left\langle M^{\prime}\left(v^{\prime}\right)\right| \bar{\psi}_{+}^{\prime}\left(-i \overleftarrow{D}_{\alpha}\right) \Gamma \psi_{+}|M(v)\rangle & =-\operatorname{Tr}\left[\Sigma_{\mu \alpha}^{(c)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]
\end{aligned}
$$

$\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{Q}}\right)^{2}$

$$
\begin{aligned}
\left\langle M^{\prime}\left(v^{\prime}\right)\right| \bar{\psi}_{+}^{\prime} \Gamma i \vec{D}_{\alpha} i \vec{D}_{\beta} \psi_{+}|M(v)\rangle & =-\operatorname{Tr}\left[\Omega_{\mu \alpha \beta}^{(b)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right] \\
\left\langle M^{\prime}\left(v^{\prime}\right)\right| \bar{\psi}_{+}^{\prime} i \overleftarrow{D}_{\alpha} i \overleftarrow{D}_{\beta} \Gamma \psi_{+}|M(v)\rangle & =-\operatorname{Tr}\left[\Omega_{\mu \alpha \beta}^{(c)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]
\end{aligned}
$$

constraints:

$$
\Omega_{\mu \alpha \beta}^{(b)}-\Omega_{\mu \alpha \beta}^{(c)}=\left(\tilde{\Lambda} v_{\alpha}-\tilde{\Lambda}^{\prime} v_{\alpha}^{\prime}\right) \Sigma_{\mu \beta}^{(b)}+\left(\tilde{\Lambda} v_{\beta}-\tilde{\Lambda}^{\prime} v_{\beta}^{\prime}\right) \Sigma_{\mu \alpha}^{(c)}
$$

other corrections from the expansion of the states (non-local corrections)

$$
\begin{aligned}
& \left\langle M^{\prime}\left(v^{\prime}\right)\right| i \int \mathrm{~d}^{4} x \mathrm{~T}\left[J_{0}(0), \mathcal{L}_{1}(x)\right]|M(v)\rangle= \\
& -\frac{1}{4 m_{b}} \underbrace{\left(-\frac{i}{2}\right) \operatorname{Tr}\left[\Upsilon_{2 \mu \alpha \beta}^{(b)} \overline{\mathcal{M}}^{\prime \mu} \Gamma P_{+} \sigma^{\alpha \beta} \mathcal{M}\right]}_{G^{(b)}}-\frac{1}{2 m_{b}^{2}} \underbrace{\operatorname{Tr}\left[\Upsilon_{1 \mu}^{(b)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]}_{K^{(b)}}, \\
& \left\langle M^{\prime}\left(v^{\prime}\right)\right| i \int \mathrm{~d}^{4} x \mathrm{~T}\left[J_{0}(0), \mathcal{L}_{1}^{\prime}(x)\right]|M(v)\rangle= \\
& -\frac{1}{4 m_{c}} \underbrace{\left(-\frac{i}{2}\right) \operatorname{Tr}\left[\Upsilon_{2 \mu \alpha \beta}^{(c)} \overline{\mathcal{M}}^{\prime \mu} \sigma^{\alpha \beta} P_{+}^{\prime} \Gamma \mathcal{M}\right]}_{G^{(c)}}-\frac{1}{2 m_{c}^{2}} \underbrace{\operatorname{Tr}\left[\Upsilon_{1 \mu}^{(c)} \overline{\mathcal{M}}^{\prime \mu} \Gamma \mathcal{M}\right]}_{K^{(c)}},
\end{aligned}
$$

other universal functions involved

- relations among the form factors of the same decay mode

$$
B_{c} \rightarrow J / \psi \quad \begin{aligned}
h_{T_{1}}(w) & =\frac{1}{2}\left((1+w) h_{A_{1}}(w)-(w-1) h_{V}(w)\right) \\
h_{T_{2}}(w) & =\frac{1+w}{2\left(m_{b}+3 m_{c}\right)}\left(\left(m_{b}-3 m_{c}\right) h_{A_{1}}(w)+2 m_{c}\left(h_{A_{2}}(w)+h_{A_{3}}(w)\right)\right. \\
& \left.-\left(m_{b}-m_{c}\right) h_{V}(w)\right) \\
h_{T_{3}}(w) & =h_{A_{3}}(w)-h_{V}(w) \\
h_{P}(w) & =\frac{1}{m_{b}+3 m_{c}}\left((1+w)\left(m_{b} h_{A_{1}}(w)+2 m_{c} h_{V}(w)\right)\right. \\
& \left.+\left(-m_{b}+(w-2) m_{c}\right) h_{A_{2}}(w)-\left(w m_{b}+(2 w-1) m_{c}\right) h_{A_{3}}(w)\right)
\end{aligned}
$$

$B_{c} \rightarrow \eta_{c}$

$$
\begin{aligned}
h_{-}(w) & =\frac{m_{b}-m_{c}}{2\left(m_{b}+3 m_{c}\right)}(1+w)\left(3 h_{A_{1}}(w)-h_{A_{2}}(w)-h_{A_{3}}(w)-2 h_{V}(w)\right) \\
h_{T}(w)-h_{+}(w) & =-\frac{m_{b}+m_{c}}{2\left(m_{b}+3 m_{c}\right)}(1+w)\left(3 h_{A_{1}}(w)-h_{A_{2}}(w)-h_{A_{3}}(w)-2 h_{V}(w)\right) \\
h_{T}(w)-h_{S}(w) & =-\frac{m_{b}+m_{c}}{\left(m_{b}+3 m_{c}\right)}\left(3 h_{A_{1}}(w)-h_{A_{2}}(w)-h_{A_{3}}(w)-2 h_{V}(w)\right) .
\end{aligned}
$$

P.Colangelo, F. Loparco, N. Losacco,

$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi, \eta_{\mathrm{c}}$ Form Factors in the effective theory: relations at $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{Q}}\right)$

available lattice results

$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{J} / \psi, \eta_{\mathrm{c}}$ Form Factors in the effective theory: relations at $\mathrm{O}\left(1 / \mathrm{m}_{\mathrm{Q}}\right)$

results

$$
B_{c} \rightarrow J / \psi
$$

$$
B_{c} \rightarrow \eta_{c}
$$

P.Colangelo, F. Loparco, N. Losacco,
M. Novoa Brunet, FDF arXiv:2205.08933, JHEP09 (2022) 028

- relations among the form factors of the same decay mode
P.Colangelo, F. Loparco, N. Losacco,
- $B_{c} \rightarrow \chi_{c 0}$

$$
g_{T}(w)=-\frac{1}{w+1}\left[2 g_{-}(w)+g_{P}(w)\right]
$$

$$
\bullet B_{c} \rightarrow \chi_{c 1}
$$

$$
g_{T_{2}}(w)=-\frac{1}{2}\left[g_{V_{1}}(w)-(1+w) g_{A}(w)\right]
$$

$$
g_{T_{3}}(w)=-\frac{1}{2(w-1)}\left[g_{V_{1}}(w)+4 g_{V_{2}}(w)\right]+\frac{1}{2} g_{A}(w)+\frac{1}{w-1}\left[g_{S}(w)+g_{T_{1}}(w)\right]
$$

- $B_{c} \rightarrow \chi_{c 2}$

$$
\begin{aligned}
& k_{T_{1}}(w)=-w k_{V}(w)+k_{A_{2}}(w)+w k_{A_{3}}(w)+k_{P}(w) \\
& k_{T_{2}}(w)=k_{V}(w)-k_{A_{1}}(w)-k_{A_{2}}(w)-w k_{A_{3}}(w)-k_{P}(w) \\
& k_{T_{3}}(w)=-k_{V}(w)+k_{A_{3}}(w)
\end{aligned}
$$

$$
\bullet B_{c} \rightarrow h_{c}
$$

$$
\begin{aligned}
& f_{T_{2}}(w)=\frac{1}{2}\left[f_{V_{1}}(w)+(1+w) f_{A}(w)\right] \\
& f_{T_{3}}(w)=\frac{1}{2(w-1)}\left[f_{V_{1}}(w)+4 f_{V_{2}}(w)\right]+\frac{1}{2} f_{A}(w)-\frac{1}{w-1}\left[f_{S}(w)-f_{T_{1}}(w)\right]
\end{aligned}
$$

- relations among the form factors of pairs of decay modes

$$
\begin{aligned}
& \text { - } B_{c} \rightarrow \chi_{c 0} \text { and } B_{c} \rightarrow \chi_{c 1} \\
& (w+1) g_{+}(w)-(w-1) g_{-}(w)+g_{P}(w)= \\
& \quad \frac{w+1}{\sqrt{6}}\left\{2 g_{V_{1}}(w)+(w+1) g_{V_{2}}(w)-(w-1)\left[g_{V_{3}}(w)+g_{A}(w)\right]-g_{S}(w)+2 g_{T_{1}}(w)\right\} \\
& B_{c} \rightarrow h_{c} \text { and } B_{c} \rightarrow \chi_{c 1} \\
& f_{V_{1}}(w)+(w-1) f_{A}(w)-2 f_{T_{1}}(w)= \\
& \quad \sqrt{2}\left\{g_{V_{1}}(w)+(w+1) g_{V_{2}}(w)-(w-1) g_{V_{3}}(w)-g_{S}(w)\right\} \\
& 3 f_{V_{1}}(w)+2(w+1) f_{V_{2}}(w)-(w-1)\left[2 f_{V_{3}}(w)-f_{A}(w)\right]-2\left[f_{S}(w)+f_{T_{1}}(w)\right]= \\
& \sqrt{2}\left\{g_{V_{1}}(w)-(w-1) g_{A}(w)+2 g_{T_{1}}(w)\right\}
\end{aligned}
$$

$\mathbf{B}_{c} \rightarrow\left(\chi_{c 0}, \chi_{c 1}, \chi_{c 2}, h_{c}\right)$ Form Factors in the effective theory: relations at LO

$$
\begin{aligned}
g_{+}(w) & =0 \\
g_{S}(w) & =g_{T_{1}}(w)=0 \\
k_{A_{2}}(w) & =k_{T_{3}}(w)=0 \\
f_{V_{1}}(w) & =f_{V_{3}}(w)=f_{A}(w)=f_{T_{1}}(w)=f_{T_{2}}(w)=0
\end{aligned}
$$

$$
\begin{aligned}
\Xi(w) & =\frac{\sqrt{3}}{(w+1)} g_{-}(w)=-\frac{\sqrt{3}}{(w+1)} g_{T}(w)=\frac{\sqrt{3}}{\left(w^{2}-1\right)} g_{P}(w) \\
& =\frac{\sqrt{2}}{\left(w^{2}-1\right)} g_{V_{1}}(w)=-\frac{2 \sqrt{2}}{(w-1)} g_{V_{2}}(w)=\frac{2 \sqrt{2}}{(w+1)} g_{V_{3}}(w)=\frac{\sqrt{2}}{(w+1)} g_{A}(w)=\frac{\sqrt{2}}{(w+1)} g_{T_{2}}(w) \\
& =-k_{V}(w)=\frac{1}{w+1} k_{A_{1}}(w)=-k_{A_{3}}(w)=-k_{P}(w)=-k_{T_{1}}(w)=-k_{T_{2}}(w) \\
& =-f_{V_{1}}(w)=-f_{V_{2}}(w)=-\frac{1}{w+1} f_{S}(w)=f_{T_{3}}(w)
\end{aligned}
$$

$\mathrm{B}_{\mathrm{c}} \rightarrow\left(\chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 1}, \chi_{\mathrm{c} 2}, \mathrm{~h}_{\mathrm{c}}\right)$ exploiting FF relations at LO

$\frac{d \Gamma\left(B_{c} \rightarrow \chi_{c 1} \ell \bar{\nu}\right) / d w}{d \Gamma\left(B_{c} \rightarrow \chi_{c 0} \ell \bar{\nu}\right) / d w}$	$\frac{d \Gamma\left(B_{c} \rightarrow \chi_{c 2} \ell \bar{\nu}\right) / d w}{d \Gamma\left(B_{c} \rightarrow \chi_{c 1} \ell \bar{\nu}\right) / d w}$

the universal function cancels in the ratio

$\cdots \frac{\Gamma\left(B_{c} \rightarrow \chi_{c 1} \ell \bar{\nu}_{\ell}\right)}{\Gamma\left(B_{c} \rightarrow \chi_{c 0} \ell \bar{\nu}_{\ell}\right)}$
$-----\frac{\Gamma\left(B_{c} \rightarrow \chi_{c 2} \ell \bar{\nu}_{\ell}\right)}{\Gamma\left(B_{c} \rightarrow \chi_{c 1} \ell \bar{\nu}_{\ell} \ell\right.}$

- constraint at LO both in SM and for generic NP

$$
2 \frac{d \Gamma}{d w}\left(B_{c} \rightarrow \chi_{c 0} \ell \bar{\nu}_{\ell}\right)+\frac{d \Gamma}{d w}\left(B_{c} \rightarrow \chi_{c 1} \ell \bar{\nu}_{\ell}\right)-\frac{d \Gamma}{d w}\left(B_{c} \rightarrow \chi_{c 2} \ell \bar{\nu}_{\ell}\right)=0 .
$$

to be satisfied by the three members of the 4-plet

$\Xi_{0} \in[0.1,1], \Xi_{1} \in[-1,0]$ and $\Xi_{2} \in[-1,1]$
fulfill $\mathcal{B}\left(B_{c}^{+} \rightarrow \chi_{c 0} \pi^{+}\right)=\left(2.4 \pm_{0.8}^{0.9}\right) \times 10^{-5}$
correlations predicted:

$\mathrm{Bc} \rightarrow\left(\chi_{\mathrm{c} 0}, \chi_{\mathrm{c} 1}, \chi_{\mathrm{c} 2}, h_{\mathrm{c}}\right)$ exploiting FF relations at LO
tests of LFU:

$$
R(C)=\frac{\Gamma\left(B_{c} \rightarrow C \tau \bar{\nu}_{\tau}\right)}{\Gamma\left(B_{c} \rightarrow C \mu \bar{\nu}_{\mu}\right)}
$$

At NLO the number of universal functions increase. However:

- they enter in different modes, model independent predictions
- can be used also in other processes
- model independent: tests of direct computations (should satisfy the effective theory predictions)
- Once reliable determinations for a few form factors are available (i.e. by lattice QCD) the others are predicted
- a reduced number of structures contributes close to $\mathrm{w}=1$:

$$
\begin{aligned}
& \lim _{w \rightarrow 1} \frac{1}{\tilde{\Gamma}} \frac{d \Gamma}{d w}\left(B_{c} \rightarrow \chi_{c 0} \ell \bar{\nu}_{\ell}\right)=18 \hat{m}_{\ell}^{2}\left(\epsilon_{b}+\epsilon_{c}\right)^{2}\left[\Sigma_{\chi c 1,1}^{(b)}(1)\right]^{2} \\
& \lim _{w \rightarrow 1} \frac{1}{\tilde{\Gamma}} \frac{d \Gamma}{d w}\left(B_{c} \rightarrow \chi_{c 1} \ell \bar{\nu}_{\ell}\right)=12\left[2\left(1-r_{1}\right)^{2}+\hat{m}_{\ell}^{2}\right]\left[\epsilon_{b} \Sigma_{\chi_{c 1}, 1}^{(b)}(1)-\epsilon_{c} \Sigma_{\chi_{c 1}, 1}^{(c)}(1)\right]^{2} \\
& \lim _{w \rightarrow 1} \frac{1}{\tilde{\Gamma}} \frac{d \Gamma}{d w}\left(B_{c} \rightarrow h_{c} \ell \bar{\nu}_{\ell}\right)=6\left[2\left(1-r_{h}\right)^{2}+\hat{m}_{\ell}^{2}\right]\left[\left(\epsilon_{b}-\epsilon_{c}\right) \Sigma_{\chi c 1,1}^{(b)}(1)+2 \epsilon_{c} \Sigma_{\chi c 1,1}^{(c)}(1)\right]^{2}
\end{aligned}
$$

$$
\hat{m}_{\ell}^{2}=\frac{m_{\ell}^{2}}{m_{B_{c}}^{2}}
$$

$$
r=m_{C} / m_{B_{c}} \quad C=m_{\chi_{c 0}}, \chi_{c 1}, \chi_{c 2}, h_{c}
$$

$$
\epsilon_{b}=\frac{1}{2 m_{b}} \quad \epsilon_{c}=\frac{1}{2 m_{c}}
$$

if $X(3872)$ is $\chi_{c 1}(2 P)$ these relations should be fulfilled (hard task...)

$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{B}_{\mathrm{s}, \mathrm{d}}$

$\left\langle P\left(p^{\prime}\right)\right| \bar{q} \gamma_{\mu} Q\left|B_{c}(p)\right\rangle=f_{+}^{B_{c} \rightarrow P}\left(q^{2}\right)\left(p_{\mu}+p_{\mu}^{\prime}-\frac{m_{B_{c}}^{2}-m_{P}^{2}}{q^{2}} q_{\mu}\right)+f_{0}^{B_{c} \rightarrow P}\left(q^{2}\right) \frac{m_{B_{c}}^{2}-m_{P}^{2}}{q^{2}} q_{\mu}$,
$\left\langle P\left(p^{\prime}\right)\right| \bar{q} Q\left|B_{c}(p)\right\rangle=f_{S}^{B_{c} \rightarrow P}\left(q^{2}\right)$,
$\left\langle P\left(p^{\prime}\right)\right| \bar{q} \sigma_{\mu \nu} Q\left|B_{c}(p)\right\rangle=-i \frac{2 f_{T}^{B_{c} \rightarrow P}\left(q^{2}\right)}{m_{B_{c}}+m_{P}}\left(p_{\mu} p_{\nu}^{\prime}-p_{\nu} p_{\mu}^{\prime}\right)$,
$\left\langle P\left(p^{\prime}\right)\right| \bar{q} \sigma_{\mu \nu} \gamma_{5} Q\left|B_{c}(p)\right\rangle=-\frac{2 f_{T}^{B_{c} \rightarrow P}\left(q^{2}\right)}{m_{B_{c}}+m_{P}} \epsilon_{\mu \nu \alpha \beta} p^{\alpha} p^{\prime \beta}$

$$
\begin{aligned}
\left\langle V\left(p^{\prime}, \epsilon\right)\right| \bar{q} \gamma_{\mu} Q\left|B_{c}(p)\right\rangle= & -\frac{2 V^{B_{c} \rightarrow V}\left(q^{2}\right)}{m_{B_{c}}+m_{V}} i \epsilon_{\mu \nu \alpha \beta} \epsilon^{* \nu} p^{\alpha} p^{\prime \beta}, \\
\left\langle V\left(p^{\prime}, \epsilon\right)\right| \bar{q} \gamma_{\mu} \gamma_{5} Q\left|B_{c}(p)\right\rangle= & \left(m_{B_{c}}+m_{V}\right)\left(\epsilon_{\mu}^{*}-\frac{\left(\epsilon^{*} \cdot q\right)}{q^{2}} q_{\mu}\right) A_{1}^{B_{c} \rightarrow V}\left(q^{2}\right)-\frac{\left(\epsilon^{*} \cdot q\right)}{m_{B_{c}}+m_{V}}\left(\left(p+p^{\prime}\right)_{\mu}-\frac{m_{B_{c}}^{2}-m_{V}^{2}}{q^{2}} q_{\mu}\right) A_{2}^{B_{c} \rightarrow V}\left(q^{2}\right) \\
& +\left(\epsilon^{*} \cdot q\right) \frac{2 m_{V}}{q^{2}} q_{\mu} A_{0}^{B_{c} \rightarrow V}\left(q^{2}\right), \\
\left\langle V\left(p^{\prime}, \epsilon\right)\right| \bar{q} \gamma_{5} Q\left|B_{c}(p)\right\rangle= & -\frac{2 m_{V}}{m_{Q}+m_{q}}\left(\epsilon^{*} \cdot q\right) A_{0}^{B_{c} \rightarrow V}\left(q^{2}\right), \\
\left\langle V\left(p^{\prime}, \epsilon\right)\right| \bar{q} \sigma_{\mu \nu} Q\left|B_{c}(p)\right\rangle= & T_{0}^{B_{c}+V}\left(q^{2}\right) \frac{\epsilon^{*} \cdot q}{\left(m_{B_{c}}+m_{V}\right)^{2}} \epsilon_{\mu \nu \alpha \beta} p^{\alpha} p^{\prime \beta}+T_{1}^{B_{c} \rightarrow V}\left(q^{2}\right) \epsilon_{\mu \nu \alpha \beta} p^{\alpha} \epsilon^{* \beta}+T_{2}^{B_{c} \rightarrow V}\left(q^{2}\right) \epsilon_{\mu \nu \alpha \beta} p^{\prime \alpha} \epsilon^{* \beta}, \\
\left\langle V\left(p^{\prime}, \epsilon\right)\right| \bar{q} \sigma_{\mu \nu} \gamma_{5} Q\left|B_{c}(p)\right\rangle= & i T_{0}^{B_{c} \rightarrow V}\left(q^{2}\right) \frac{\epsilon^{*} \cdot q}{\left(m_{B_{c}}+m_{V}\right)^{2}}\left(p_{\mu} p_{\nu}^{\prime}-p_{\nu} p_{\mu}^{\prime}\right) \\
& +i T_{1}^{B_{c} \rightarrow V}\left(q^{2}\right)\left(p_{\mu} \epsilon_{\nu}^{*}-\epsilon_{\mu}^{*} p_{\nu}\right)+i T_{2}^{B_{c} \rightarrow V}\left(q^{2}\right)\left(p_{\mu}^{\prime} \epsilon_{\nu}^{*}-\epsilon_{\mu}^{*} p_{\nu}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle P(v, k)| \bar{q} \gamma_{\mu} Q\left|B_{c}(v)\right\rangle & =2 \sqrt{m_{B_{c}} m_{P}}\left(\Omega_{1}(y) v_{\mu}+a_{0} \Omega_{2}(y) k_{\mu}\right), \\
\langle P(v, k)| \bar{q} Q\left|B_{c}(v)\right\rangle & =2 \sqrt{m_{B_{c}} m_{P}}\left(\Omega_{1}(y)+a_{0} \Omega_{2}(y) v \cdot k\right), \\
\langle P(v, k)| \bar{q} \sigma_{\mu \nu} Q\left|B_{c}(v)\right\rangle & =-2 i \sqrt{m_{B_{c}} m_{P}} a_{0} \Omega_{2}(y)\left(v_{\mu} k_{\nu}-v_{\nu} k_{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle V(v, k, \epsilon)| \bar{q} \gamma_{\mu} Q\left|B_{c}(v)\right\rangle & =2 i \sqrt{m_{B_{c}} m_{V}} a_{0} \Omega_{2}(y) \epsilon_{\mu \nu \alpha} \epsilon^{* \nu} k^{\alpha} v^{\beta}, \\
\langle V(v, k, \epsilon)| \bar{q} \gamma_{\mu} \gamma_{5} b\left|B_{c}(v)\right\rangle & =2 \sqrt{m_{B_{c}} m_{V}}\left(\epsilon_{\mu}^{*}\left(\Omega_{1}(y)+v \cdot k a_{0} \Omega_{2}(y)\right)-\left(v_{\mu}-\frac{k_{\mu}}{m_{V}}\right) \epsilon^{*} \cdot k a_{0} \Omega_{2}(y)\right), \\
\langle V(v, k, \epsilon)| \bar{q} \sigma_{\mu \nu} Q\left|B_{c}(v)\right\rangle & =-2 \sqrt{m_{B_{c}} m_{V}}\left(\epsilon_{\mu \nu \alpha} \epsilon^{* \alpha} v^{\beta} \Omega_{1}(y)+\epsilon_{\mu \nu \alpha \beta} \epsilon^{* \alpha} k^{\beta} a_{0} \Omega_{2}(y)\right), \\
\langle V(v, k, \epsilon)| \bar{q} \sigma_{\mu \nu} \gamma_{5} Q\left|B_{c}(v)\right\rangle & =2 i \sqrt{m_{B_{c}} m_{V}}\left(\epsilon_{\nu}^{*}\left(v_{\mu} \Omega_{1}(y)+k_{\mu} a_{0} \Omega_{2}(y)\right)-\epsilon_{\mu}^{*}\left(v_{\nu} \Omega_{1}(y)+k_{\nu} a_{0} \Omega_{2}(y)\right)\right)
\end{aligned}
$$

all expressed in terms of Ω_{1} and Ω_{2}

HQ spin symmetry in B_{c} decays

lattice results for f_{+}and f_{0}

translated into Ω_{1} and Ω_{2} :

$$
\begin{aligned}
\Omega_{1} & =\frac{m_{B_{c}}+m_{P}}{2 q^{2} \sqrt{m_{B_{c}} m_{P}}}\left(\left(m_{B_{c}}-m_{P}\right)^{2}\left(f_{0}-f_{+}\right)+q^{2} f_{+}\right) \\
a_{0} \Omega_{2} & =\frac{1}{2 q^{2} \sqrt{m_{B_{c}} m_{P}}}\left(\left(m_{B_{c}}^{2}-m_{P}^{2}\right)\left(f_{+}-f_{0}\right)+q^{2} f_{+}\right)
\end{aligned}
$$

P. Colangelo, F. Loparco, FDF, PRD103 (2021) 075019
obtained from data in HPQCD Collab. PRD102 (2020) 014513

all other FFs derived from these functions

HQ spin symmetry in B_{c} decays

$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{B}_{\mathrm{s}} \ell v_{\ell}$

 $\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{B}_{\mathrm{s}}{ }_{\mathrm{s}} \ell v_{\ell}$

P. Colangelo, F. Loparco, FDF, PRD103 (2021) 075019

HQ spin symmetry in B_{c} decays

$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{B}_{\mathrm{d}} \ell v_{\ell}$

$$
\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{~B}_{\mathrm{d}}{ }^{\prime} \ell v_{\ell}
$$

Results

$$
\begin{array}{|l|l|}
\hline \mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{~B}^{(*)}{ }_{\mathrm{s}} \ell \nu_{\ell} \\
\mathcal{B}\left(B_{c}^{+} \rightarrow B_{s} \mu^{+} \nu_{\mu}\right)=0.0125(4)\left(\frac{\left|V_{c s}\right|}{0.987}\right)^{2} \\
\mathcal{B}\left(B_{c}^{+} \rightarrow B_{s} e^{+} \nu_{e}\right)=0.0131(4)\left(\frac{\left|V_{c s}\right|}{0.987}\right)^{2}
\end{array} \quad \begin{aligned}
& \mathcal{B}\left(B_{c}^{+} \rightarrow B_{s}^{*} \mu^{+} \nu_{\mu}\right)=0.030(1)\left(\frac{\left|V_{c s}\right|}{0.987}\right)^{2} \\
& \mathcal{B}\left(B_{c}^{+} \rightarrow B_{s}^{*} e^{+} \nu_{e}\right)=0.032(1)\left(\frac{\left|V_{c s}\right|}{0.987}\right)^{2} \\
& \hline
\end{aligned}
$$

SM branching fractions

$$
\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{~B}^{(*)}{ }_{\mathrm{d}} \ell v_{\ell}
$$

$$
\begin{aligned}
& \mathcal{B}\left(B_{c}^{+} \rightarrow B_{d} \mu^{+} \nu_{\mu}\right)=8.3(5) \times 10^{-4}\left(\frac{\left|V_{c d}\right|}{0.221}\right)^{2} \\
& \mathcal{B}\left(B_{c}^{+} \rightarrow B_{d} e^{+} \nu_{e}\right)=8.7(5) \times 10^{-4}\left(\frac{\left|V_{c d}\right|}{0.221}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{B}\left(B_{c}^{+} \rightarrow B_{d}^{*} \mu^{+} \nu_{\mu}\right) & =20(1) \times 10^{-4}\left(\frac{\left|V_{c d}\right|}{0.221}\right)^{2} \\
\mathcal{B}\left(B_{c}^{+} \rightarrow B_{d}^{*} e^{+} \nu_{e}\right) & =21(1) \times 10^{-4}\left(\frac{\left|V_{c d}\right|}{0.221}\right)^{2}
\end{aligned}
$$

small uncertainty: role of the HQSS relations

Impact of NP: correlations

branching ratios

NP couplings from
D. Becirevic, F. Jaffredo, A. Penuelas, O. Sumnsari, JHEP05 (2021) 175

Forward-Backward lepton asymmetry

$$
\mathcal{A}_{\mathcal{F B}}\left(q^{2}\right)=\left(\frac{d \Gamma}{d q^{2}}\right)^{-1}\left[\int_{0}^{1} d \cos \theta \frac{d^{2} \Gamma}{d q^{2} d \cos \theta}-\int_{-1}^{0} d \cos \theta \frac{d^{2} \Gamma}{d q^{2} d \cos \theta}\right]
$$

[^0]different pattern of correlations:
the presence of R would produce

- anticorrelated BRs
- anticorrelated AFB $\left(B_{c} \rightarrow B_{s}^{*} \mu v_{m}\right)$ and $B\left(B_{c} \rightarrow B_{s} \mu v_{\mu}\right)$
- correlated AFB $\left(B_{c} \rightarrow B_{s}^{*} \mu v_{m}\right)$ and $B\left(B_{c} \rightarrow B_{s}^{*} \mu v_{\mu}\right)$
- large impact of T on AFB
- large impact of T on $B R$ in $c \rightarrow d$

$\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{B}_{\mathrm{s}, \mathrm{d}}^{*} \mu v_{\mu}$

fraction of transversely polarized $\mathrm{B}_{\mathrm{s}, \mathrm{d}}$

$$
\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{~B}_{\mathrm{s}}^{*} \mu v_{\mu}
$$

$$
\mathrm{B}_{\mathrm{c}} \rightarrow \mathrm{~B}_{\mathrm{d}}^{*} \mu v_{\mu}
$$

$c \rightarrow s: F_{T}<0.5$ in $S M$ and $N P$
$\mathrm{c} \rightarrow \mathrm{d}: \mathrm{T}$ can reverse the hierarchy
B_{c} decays represent an interesting testing ground for

- determination of V_{cb}
- flavour anomalies
- probing the structure of the hadrons in the final state
predictions based on NRQCD + HQE
- relations among FFs
- relations to be fulfilled by modes with final hadrons connected by HQSS
- tests of explicit calculations

[^0]: $\mathcal{B}\left(B_{c}^{+} \rightarrow B_{s}^{*} \mu^{+} \nu_{\mu}\right)$

