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SMEFT for BSM physics
Effective theory parameterising effects of heavy new physics 

respecting the full SM gauge group, and containing a Higgs doublet
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Can reproduce effects of heavy new 
physics at low energies

ADVANTAGES CHALLENGES

Model independent

Language to interpret experimental results

Too many parameters to deal with

(2499 at dimension 6)

Sometimes opaque connection 
between operators and observables

Can connect scales via anomalous dimension matrix

2
(Alonso), Jenkins, Manohar, Trott

1308.2627, 1310.4838, 1312.2014




Flavour in the SMEFT
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Flavour is responsible for most of the parameters… 

A way to narrow down the problem is to identify categories of important operators  

e.g. Operators that contribute (at tree or loop level) to a class of observables

Operators invariant under CP or flavour symmetries

Operators that are created at tree level by simple/motivated UV models

If there were one generation…

With three generations…

76 real parameters

2499 real parameters

(baryon number conserving)

(baryon number conserving)

D’Ambrosio, Giudice, Isidori, Strumia, hep-ph/0207036

Faroughy, Isidori, Wilsch, Yamamoto 2005.05366

Greljo, Palavric, Thomsen 2203.09561

e.g. Einhorn, Wudka 1307.0478

Craig, Jiang, Li, Sutherland 2001.00017



Anomalous dimension matrix
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At one loop, SMEFT operators can mix into one another

can be put into 
a loop:

which gives a 
divergent 

contribution to:

Gives an off-diagonal contribution to the anomalous dimension matrix

e.g.

?Λ

μEW

Different Wilson 
coefficients at different 

scales

Categories generally won’t be conserved over scales



Flavour fights back
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No matter how “flavourless” the initial assumptions, flavour effects appear radiatively

How to make sense of it all?

Flavour can put meaningful constraints on the class of 
operators that enter Z pole measurements

Hurth, SR, Shepherd 1903.00500

Aoude, Hurth, SR, Shepherd 2003.05432

e.g. full flavour symmetry at Λ

U(3)5



Non-renormalisation theorems

6

Allow us to find categories that remain distinct over scales

i.e. they do not mix into each other under renormalisation group flow

Then can study subsets independently

Anomalous dim matrix of 
dimension 6 SMEFT has many 

zeroes (Alonso), Jenkins, Manohar, Trott

1308.2627, 1310.4838, 1312.2014


Seems clear that there must be reasons for this

Non-renormalisation theorems provide symmetry- or kinematics-based 
explanations for zeroes



Anomalous dimensions via tree amplitudes

Cutkosky's rule: 2-cuts isolate the 
discontinuities of the amplitude 

internal lines go onshell 

 can deduce divergences⟹
Cutkosky, J. Math. Phys 1, 429 (1960)

These 2-cuts can be used to isolate the UV divergent piece* *IR divergences in self-
renormalisation require 

some care

⟹ schematically:

anomalous 
dimension

All momenta are defined ingoing  
lines on either side of the cut have 

opposite momenta and helicity

⟹

dim 6 dim 4 dim 6

If we know the properties of the dim 6 and dim 4 amplitudes on the LHS, we can understand which 
amplitudes can be produced on the RHS
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Caron-Huot, Wilhelm 1607.06448

Jiang, Ma, Shu, 2005.10261


Baratella, Fernandez, Pomarol, 2005.07129

Elias Miró, Ingoldby, Riembau, 2005.06983



Helicity and non-renormalisation
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Label amplitudes by number of legs  and total helicity n ∑ h

∑ hC = ∑ hA + ∑ hBand

X = Bμν, GA
μν, WI

μν

ψ = Q, u, d, L, e

∑ h

n
4 5 6

0
3

1

2

3

Dimension 6 SMEFT:

H6

ψ̄ ψH3

ψ2ψ̄2

ψ ψ̄H2D

H4D2

ψ4

ψ̄ ψXH
X2H2

X3

nC = nA + nB − 4



Helicity and non-renormalisation

nC = nA + nB − 4

Label amplitudes by number of legs  and total helicity n ∑ h

∑ hC = ∑ hA + ∑ hBand

∑ h

n
4 5 6

0
3

1

2

3

Dimension 6 SMEFT: All SM tree amplitudes (*) lie in the cone defined by 

∑ h ≤ n − 4

So from any operator, can only run into operators on or 
within the cone at one loop 

(*) exceptions:

Q u

Q d

Q u

L

+ +

+ +

e

+ +

++

∝ YuYd ∝ YuYe

∑ h = 2

n = 4

Always suppressed 
by a small Yukawa

Alonso, Jenkins, Manohar 1409.0868

Cheung, Shen 1505.01844

H6

ψ2H3

ψ2ψ̄2

ψ ψ̄H2D

H4D2

ψ4

ψ2XH
X2H2

X3

dim 6 dim 6SM
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X = Bμν, GA
μν, WI

μν

ψ = Q, u, d, L, e



Going further: gauge and flavour
We have non-renormalisation theorems based on helicity, i.e. the kinematical part of the amplitudes

anomalous 
dimensiondim 6 dim 4 dim 6

(kinematics)  (gauge)  (flavour)× ×

Each entry of  factorises:γij

Can we find good categories for the gauge and flavour parts of the operators, that are 
conserved under running?

Amplitudes factorise:

⟹(kinematics)  (gauge)  (flavour)× ×

9

ψψ̄H2D
2 Higgs, 2 fermion operators

e.g. ,  etcOHu O(1,3)
Hl

ψ2ψ̄2
4 fermion operators

(All except  and )O(1,3)
lequ O(1,8)

quqd

H4D2

4 Higgs operators 

OHD OH□

Focus on the (4,0) operators: 1460 parameters



Flavour decomposition: irreps

Most operators have flavour 
matrices as Wilson coefficients

cp
q

Can decompose these general 
matrices in any basis that is convenient

Natural choice: irreps of SM flavour group

SU(3)5 = SU(3)Q × SU(3)u × SU(3)d × SU(3)L × SU(3)e

SM fermions are in triplet irreps under their group
 preserved by gauge interactionsSU(3)5

H4D2

Operator type Wilson coeff Irrep decomposition

H2ψ2
FD

c 1F (∀F)

3F ⊗ 3̄F = 1F ⊕ 8F

ψ2ψ̄2 : (ψ̄F1
ψF1

)(ψ̄F2
ψF2

) cpr
qs

3F1
⊗ 3̄F1

⊗ 3F2
⊗ 3̄F2

= (1F1
⊗ 1F2

) ⊕ (1F1
⊗ 8F2

) ⊕ (8F1
⊗ 1F2

) ⊕ (8F1
⊗ 8F2

)

ψ2
Fψ̄2

F :
ψ2

Fψ̄2
F :

symmetric

antisymmetric

c(pr)
(qs)

c[pr]
[qs]

(3F ⊗ 3̄F)sym ⊗ (3F ⊗ 3̄F)sym = 1F ⊕ 8F ⊕ 27F

(3F ⊗ 3̄F)antisym ⊗ (3F ⊗ 3̄F)antisym = 1F ⊕ 8F 10



Flavour decomposition: quantum numbers
To label the components of the irreps, can use conventions developed for the  

of light flavours  in the 1960s
SU(3)

u, d, s

4 quantum numbers for each species:

strangeness

3rd component

of isospin

ud

s

3F

8F

"thirdness"

3rd component

of "lightspin"

u, d, s 3 generations

u, d, s

de Swart, Rev. Mod, 
Phys. 35 (1963) 

916-939

Total    key:

Triplet

Octet
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Selection rules
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We now know the flavour 
quantum numbers of all the 

dim 6 operators…

So if we understand what 
flavour quantum numbers are 

zero in SM amplitudes…

Then we can deduce which 
are preserved in the running

SM gauge coupling

Flavour singlet, 

all quantum numbers = 0gx δij

SM Yukawa coupling

Yij

If just y3

If all yi

(*in a basis where Yukawas are diagonalised)

{IL, IR, I3L, I3R, YL + YR} = 0

{I3L + I3R, YL + YR} = 0

SU(3)5 preserved

SU(2)R × SU(2)L × U(1)L+R preserved

U(1)2
L+R preserved

*

*



Block-diagonalising  via flavour decompositionγ

Only gauge couplings

neglecting fewer parameters

All flavour quantum 
numbers are conserved

All (Gauge couplings 
and all Yukawas)

Gauge couplings and 
top Yukawa

Only  and   
are conserved

YL+e I3,L+e

neglecting more parameters

(equivalent to two individual 
lepton numbers)

Conserves everything but {dirrep}{Q,u}

SM flavour symm broken 
SU(3)Q × SU(3)u → SU(2)Q × SU(2)u × U(1)Q+u

If we class Wilson coefficients by their flavour quantum numbers, we can trivially block-diagonalise γ
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Block sizes depend on which Yukawa couplings we neglect 

4 quantum numbers for 
each species F



Blocks under different approximations

61 × 61
Largest block size

Conserved: 

Gauge couplings and top Yukawa

(4,0) block 
before flavour 
decomposition

1460 × 1460

(4,0) block 
after flavour 

decomposition

14

(contains all the 
flavour singlets 
plus things with 


               )



Blocks under different approximations

932 × 932
Largest block size

Conserved:

6  blocks4 × 4
6  blocks3 × 3

(4,0) block 
before flavour 
decomposition

1460 × 1460

(4,0) block 
after flavour 

decomposition

All (Gauge couplings and all Yukawas)
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Invariant categorisations: step by step approach

We could start by focussing on this subset 
of broadly flavour conserving coefficients

To go further, we can also look at 
other subsets containing flavour-

violating coefficients

Block diagonalisation ensures they are theoretically 
disconnected. Depending on observables they may 

or may not be experimentally disconnected too
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Pheno uses
Which coefficients can be induced by running from any given coefficient (including flavour 

structure), or vice versa?

e.g. the lepton flavour non-universal part of the operator 

which can be responsible for LFUV in B decays 

c1,1,8,6 } 12 × 12
blockc8,6,8,6

Clebsch-Gordan coefficients

Mixes with the  lepton octet components of: c8,6 }
LFUV in Z couplings

}
 decaysτ

Feruglio, Paradisi, 
Pattori, 1606.00524


& 1705.00929
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Beyond the SMEFT?
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New light degrees of freedom change the game by adding new terms to the anomalous dim matrix
e.g. EFT containing a light axion-like particle

Λ

} Only difference between SMEFT 
and ALP EFT is the addition of ONE 
more degree of freedom below Λ

Here particle content is SM+ALP ALP interactions with SM particles begin at dim 5 
More helicity amplitudes

Galda, Neubert, SR 2105.01078



Beyond the SMEFT?
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New light degrees of freedom change the game by adding new terms to the anomalous dim matrix
e.g. EFT containing a light axion-like particle Galda, Neubert, SR 2105.01078

Λ

} Only difference between SMEFT 
and ALP EFT is the addition of ONE 
more degree of freedom below Λ

Here particle content is SM+ALP 

e.g. in SMEFT,  operators are only self-renormalisedX3

Alonso, Jenkins, Manohar, Trott 1312.2014

⟹ if zero at , zero at  (to 1-loop)Λ mW

But in ALP EFT, same operators are renormalised by 
ALP-boson interactions:

e.g. ⟹ unavoidable in an ALP 
theory if CGG ≠ 0

∑ h

n
4 5 6

0
3

1

2

3

H6

ψ̄ ψH3

ψ2ψ̄2

ψ ψ̄H2D

H4D2

ψ4

ψ̄ ψXH
X2H2

X3

ALP interactions with SM particles begin at dim 5 
More helicity amplitudes

Cheung, Shen, 
1505.01844

Galda, Neubert, SR 2105.01078



Summary and outlook

Using a symmetry-based flavour decomposition, achieve simple block 
diagonalisation of (4,0) operators

Blocks allow you to understand closed subsets of parameters and narrow in on loop-
level pheno 

 is large, non-diagonal, & flavourfulγSMEFT

SMEFT phenomenology is complicated by its huge parameter space

20

and of course… 

Happy birthday Matthias!



Backups…



Flavour symmetry subsets
4 quantum numbers: {dirrep, I, I3, Y}

Total  key:I

easy to identify the subsets of coefficients that are invariant under exact flavour symmetries

Exact  symmetry: just singletsU(3)

Exact  symmetry: just U(2) I = 0

e.g.

This is a fully general decomposition which does not restrict form of Wilson coefficients
But, since it is couched in flavour symmetry irreps,



Flavour quantum numbers and pheno
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4 quantum numbers: {dirrep, I, I3, Y}

Singlet:

flavour conserving & 

flavour universal

dirrep > 1, {I3, Y} = 0
Flavour 

conserving but 
non-universal

I3 > 0, Y = 0
Flavour changing in first two 

generations only

Y ≠ 0
Flavour changing involving 

3rd generation

Total  key:I

For -plet, the larger the values of  and , the more flavour violating 27 I3 Y

For each flavour:



Invariant categorisations: a minimal parameter set
e.g. Assume that the flavour breaking we see in the SM is dominant 

i.e. NP respects (at least) U(2)Q × U(2)u × U(3)3

So within the (4,0) block we need the 61 parameters with  

If we neglect  and smaller, this set is complete across scalesyb

This is a consistent choice for global fits
The non-(4,0) operators do not 

run into the (4,0) block

+ other operator coefficients CW CHCG{
(3,3)

{

(6,0)
=

CHWBCHG

CHB CHW

{(n, ∑ h) = (4,2)

CtGCtB CtW CtH{

(5,1)

{
(4,2)

11 parameters

(and CP)

72 total
agrees with Greljo, Palavric, Thomsen 2203.09561 Table 1

https://arxiv.org/abs/2203.09561


e.g. Assume that the flavour breaking we see in the SM is dominant 
i.e. NP respects (at least) U(2)Q × U(2)u × U(3)3

So within the (4,0) block we need the 61 parameters with  

Not just counting! 
Can see the explicit parameters 

Total    key:

Clebsch-Gordan decompositions of the parameters:

So, for example, as well as the full singlet 
piece of , we need  Cqe

1

3 (−C11ii
qe − C22ii

qe + 2C33ii
qe )

Invariant categorisations: a minimal parameter set



Blocks under different approximations

(4,0) block 
before flavour 
decomposition

(4,0) block 
after flavour 

decomposition

1460 × 1460 34 × 34
Largest block size

All flavour quantum numbers conserved:

(contains all the 
flavour singlets)

Only gauge couplings



Blocks under different approximations
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292 × 292
Largest block size

Conserved: {I, I3, Y}{u,d,L,e}

49  blocks2 × 2
321  blocks1 × 1

Gauge couplings and all 3rd generation Yukawas (full CKM)

(4,0) block 
before flavour 
decomposition

1460 × 1460

(4,0) block 
after flavour 

decomposition


