

Pushing the limits of theoretical physics, Mainz, 11th May 2023

SMEFT for BSM physics

Effective theory parameterising effects of heavy new physics respecting the full SM gauge group, and containing a Higgs doublet

$$
\mathcal{L}_{\mathrm{NP}}=\frac{1}{\Lambda^{2}} \sum_{i} C_{i}^{(6)} \mathcal{O}_{i}^{(6)}+\frac{1}{\Lambda^{4}} \sum_{i} C_{i}^{(8)} \mathcal{O}_{i}^{(8)}+\ldots
$$

ADVANTAGES

Can reproduce effects of heavy new physics at low energies

Model independent
Language to interpret experimental results
Can connect scales via anomalous dimension matrix

Flavour in the SMEFT

Flavour is responsible for most of the parameters...

If there were one generation... 76 real parameters (baryon number conserving)

With three generations... 2499 real parameters (baryon number conserving)

A way to narrow down the problem is to identify categories of important operators
e.g. Operators that contribute (at tree or loop level) to a class of observables

D'Ambrosio, Giudice, Isidori, Strumia, hep-ph/0207036
Operators invariant under CP or flavour symmetries Faroughh, Sistori, wisch, Yammonto 2005.5536
Greljo, Palavric, Thomsen 2003.09561
Operators that are created at tree level by simple/motivated UV models

Anomalous dimension matrix

At one loop, SMEFT operators can mix into one another

e.g.
can be put into a loop:

which gives a divergent contribution to:

Gives an off-diagonal contribution to the anomalous dimension matrix

$$
\frac{\mathrm{d} C_{\mathcal{O}_{i}}}{\mathrm{~d} \ln \mu}=\sum_{j} \frac{1}{16 \pi^{2}} \overparen{\Upsilon}_{i j} C_{\mathcal{O}_{j}}
$$

Categories generally won't be conserved over scales

Different Wilson coefficients at different scales

Flavour fights back

No matter how "flavourless" the initial assumptions, flavour effects appear radiatively
e.g. full flavour symmetry at Λ

$$
U(3)^{5}
$$

Flavour can put meaningful constraints on the class of operators that enter Z pole measurements
$\left\{C_{H W B}, C_{H D}, C_{H l}^{(1)}, C_{H l}^{(3)}, C_{H q}^{(1)}, C_{H q}^{(3)}, C_{H u}, C_{H d}, C_{H e}, C_{l l}^{\prime}\right\}$

Non-renormalisation theorems

Anomalous dim matrix of dimension 6 SMEFT has many zeroes

Seems clear that there must be reasons for this

Non-renormalisation theorems provide symmetry- or kinematics-based explanations for zeroes

> | Allow us to find categories that remain distinct over scales |
| :--- |
| i.e. they do not mix into each other under renormalisation group flow |

Then can study subsets independently

Anomalous dimensions via tree amplitudes

Cutkosky's rule: 2-cuts isolate the discontinuities of the amplitude \Longrightarrow can deduce divergences

internal lines go onshell

These 2-cuts can be used to isolate the UV divergent piece*

\Longrightarrow schematically:

Caron-Huot, Wilhelm 1607.06448
Jiang, Ma, Shu, 2005.10261 Baratella, Fernandez, Pomarol, 2005.07129
Elias Miró, Ingoldby, Riembau, 2005.06983

*IR divergences in selfrenormalisation require
some care

All momenta are defined ingoing \Longrightarrow lines on either side of the cut have opposite momenta and helicity

If we know the properties of the $\operatorname{dim} 6$ and $\operatorname{dim} 4$ amplitudes on the LHS, we can understand which amplitudes can be produced on the RHS

Helicity and non-renormalisation

Label amplitudes by number of legs n and total helicity $\sum h$
(A)

Helicity and non-renormalisation

Label amplitudes by number of legs n and total helicity $\sum h$
and

All SM tree amplitudes (*) lie in the cone defined by

$$
\left|\sum h\right| \leq n-4
$$

So from any operator, can only run into operators on or within the cone at one loop

Alonso, Jenkins, Manohar 1409.0868
Cheung, Shen 1505.01844
(*) exceptions:

$$
\begin{gathered}
\left|\sum h\right|=2 \\
n=4
\end{gathered}
$$

Always suppressed by a small Yukawa

Going further: gauge and flavour

We have non-renormalisation theorems based on helicity, i.e. the kinematical part of the amplitudes

Amplitudes factorise:
(kinematics) \times (gauge) \times (flavour)

Each entry of $\gamma_{i j}$ factorises:
(kinematics) \times (gauge) \times (flavour)

Can we find good categories for the gauge and flavour parts of the operators, that are conserved under running?

Focus on the $(4,0)$ operators: 1460 parameters

$H^{4} D^{2}$	$\psi \bar{\psi} H^{2} D$	$\psi^{2} \bar{\psi}^{2}$
4 Higgs operators	2 Higgs, 2 fermion operators	4 fermion operators
$O_{H D} O_{H \square}$	e.g. $O_{H u} O_{H l}$ etc	(All except $O_{\text {lequ }}^{(1,3)}$ and $O_{\text {quqd }}^{(1,8)}$)

Flavour decomposition: irreps

Most operators have flavour matrices as Wilson coefficients

Can decompose these general matrices in any basis that is convenient

Natural choice: irreps of SM flavour group

$$
S U(3)^{5}=S U(3)_{Q} \times S U(3)_{u} \times S U(3)_{d} \times S U(3)_{L} \times S U(3)_{e}
$$

SM fermions are in triplet irreps under their group $S U(3)^{5}$ preserved by gauge interactions

Operator type	Wilson coeff	Irrep decomposition
$H^{4} D^{2}$	c	$1_{F}(\forall F)$
$H^{2} \psi_{F}^{2} D$	c_{q}^{p}	$3_{F} \otimes \overline{3}_{F}=1_{F} \oplus 8_{F}$
$\psi^{2} \bar{\psi}^{2}:\left(\bar{\psi}_{F_{1}} \psi_{F_{1}}\right)\left(\bar{\psi}_{F_{2}} \psi_{F_{2}}\right)$	$c_{q s}^{p r}$	$3_{F_{1}} \otimes \overline{3}_{F_{1}} \otimes 3_{F_{2}} \otimes \overline{3}_{F_{2}}=\left(1_{F_{1}} \otimes 1_{F_{2}}\right) \oplus\left(1_{F_{1}} \otimes 8_{F_{2}}\right) \oplus\left(8_{F_{1}} \otimes 1_{F_{2}}\right) \oplus\left(8_{F_{1}} \otimes 8_{F_{2}}\right)$
$\psi_{F}^{2} \bar{\psi}_{F}^{2}:$ symmetric	$c_{(q s)}^{(p r)}$	$\left(3_{F} \otimes \overline{3}_{F}\right)_{s y m} \otimes\left(3_{F} \otimes \overline{3}_{F}\right)_{s y m}=1_{F} \oplus 8_{F} \oplus 27_{F}$
$\psi_{F}^{2} \bar{\psi}_{F}^{2}:$ antisymmetric	$c_{[q s]}^{[p r]}$	$\left(3_{F} \otimes \overline{3}_{F}\right)_{a n t i s y m} \otimes\left(3_{F} \otimes \overline{3}_{F}\right)_{a n t i s y m}=1_{F} \oplus 8_{F}$

Flavour decomposition: quantum numbers

To label the components of the irreps, can use conventions developed for the $\operatorname{SU}(3)$
of light flavours u, d, s in the 1960s

4 quantum numbers for each species: $\left\{d, \mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{F}$

Selection rules

We now know the flavour quantum numbers of all the dim 6 operators...

So if we understand what flavour quantum numbers are zero in SM amplitudes.. Then we can deduce which are preserved in the running

SM gauge coupling

SM Yukawa coupling

Flavour singlet, all quantum numbers $=0$
$S U(3)^{5}$ preserved

$$
\begin{aligned}
& \text { If all } y_{i} \quad\left\{I_{3 L}+I_{3 R}, Y_{L}+Y_{R}\right\}=0^{*} \\
& \quad U(1)_{L+R}^{2} \text { preserved }^{*}
\end{aligned}
$$

Block-diagonalising γ via flavour decomposition

If we class Wilson coefficients by their flavour quantum numbers, we can trivially block-diagonalise γ Block sizes depend on which Yukawa couplings we neglect

Only gauge couplings

All flavour quantum numbers are conserved $\left\{d, \mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{F}$
4 quantum numbers for each species F

Gauge couplings and top Yukawa

Conserves everything but $\left\{d_{\text {irrep }}\right\}_{\{Q, u\}}$
SM flavour symm broken

$$
S U(3)_{Q} \times S U(3)_{u} \rightarrow S U(2)_{Q} \times S U(2)_{u} \times U(1)_{Q+u}
$$

All (Gauge couplings and all Yukawas)

Only Y_{L+e} and $I_{3, L+e}$ are conserved
(equivalent to two individual lepton numbers)

Blocks under different approximations

Gauge couplings and top Yukawa
Conserved: $\left\{\mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{\{Q, u\}},\left\{d, \mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{\{d, L, e\}}$

Blocks under different approximations

All (Gauge couplings and all Yukawas)

Conserved: $\mathcal{I}_{3, L}+\mathcal{I}_{3, e}, \mathcal{Y}_{L}+\mathcal{Y}_{e}$

Block size	932	81	4	3
Multiplicity	1	6	6	6

Invariant categorisations: step by step approach

We could start by focussing on this subset of broadly flavour conserving coefficients

To go further, we can also look at other subsets containing flavourviolating coefficients

Block diagonalisation ensures they are theoretically disconnected. Depending on observables they may or may not be experimentally disconnected too

Pheno uses

Which coefficients can be induced by running from any given coefficient (including flavour structure), or vice versa?
e.g. the lepton flavour non-universal part of the operator

$$
\mathcal{L}_{\mathrm{NP}}=\frac{C}{\Lambda^{2}}\left(\left(\bar{Q}_{3}^{\prime} \gamma^{\mu} Q_{3}^{\prime}\right)\left(\bar{L}_{3}^{\prime} \gamma_{\mu} L_{3}^{\prime}\right)+\left(\bar{Q}_{3}^{\prime} \gamma^{\mu} \sigma^{I} Q_{3}^{\prime}\right)\left(\bar{L}_{3}^{\prime} \gamma_{\mu} \sigma^{I} L_{3}^{\prime}\right)\right)
$$

which can be responsible for LFUV in B decays
Clebsch-Gordan coefficients
\(\left.\begin{array}{l}c_{1,1,8,6}

c_{8,6,8,6}\end{array}\right\}\)| 12×12 |
| :---: |
| block |

Mixes with the $c_{8,6}$ lepton octet components of:

$$
C_{L Q}^{(1)}(\times 2), C_{L Q}^{(3)}(\times 2), C_{L u}(\times 2), C_{L d}, \underbrace{C_{L L}(\times 2), C_{L e}}_{\tau \text { decays }}, C_{H L}^{(1)}, C_{H L}^{(3)}
$$

Beyond the SMEFT?

New light degrees of freedom change the game by adding new terms to the anomalous dim matrix
e.g. EFT containing a light axion-like particle Galda, Neubert, SR 2105.01078

Here particle content is SM+ALP
Only difference between SMEFT and ALP EFT is the addition of ONE more degree of freedom below Λ

ALP interactions with SM particles begin at dim 5
More helicity amplitudes

Beyond the SMEFT?

New light degrees of freedom change the game by adding new terms to the anomalous dim matrix e.g. EFT containing a light axion-like particle

Here particle content is SM+ALP
Only difference between SMEFT and ALP EFT is the addition of ONE more degree of freedom below Λ
e.g. in SMEFT, X^{3} operators are only self-renormalised $\dot{C}_{G}=\left(12 c_{A, 3}-3 b_{0,3}\right) g_{3}^{2} C_{G} \quad$ Alonso, Jenkins, Manohar, Trott 1312.2014 $\dot{C}_{W}=\left(12 c_{A, 2}-3 b_{0,2}\right) g_{2}^{2} C_{W} \Longrightarrow$ if zero at Λ, zero at m_{W} (to 1-loop)

But in ALP EFT, same operators are renormalised by ALP-boson interactions:
unavoidable in an ALP theory if $C_{G G} \neq 0$

ALP interactions with SM particles begin at dim 5
More helicity amplitudes

Summary and outlook

SMEFT phenomenology is complicated by its huge parameter space
$\gamma_{S M E F T}$ is large, non-diagonal, \& flavourful

Using a symmetry-based flavour decomposition, achieve simple block diagonalisation of $(4,0)$ operators

Blocks allow you to understand closed subsets of parameters and narrow in on looplevel pheno and of course...

Happy birthday Matthias!

Backups...

Flavour symmetry subsets

$$
4 \text { quantum numbers: }\left\{d_{\text {irrep }}, I, I_{3}, Y\right\}
$$

Total I key: $\bullet=0, O=\frac{1}{2}, \bullet=1, \square=\frac{3}{2}, \quad=2$

This is a fully general decomposition which does not restrict form of Wilson coefficients
But, since it is couched in flavour symmetry irreps,
easy to identify the subsets of coefficients that are invariant under exact flavour symmetries
e.g.

Exact $U(3)$ symmetry: just singlets

Exact $U(2)$ symmetry: just $I=0$

Flavour quantum numbers and pheno

For each flavour:

$$
4 \text { quantum numbers: }\left\{d_{\text {irrep }}, I, I_{3}, Y\right\}
$$

Singlet: flavour conserving \&
 flavour universal

$$
\text { Total } I \text { key: } \bullet=0, \circ=\frac{1}{2}, \bullet=1, \square=\frac{3}{2}, \quad=2
$$

$$
\begin{gathered}
d_{\text {irrep }}>1,\left\{I_{3}, Y\right\}=0 \\
\text { Flavour } \\
\text { conserving but } \\
\text { non-universal }
\end{gathered}
$$

$$
I_{3}>0, Y=0
$$

Flavour changing in first two generations only

$$
Y \neq 0
$$

Flavour changing involving
3rd generation

For 27-plet, the larger the values of I_{3} and Y, the more flavour violating

Invariant categorisations: a minimal parameter set

e.g. Assume that the flavour breaking we see in the $S M$ is dominant
i.e. NP respects (at least) $U(2)_{Q} \times U(2)_{u} \times U(3)^{3} \quad$ (and CP)

So within the $(4,0)$ block we need the 61 parameters with

$$
\mathcal{I}_{\{Q, u\}}=0, d_{\{d, L, e\}}=1
$$

+ other operator coefficients $\underbrace{C_{W} C_{G}}_{\left(n, \sum h\right)=} \underbrace{C_{t B} C_{t W} C_{t G} G}_{(4,3)} \underbrace{C_{H B}^{C_{H B} C_{H W}}}_{(4,2)} \underbrace{C_{H G} C_{H W B}}_{(5,1)} \underbrace{C_{t H}}_{(6,0)} \underbrace{C_{H}}_{\mathbf{7 2} \text { total }}=11$ parameters

If we neglect y_{b} and smaller, this set is complete across scales This is a consistent choice for global fits

The non-(4,0) operators do not run into the $(4,0)$ block

Invariant categorisations: a minimal parameter set

e.g. Assume that the flavour breaking we see in the $S M$ is dominant
i.e. NP respects (at least) $U(2)_{Q} \times U(2)_{u} \times U(3)^{3}$

So within the $(4,0)$ block we need the 61 parameters with

Blocks under different approximations

Only gauge couplings
All flavour quantum numbers conserved: $\left\{d, \mathcal{I}, \mathcal{I}_{3}, \mathcal{Y}\right\}_{\{Q, u, d, L, e\}}$

Blocks under different approximations

Gauge couplings and all 3rd generation Yukawas (full CKM)

Conserved: $\left\{I, I_{3}, Y\right\}_{\{u, d, L, e\}}$

