Flavor non-universal gauge interactions

<u>Gino Isidori</u> [*University of Zürich*]

- Introduction
- The two flavor puzzles
- Flavor non-universal interactions
- ► The B anomalies [*what we learned, what's left*]
- Leptoquarks & 4321
- Few words on this special occasion

European Research Council Established by the European Commission

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Flavor puzzle U(1) charges Neutrino masses

Dark-matter Dark-energy Inflation

Quantum gravity

There are several reasons why we think the SM must be extended at high energies:

Electroweak hierarchy problem

Dark-matter Dark-energy Inflation

Quantum gravity

problem due to...

→ <u>Instability</u> of the Higgs mass term

 \rightarrow Ad hoc <u>tuning</u> in the model parameters

 \rightarrow Cosmological implementation of the SM

 \rightarrow General problem of any QFT

MITP 10th anniversary – May 2023

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

I. The observed pattern of SM Yukawa couplings does not look accidental:

What we observe in the Yukawa couplings is an <u>approximate U(2)</u>ⁿ symmetry acting on the <u>light families</u>

The two flavor puzzles

Even forgetting current anomalies, there are two (long-standing) open issues in flavor physics:

- I. The observed pattern of SM Yukawa couplings does not look accidental
 → Is there a deeper explanation for this peculiar structures?
- II. If the SM is only an effective theory, valid below an ultraviolet cut-off, why we do not see any deviation from the SM predictions in the (suppressed) flavor changing processes? What constraints these observations imply on physics beyond the SM?

 \rightarrow Which is the flavor structure of physics beyond the SM?

[SM flavor puzzle]

[*NP flavor puzzle*]

Eg:

- $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\mu}} = (individual) \text{ Lepton Flavor } [exact symmetry]$
- $m_u \approx m_d \approx 0 \rightarrow \text{Isospin symmetry } [approximate symmetry]$

The two flavor puzzles

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{C_i^{\text{teg}}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

In principle, we could expect many violations of the accidental symmetries from the heavy dynamics (\rightarrow *new flavor violating effects*). However, beside some anomalies in B-physics, we observe none.

<u>Stringent bounds</u> on the scale of possible new <u>flavor non-universal interactions:</u>

The NP Flavor puzzle

[b]

The two flavor puzzles

$$\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}} + \sum_{d,i} \frac{C_i^{\text{ter}}}{\Lambda^{d-4}} O_i^{d \ge 5}$$

In principle, we could expect many violations of the accidental symmetries from the heavy dynamics (\rightarrow *new flavor violating effects*). However, beside some anomalies in B-physics, we observe none.

<u>Stringent bounds</u> on the scale of possible new <u>flavor non-universal interactions:</u>

N.B: These high scales can be a "mirage" (= artifact of the accidental symmetry).

The NP Flavor puzzle

[b]

The only unambiguous message of these bounds is:

No large breaking of the approximate $U(2)^n$ flavor symmetry at near-by energy scales

Flavor non-universal interactions

 \rightarrow The "MFV paradigm":

Flavor non-universal interactions

For a long time, the vast majority of model-building attempts to extend the SM was based on the following two (*implicit*) hypotheses:

- Concentrate on the Higgs hierarchy problem -
- "Postpone" the flavor problem

"Protect" the Higgs sector with (TeV-scale) flavor-universal NP (*supersymmetry or Higgs compositness*), deferring the solution of the flavor problem to higher scales

This was a very motivated possibility in the pre-LHC era...

...but it has become a less compelling option after run-I and run-II results

MITP 10th anniversary – May 2023

Flavor non-universal interactions

For a long time, the vast majority of model-building attempts to extend the SM was based on the following two (*implicit*) hypotheses:

Dvali & Shifman '00 Panico & Pomarol '16

Bordone et al. '17

Davighi & G.I. '23

Barbieri '21

Allwicher, GI, Thomsen '20

Flavor non-universal interactions

New paradigm to address <u>both</u> the Higgs hierarchy problem and the flavor puzzle: <u>multi-scale</u> UV completion with *flavor non-universal* interactions

Main idea:

- Flavor non-universal interactions already at the TeV scale:
- 1st & 2nd gen. have small masses because they are coupled to NP at heavier scales

Flavor non-universal interactions

New paradigm to address <u>both</u> the Higgs hierarchy problem and the flavor puzzle: <u>multi-scale</u> UV completion with *flavor non-universal* interactions

A renewed phenomenological interest in this type of approach has been triggered by the B-physics anomalies (*hinting to violations of lepton flavor universality, mainly in 3rd gen.*)

But the construction has an <u>intrinsic</u>, more <u>general</u>, <u>interest</u>:

- Explain the origin of the flavor hierarchies
- ✓ Allow TeV-scale NP coupled (mainly) to 3^{rd} gen. → Higgs sector stabilization

Allwicher, GI, Thomsen '20 Barbieri '21 Davighi & G.I. '23

Flavor hierarchies from gauge non-universality [a brief detour]

To understand which are the viable options for TeV-scale dynamics, we recently analysed all the extensions of the SM gauge group compatible with the following three general assumptions: Davighi & G.I. '23

Obtain the U(2)ⁿ flavor symmetry as accidental symmetry of the (non-universal) gauge sector

- Elementary Higgs up to (at least) the TeV scale \rightarrow New states should preserve Higgs-mass stability \rightarrow NP coupled to 3rd generation should occur at the TeV scale
- Explain charge-quantization → Semi-simple embedding in the UV [i.e. no U(1) groups in the UV]

Flavor hierarchies from gauge non-universality [a brief detour]

I. $U(2)^n$ flavor symmetry as accidental symmetry of the gauge sector.

• Classify the allowed Yukawa structures under a <u>*flavor-deconstruction*</u> of three basic factors characterizing the SM fermions and the EW gauge group: $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

 $\overline{\psi}_L \mathrel{Y} \psi_R \mathrel{H}$

Deconstructing <u>any pair of the three</u> (or all of them) leads to the desired U(2)ⁿ flavor symmetry → <u>four basic options</u>

MITP 10th anniversary – *May 2023*

Flavor hierarchies from gauge non-universality [a brief detour]

- II. New states should preserve Higgs-mass stability \rightarrow NP coupled to 3rd generation should occur at the TeV scale
- III. Explain charge-quantization \rightarrow Semi-simple embedding in the UV

Semi-simple embeddings of the SM have been classified and there are very few possibilities, all featuring one of the possible 3 basic options:

• SU(4)×SU(2)×SU(2) [Pati & Salam '74]

- SU(5) [Georgi & Glashow, '74]
- SO(10) [Georgi '75, Fritzsch & Minkowski '75]

Allanach, Gripaios, Tooby-Smith '23

Proton stability \rightarrow only the Pati-Salam option is possible at low scales

$$SU(3)_{c} \times U(1)_{B-L} \hookrightarrow SU(4) \sim \begin{bmatrix} SU(3)_{c} & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & LQ \\ \hline LQ & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 0 \\ \hline 0 & -1 \end{bmatrix}$$

Flavor hierarchies from gauge non-universality [a brief detour]

I. + II. + III. : four basic options:

TeV-scale gauge group: $G_U \times G_3 \times H_{12}$								
	G_U	G_3	H_{12}					
1	$\mathrm{SU}(2)_L$	${ m SU}(4)^{[3]} \times { m SU}(2)^{[3]}_R$	$\mathrm{SU}(3)^{[12]} \times \mathrm{U}(1)^{[12]}_{B-L} \times \mathrm{U}(1)^{[12]}_{R}$					
2	$SU(2)_R$	$SU(4)^{[3]} \times SU(2)^{[3]}_L$	$SU(3)^{[12]} \times SU(2)^{[12]}_L \times U(1)^{[12]}_{B-L}$					
3	SU(4)	$\mathrm{SU}(2)_L^{[3]} \times \mathrm{SU}(2)_R^{[3]}$	$SU(2)_L^{[12]} \times U(1)_R^{[12]}$					
4	Ø	$SU(4)^{[3]} \times SU(2)^{[3]}_L \times SU(2)^{[3]}_R$	$\mathbf{SU}(3)^{[12]} \times \mathbf{SU}(2)^{[12]}_L \times \mathbf{U}(1)^{[12]}_{B-L} \times \mathbf{U}(1)^{[12]}_R$					
UV cor								
L			→ <i>ⓐ</i> higher E					
	Н	iggs & 3 rd gen fields	↓ ▲					

small impact on δm_h

Higgs & 3rd gen. fields charged only under these groups

Flavor hierarchies from gauge non-universality [a brief detour]

I. + II. + III. + general pheno bounds: two viable TeV-scale options:

General feature:

SU(4) group acting on the 3rd family, with low-energy breaking scale to avoid fine-tuning on the Higgs mass:

$$\delta m_h^2/m_h^2 < 1 \rightarrow \Lambda_U = M_U/g_U \lesssim 5 \text{ TeV}$$
 Davighi & G.I. '23

Using only general naturalness arguments (on both flavor & Higgs sectors) we are led to the hypothesis of a low-scale flavor non-universal LQ

 $R_K \ \mathrm{low}$ - $q^2 \ R_K \ \mathrm{central}$ - $q^2 \ R_{K^*} \ \mathrm{low}$ - $q^2 \ R_{K^*} \ \mathrm{central}$ - q^2

From 2013 results in (various) semi-leptonic B decays started to exhibit tensions with the SM predictions. Several exclusive channels are involved, but they are all sensitive only to the following two classes of partonic transitions:

 $b \rightarrow c lv$ (Charged Currents) $b \rightarrow s l^+l^-$ (Neutral Currents)

The anomalies can be grouped into 3 categories:

(I.) LFU anomaly in CC [
$$\tau$$
 vs. (μ , e)]

II.)
$$\Delta C_9$$
 (*lepton-universal*) anomaly in NC modes

III. LFU anomaly in NC [
$$\mu$$
 vs. e] & BR($B_s \rightarrow \mu\mu$)

$$b \rightarrow c lv$$

 $b \rightarrow s l^+ l^-$

LFU = Lepton Flavor Universality = <u>accidental symmetry</u> of the SM Lagrangian

The B-physics anomalies

- 3.0σ excess over SM
- <u>Compete with SM (a) tree-level</u> \rightarrow *low scale of NP*

 ΔC_9 (*lepton-universal*) anomaly in NC modes

$$\mathcal{O}_9^\ell = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell)$$

- Possible contamination from SM longdistance (*charming penguins*)
- All attempts to <u>compute</u> the effect agree on $\sim 3\sigma$ deviation from SM
- Compete with SM @ loop-level

Possible explanation connected to CC (hence 3rd family LFU violation):

(III.) LFU anomaly in NC [μ vs. e] & BR(B_s $\rightarrow \mu\mu$)

- Clean SM predictions (*LFU ratios* + no long-distance in $B_s \rightarrow \mu\mu$)
- Highest significance till summer 2022

III.) LFU anomaly in NC & BR(
$$B_s \rightarrow \mu\mu$$
)

- Clean SM predictions (*LFU ratios* + no long-distance in $B_s \rightarrow \mu\mu$)
- Highest significance till summer 2022

N.B.: While the overall loss of significance is high, the overall implications for the class of NP models I advocate, are modest

The B-physics anomalies

The B-physics anomalies

MITP 10th anniversary – *May 2023*

Leptoquarks & 4321

Cornella, Faroughi, Fuentes-Martin, GI, Neubert, '21

Leptoquarks & 4321: implications

Aurelio Juste [Moriond EW'23]

MITP 10th anniversary – *May 2023*

• <u>Leptoquarks & 4321: implications</u> The U₁ leptoquark at high energies:

Some concluding remarks

- The idea of a *multi-scale construction at the origin of the flavor hierarchies* has several appealing aspects. Key observation: non-universal gauge interactions at the TeV scale, involving mainly the 3rd family, offer a new way to look at the EW hierarchy problem (and the absence of direct signals of NP so far).
- The model-building efforts along this direction, triggered by the B anomalies, are still very motivated and mildly affected by the recent change in low-energy data.
- If these ideas corrects, <u>new non-standard effects should emerge soon</u> both at low and at high energies (→ very interesting opportunities for LHC @ run-3...).

A few words on this special occasion

As we all know, time is relative...

In my "rest frame", what matters these days is that it is ~ 26 years that I know Matthias !

Closing Plenary Session, 20 March 1997

- Transparencies for Francois LeDiberder: Group 12a -- CP Violation in Neutral B Decays, Summary
- Transparencies for <u>Amarjit Soni</u>: Group 12a -- Penguins + Direct CP Violation
- Transparencies for **Gloria Vuagnin**: Group 12b -- sin(2 beta), Recent Developments
- Transparencies for Paul Dauncer: Group 3 -- Extraction of Gamma
- Transparencies for <u>Mattias Neubert:</u> Goup 4 -- V_ub, V_cb Extraction
- Transparencies for <u>Antonio Masiero</u>: Group 5 -- Rare B Decays
- Transparencies for Joe Izen: Group 7 -- Other Non-CP B Physics
- Transparencies for Pat Burchat: Group 8 -- Charm, Tau, QCD and 2-Photon Physics
- Transparencies for Gerald Eigen: Global Fit of CKM Parameters

K - MESON CONFERENCE Princeton-Pennsylvania Accelerator November 3rd and 4th, 1967

No pictures from that workshop (*sorry*...) but some beautiful slides are still available...

Determination of IVcb! · recoil spectrum of D' mesons in $B \rightarrow D^* \ell \bar{v} \text{ decays}$: $\frac{d\Gamma}{dw} = \frac{G_F^2}{48\pi^3} \quad [kin. factors] \quad |V_{cb}|^2 \quad \mathcal{F}^2(w)$ with: $W = V_{B} \cdot V_{D^{+}} = \frac{E_{D^{+}}}{m_{D^{+}}} = \frac{m_{B}^{2} + m_{D^{+}}^{2} - q^{2}}{2m_{D^{+}} - q^{2}}$ F(w) = hadronic form factor = IWF + sym. - breaking corrections measure IVcbl F(w) as function of w - extract $|V_{cb}|$ from extrapolation to w=1, where heavy quark symmetry helps to calculate F(1) with high accuracy

Over all these years Matthias has been for me (*and I guess for many others*...), a remarkable example to follow (*a "guide"*), given his outstanding scientific accomplishments

Over all these years Matthias has been for me (and I guess for many others...), a remarkable example to follow (a "guide"), given his outstanding scientific accomplishments and, more generally, his enthusiasm & passion for research & training (\rightarrow MITP best example)

Pictures from a special sabbatical year...

n 11. Jan]	5	T 0 0 0 4 C D	Q	●	
an 2021 a	at 18:03				
	Crash Cour	se on Soft-Collinear Effe	ctive Theory		
	(Matth	ias Neubert, 11-21 January 2	011)		
(Outline: • Moti	vation			
	• Revi	ew of Effective Field Theory			
	• Brie	f Encounter with Heavy-Qu	lark Effective T	heory	
	• Cons	truction of Soft-Collinear E	ffective Theory		
	• Colli	inear Anomaly and Rapidit	y Logarithus		
	• Appl	ications			
S	Suggested literature	:		~	
T	Review: T. Bech	er, A. Broggio, A. Ferroglia,	1410.1892 (600	k!) ¹ / ₁₀	
				Œ	

Over all these years Matthias has been for me (and I guess for many others...), a remarkable example to follow (a "guide"), given his outstanding scientific accomplishments and, more generally, his enthusiasm & passion for research & training (\rightarrow *MITP best example*)

Pictures from a special sabbatical year... [Courtesy of Julie Pages]

MITP 10th anniversary – *May 2023*

Over all these years Matthias has been for me (and I guess for many others...), a remarkable example to follow (a "guide"), given his outstanding scientific accomplishments and, more generally, his enthusiasm & passion for research & training (\rightarrow *MITP best example*)

Pictures from a special sabbatical year... [Courtesy of Julie Pages]

Over all these years Matthias has been for me (and I guess for many others...), a remarkable example to follow (a "guide"), given his outstanding scientific accomplishments and, more generally, his enthusiasm & passion for research & training (\rightarrow MITP best example)

> But, <u>most importantly</u>, he has became a very good friend, to whom I wish all the best !

