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DM-what we don’t know

Mass of Dark Matter (range:10-22 to ~10°7 eV )
Composition of Dark Matter

Interaction of Dark Matter



Gapped Continuum, instead of Resonances

¢ What’s New: Dark Matter is made of an ensemble of gapped

continuum states

- It’s not even clear whether the DM 1s a localized excitation of

quantum field (1.e. particle) that provide successful explanations to the

rotation curve of disk galaxies, CMB, and large structure formation.
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¢ What’s New: Dark Matter is made of an ensemble of gapped

continuum states

- It’s not even clear whether the DM 1s a localized excitation of

quantum field (1.e. particle) that provide successful explanations to the

rotation curve of disk galaxies, CMB, and large structure formation.

- continuum with a mass gap 1s not so uncommon in condensed matter
physics: e.g. edge state in fractional quantum hall effect, topological
superfluid, 2D Ising model, 2d SU(2) Thirring model, 2d SU(N) Yang-
Mills theory 1n large-N limit ,etc



CFT Continuum vs
Gapped Continuum (IR deformation)
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Gapped Continuum, instead of Resonances

¢ The appearance of a continuum is very common in QFT’s: e.g. spectrum of

CFTs necessarily forms a continuum since the theory does not admit any mass

scales (no mass gap).

¢ Unparticles (Georgi): another example of gapless continuum

¢ String Theory (e.g. Gubser et al, Kraus, Trivedi et al, etc): gapped continuum
shows up when one has a large number of D3 branes distributed on a disc
(which is dual to N = 4 SUSY broken to N = 2 via masses for two chiral
adjoints )

¢ Gapped Continuum in particle physics: -Softwall model (Higgs with a small mass

gap (before Higgs discovery) by Terning et al, Falkowski et al

-Quantum Ciritical Higgs (Higgs pole + gappend continuum: after Higgs discovery) by
Csaki et al (SL): for off-shell form factor (by gapped continuum) for Higgs EFT

-Continuum Naturalness (for solving little hierarchy by Csaki et al (SL), and also by

Quiros et al)
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Gapp Using methods of EFT, the spectral
densities of interacting quark and gluon fields in ordinary QFTs such as QCD

¢ The appeartl of a hypothetical
conformal sector coupled to the SM, recently studied by Georgi.
CFTs necess

scales (no Models in which a hidden sector weakly coupled to the SM contains a QCD-
like theory, which confines at some scale much below the characteristic
¢ Unparticl o) of a given process, can give rise to signatures closely resembling

those from unparticles.
0.3
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Gapped Continuum, instead of ordinary particles

¢ Continuum DM: singly-excited states are characterized by a

continuous parameter |42, in addition to the usual 3-momentum p

The parameter u* plays the role of mass in the kinematic relation p* = p’ for each state. The
number of states is proportional to [o(u*) du?, where @ is the spectral density of the theory

A ip(p?)
(0|@(p)®(—p)|0) = / 2 p? — 1 + de

p(u)

Ho



Gapped Continuum, instead of ordinary particles

¢ Continuum DM: singly-excited states are characterized by a

continuous parameter |42, in addition to the usual 3-momentum p

The parameter u* plays the role of mass in the kinematic relation p* = p’ for each state. The
number of states is proportional to [o(u*) du?, where @ is the spectral density of the theory

A ip(p?)
(0|@(p)®(—p)|0) = / 2 p? — 1 + de

p(u)

Ho
needs to be gapped: consistent with observations e.g. CMB, LSS gal/ ﬂ



Generalized Free Continuum

4 Continuum Fields

» Consider quadratic action in the momentum space:

cfp,J

iy o d* (
Sscalar o (g )4 ¢1(p)2( 2)¢(p) Sfermion — —Z/ (2 I)) W(p) )

] £ 6 - (1- 1)

2. 1s determined by the two-point correlation function

Y(p)

Svectcu -

Kallen—Lehmann spectral representation



Generalized Free Continuum

4 Continuum Fields

» Consider quadratic action in the momentum space:

[ odt () T
Secalar = / (2} ¢1 ()Z(p%)é(p) Sfermion = —? / (21)) ¥ (p)=( ) P »(p)

] £ 6 - (1- 1)

2. 1s determined by the two-point correlation function

Svectcu -

Kallen—Lehmann spectral representation

L 1 gde e
X(p?) %(p?) 2m p? — u? + ie

« Spectral density:  p(p?) = —21Im



Generalized Free Continuum

4 Continuum Fields

» Consider quadratic action in the momentum space:

4. [ dp — o, OFp
Sscalar — (;1:;4 ¢1 (p)Z(p2)¢(p) Sfermion = _Z/ (2W)4W(p)2(_p2) pzuw(p)
— l d4p 2 | v - l
Svector = 2/ @n) A, (p)Z(p®) {n”‘ (l 5” A,(p)

2. 1s determined by the two-point correlation function
Kallen—Lehmann spectral representation

1 1 dp®  p(pr?)

«  Spectral density: 2y = —-21 -
P oo ) ="2mers © 5w T - e

-for a particle: ¥(p*) = p® —m? +ie

p(p®) = 2m6(u® — m?)



Generalized Free Continuum

4 Generalized free continuum

-consider the case that the effects of the strong interactions can be captured by the fact

that there 1s a non-trivial continuum (with a mass gap), and described by:

s— [ 22 #'wse)ew
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4 Generalized free continuum

-consider the case that the effects of the strong interactions can be captured by the fact

that there 1s a non-trivial continuum (with a mass gap), and described by:

s— [ 22 #'wse)ew

which 1s designed to properly reproduce the two-point function of theory

o ] du? i p(u?
[ dtz eI 0reEE W10 = @ (-p)0) = 5 = [T A



Generalized Free Continuum

4 Generalized free continuum

-consider the case that the effects of the strong interactions can be captured by the fact

that there 1s a non-trivial continuum (with a mass gap), and described by:

_ [ 4
(2m)*

which 1s designed to properly reproduce the two-point function of theory

S 27 (p)Z(p*)2(p)

[ dtz eI 0reEE W10 = @ (-p)0) = 5 = [T A

~ The above effective description 1s weakly coupled (resulting continuum 1is free)

— @ corresponding to a “generalized free field”



Generalized Free Continuum

¢ Generalized free continuum

-consider the case that the effects of the strong interactions can be captured by the fact

that there 1s a non-trivial continuum (with a mass gap), and described by:

_ [ 4
) (@n)?

which 1s designed to properly reproduce the two-point function of theory

[ dtz D QT eEE W10 = OREIE (-p)0) = 5 = [T A

S

27 (p)Z(p*)2(p)

~ The above effective description 1s weakly coupled (resulting continuum 1is free)

— @ corresponding to a “generalized free field”

- In addition we perturb around generalized free continuum by introducing additional
weak couplings to @ and assume that the underlying structure described by the spectral

density remains unchanged, resulting in a weakly interacting continuum.



Generalized Free Continuum

4 Generalized free continuum

-consider the case that the effects of the strong interactions can be captured by the fact

that there 1s a non-trivial continuum (with a mass gap), and described by:

s— [ 22 #'wseA)ew

which 1s designed to properly reproduce the twg

This picture is
supported by the

concrete extra dimensional ]
diz P9 (|7 ] __ ] construction! )
z ePFTY0[1e(x) P (y)]|0) = (0@ (p)e'(—p g

~ The above effective description 1s weakly coupled (resulting continuum 1is free)

— @ corresponding to a “generalized free field”

- In addition we perturb around generalized free continuum by introducing additional
weak couplings to @ and assume that the underlying structure described by the spectral

density remains unchanged, resulting in a weakly interacting continuum.



Physics of Gapped Continuum DM

4 CFT continuum case:

It’s often stated that CFT’s and theories with continuum spectra do not have a particle
interpretation and no S-matrix can be defined: interactions leading to a non-trivial fixed

point are also essential for producing the continuum spectrum of the theory

by turning off the interactions, the spectrum changes from continuum into that of an
ordinary free particle, hence the asymptotic states defined in the usual manner would not

capture the physics of the system properly

this means that one needs to find an alternative approach for defining scattering

Processes

¢ Our theoretic description of gapped continuum: Generalized Free

Continuum (continuum analog of Generalized Free Fields: Greenberg
1961)

Also:

CFT completely specified by 2-point function-rest vanish



CFT Continuum

(Generalized Free Fields Polyakov, early ‘70s- skeleton expansions

CFT completely specified by 2-point function - rest vanish
)
(—p2 +ie)* ™2

\2—A . Georgi
) R hep-ph/0703260

Scaling - 2-point function: G(p?) = —

Can be generated from: Lcrr = —A4' (9°

Branch cut starting at origin - spectral density purely a
continuum:
P

(M?)

2

G(p) ~ / dM? '0
[l

pZ _ /\/72




AdS/CFT
Madacen 97’

Gubser, Klevanov, Polyakov 98’
Witten 98’

AdS/CFT & RS model as EFT

Gravity weak, because we only feel tail of graviton

Large curvature along XD: Space-time “warped”

Scale Invariance (same physics with different scale) along the XD (=> CFT)
Warped Extra-dimension can be seen as an emergent phenomenon

Not put it intfo the theory by hand, but created by strong quantum interaction!
Randall-Sundrum(gg)

non-factorizable metric: solution to 5d Einstein equations

ds® = e ¥ |y|7hwd;1f“ dz¥ — dy?
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Hierarchical Mass spectrum from extra dimension
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Hierarchical Mass spectrum from extra dimension

FERMIONS* BOSONS
First Second Third \

Generation Generation Generation

Top quark

Y. Grossman and M. Neubert, Neutrino masses and
mixings in nonfactorizable geometry (1999)

T. Gherghetta and A. Pomarol, Bulk fields and
supersymmetry in a slice of AdS (2000)

Electron

10*
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Muon- ’
neutrino Tau- J Photon
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Dark Matter Continuum Spectral Density from 5D Model

¢ modeling generalized free continuum by Warped 5D model
ds? = e 24Wdz? + dy?

- warped 5D setup we will have a 3-brane placed at the position z = R, which from the

point of view of the gapped continuum field will be a UV brane cutting off the space

The 5D action of the coupled scalar-gravity system

s= [daya (-M0R+ 500~ V(e)) - [ atevsvi(o)

Do (@

“solt-wWal -




Dark Matter Continuum Spectral Density from 5D Model

¢ modeling generalized free continuum by Warped 5D model
ds? = e 24Wdz? + dy?

- warped 5D setup we will have a 3-brane placed at the position z = R, which from the

point of view of the gapped continuum field will be a UV brane cutting off the space

The 5D action of the coupled scalar-gravity system

5= [days (-MR+ 500 - V() - [dav/gavi(o

- The superpotential (w/ relation V = 3W "2 — 12W?2 ) leading to the desired 5D

(fully includes the backreaction of the metric to the presence of the scalar field)
background: W = k(1 + €?)
Lo (@ Solution A(y) = —log (1 . ) + ky,
& “Sft-war’ g

d(y) = —log (k(ys — v)),
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Dark Matter Continuum Spectral Density from 5D Model

¢ modeling generalized free continuum by Warped 5D model
ds? = e 24Wdz? + dy?

- warped 5D setup we will have a 3-brane placed at the position z = R, which from the

point of view of the gapped continuum field will be a UV brane cutting off the space

The 5D action of the coupled scalar-gravity system

s= [ daya (~M°R+ 500 - V(@) - [ oV Vi)

- The superpotential (w/ relation V = 3W "2 — 12W?2 ) leading to the desired 5D

(fully includes the backreaction of the metric to the presence of the scalar field)
background: W = k(1 + €?)
Lo (@ Solution A(y) = —log (1 . ) + ky,
& “Sft-war’ g

ys = finite distance location of the curvature
singularity where the spacetime ends in the y

coordinates ¢(y) = — log (k(ys — v)),

7z




soft wall & continuum

: 1
- Scalar gapped continuum: £ = /g [EgM NDy®' Dy® — V(9)

In conformally flat coordinate, Schrodinger form of eom:

EOM: (_65 + V(y)) ¥(p,y) = W p2U(p, y) U(p,y) = e AV ®(p,y)

“Schrodinger Eqn’ _ w 4 V(Z)w — p2¢

e 2 2 2 2
V() = [4m (- 0’ +15 1+ Ry —1)° —6
if V —b,u% = finite => Continuum! 1D QM
2 — 00 problem

| . 9
=> continuum begins at: & = _23—2"3'98
4y;




soft wall & continuum

: 1
- Scalar gapped continuum: £ = /g |:§QMNDM(I)TDNCI) — V(®)

In conformally flat coordinate, Schrodinger form of eog

Quantum Gravity?
String Theory (e.g. Gubser et al,
Kraus, Trivedi et al, etc):
gapped continuum shows up

y . : N 2 when one has a large number of
Schrodinger Eqn o w + V(Z)Qp =P w D3 branes distributed on a disc
(which is dual to N =4 SUSY

coM: (05 + V() ¥ip,y) = A VpU(p,y)

—2ky .
V) = e [ - )
if V —>M(2) = finite  => Continuum! b QM
77 00 problem
0 V(2)4 :
=> continuum begins at: M(2) — ﬁe_%ys :,
75 A
Tl S e




What's so new for gapped
continuum as a DM?



What's so new for gapped
continuum as a DM?

¢« One may not simply plug gapped continuum into formalism developed for
particle DM: need a new theoretical framework for dealing with gapped
continuum in order to calculate the relic density of DM, and to deal with the
finite temperature physics necessary for describing general features of
cosmological history of DM

-requires a systematic development of QFT of gapped continuum DM
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o Gapped Continuum as a DM can give striking new experimental

signatures in colliders and cosmic microwave background
measurements



What's so new for gapped
continuum as a DM?

¢ One may not simply plug gapped continuum into formalism developed for
particle DM: need a new theoretical framework for dealing with gapped
continuum in order to calculate the relic density of DM, and to deal with the
finite temperature physics necessary for describing general features of
cosmological history of DM

-requires a systematic development of QFT of gapped continuum DM

o Gapped Continuum as a DM can give striking new experimental
signatures in colliders and cosmic microwave background
measurements

e The strong suppression of direct detection signals (will show later)
reopens the possibility of a Z-mediated dark sector again (and also
other continuum version of WIMP models).



Theories of DM ?

Dark Sector Candidates, Anomalies, and Search Technigues

zeV aeV feV peV neV upeV meV eV keV MeV GeV TeV PeV  30Mg

5 S S B S S S S S S S S e

G — ¢t—>Pp
QCD Axion WINMPs

€ > € > @
Ultralight Dark Matter Hidden Sector Dark Matter Black Holes

& >
P re-Inflationary Axion Hidden Thermal Relics f WIMPless DM

> < »
Post-Inflationary Axion Asymmetric DV

ﬁ
Freeze-ln DM

>
SIMPs / ELDERS

o
Beryllium-8

>
Muon g-2
Small-Scale Structure

“ . m—— > >
Small Expenments: Coherent Field Searches, Direct Detection, Nuclear and Atomic Physics, Accelerators Microlensing

D N S W S S S S UL L N A L W

zeV aeV feV peV neV peV mev eV keV MeV GeV TeV PeV  30Mg
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Dark Sector Candidates, Anomalies, and Search Technigues
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THE WIMP MIRACLE

Insensitive to the initial conditions of the Universe:

due to the thermal equilibrium between the DM and SM gases in the early Universe

. DM SM
Relic abundance o >.<
ann. rate DM SM

>

time

Correct relic abundance for
dark matter mass around the TeV scale
and weak-force interactions



WIMP Dark Matter
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e QOriginal idea of WIMP
Miracle

e =>now pushedto a
conner by the null results

from DM direct detection
experiments

Moore’s Law works in DM!

WIMP Dark Matter
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5’4
Rate in thermal eq. {gv) ~ —Z2
mpm
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Been searching for WIMPs...

The dominant paradigm is being challenged.

Is there another DM paradigm that gives
qualitatively different signatures, but still provide
the same level of simple, elegance and compelling
explanation as WIMP?



Theory of Gapped Continuum DM

We develop a new formalism to deal with above questions and develop a realistic gapped
continuum models to perform concrete DM phenomenology which would distinguish it from
ordinary particle DM scenarios. Different areas for gapped continuum DM study for our

project include:

Gapped Continuum QFT

Equilibrium and Non-equilibrium Thermodynamics
Freeze-out of DM (and also Freeze-in DM)
Gapped continuum DM from warped space model
Realistic model building of gapped continuum DM

Phenomenological study (both in terms of astrophysics/cosmology and collider)



Gapped Continuum QFT

4 Gapped Continuum Hilbert Space

- single-mode sector of the Hilbert space for continuum state

consists ot states Ip, Mz///w continuous parameter!

Pp, 1) = plp, 1),
H |p,p?) = Vp? + p? |p, u?).

- Completeness relation (spectral density o(u?) as the density of

states):

dy* d’p 1 2 2
. , =1
/ o p(p?) (@r)32E, - P, 1) (P, 1°|

I'he completeness relation can also be rewritten as

/( Lao?)lp i) (o4t = 1,

normalization (one particle state):
2F, ,
(P, 1%p,1?) = P ) ® (2m)*63(p — p) 6(u? — p?) po = Ep 2 = Vp*+p?, and p* = pj — p*.



Gapped Continuum QFT

4 Gapped Continuum Hilbert Space

- multi-mode states are built as direct products of single-mode
states. e.g SM+SM— DM+DM

((p1, 1), (P1, 17)| Texp (—i/dtHI(t)) ka,kp)sm = (2m)*6* (ky +ko—p1 —p2) iM.

- Production cross-section:
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4 Gapped Continuum Hilbert Space

- multi-mode states are built as direct products of single-mode
states. e.g SM+SM— DM+DM

((P1,11), (P1, 17)| Texp ("i/dtHI(t)) kA, kp)sm = (2m)*0% (k1 +kg —p1 —p2) iM.

: : _ 327,
- Production cross-section: o(qq — XTX) — Sf ImII(s)
il (g) = (—g‘“’ + ";—Zu) §°%I1(g°)



Gapped Continuum QFT

4 Gapped Continuum Hilbert Space

- multi-mode states are built as direct products of single-mode
states. e.g SM+SM— DM+DM

((p1, 1), (P1, 17)| Texp (—i/dtHI(t)) ka,kp)sm = (2m)*6* (ky +ko—p1 —p2) iM.

: : L, v A ko

- Production cross-section: \\q — / \ e
OyamrTT = 2Im( > T -'a:“ - m-’f‘m“\/ )
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Gapped Continuum QFT

4 Gapped Continuum Hilbert Space

- multi-mode states are built as direct products of single-mode
states. e.g SM+SM— DM+DM

((P1,11), (P1, )| Texp (—i/dtHI(t)) k4, kp)sm = (27)*6% (k1 +kg—p1 —p2) iM.

. . ,:‘: _ / N # v .
- Production cross-section: \q—>,;" /’ N i oA
- ot Ak )
\

11 dpi /dﬂz / P grpis 454 2
7T 2B, 2B, |vA—vB|/ pii) [ 5.7 p(2) [ dITy Iy (2m)*8% (ki+ka—p1 P2) M|



Gapped Continuum QFT

4 Gapped Continuum Hilbert Space

- multi-mode states are built as direct products of single-mode
states. e.g SM+SM— DM+DM

((P1,11), (P1, )| Texp (—i/dtHI(t)) k4, kp)sm = (27)*6% (k1 +kg—p1 —p2) iM.

. . —K|/- / N # v .
- Production cross-section: \q—>,;" N /’ SN i A
- le( &Y TEEED )
\

11 dpi /d#% / P grpis 454 2
7= 2E4 2E 4 |va —’UB| / p(p7) p(u2) [ dITf* dI1y? (2m)26% (ky+ko—p1 p2) |M|

3D Lorentz-invariant phase space (LIPS) volume element: dITH =




Equilibrium and Non-equilibrium Thermodynamics

4 Equilibrium Thermodynamics

- Consider a dilute, weakly-coupled gas made out of the single-

mode Gapped Continuum states

define the dimensionless phase-space density f(p,u?):

2 3
N=V/d2% (uz)/(;l:))3 f(p, 1%

If interactions among particles in the gas are strong enough to maintain them in thermal and chemical equilibrium with each other:

. 1 _ B
occupation number: FP.H) = S ~ e B(Ep, ,2—)
e N N |

- Free enerey: _1 / dp® / d’p BB
8y F=2V [ o) (27)3 111(1 e )



Equilibrium and Non-equilibrium Thermodynamics

4 Equilibrium Thermodynangsss

-For T > po: energy and pressure are dominated by

- Consider a dilute, weak [ilels R RTURITEN W, 1o W T EIVCELE:
relativistic gas

mode Gapped Continuu

-At T < Po, energy and pressure are dominated by
define the dimensionless phase-space density ,modes with M= Ho (With details depending on
behavior of spectral density in that region), which
) Wl behave as a gas of non-relativistic particles. In this
N=V : )
JA% rcgime, the continuum gas can play the role of cold

dark matter.

If interactions among particles in the gas are s

occupation number: f T ~ e

- . 1 du? . d®; _8E .
Free energy: p_ V./ B ) '/( P in (1 B




Equilibrium and Non-equilibrium Thermodynamics

4 Non-equilibrium Thermodynamics

- Consider a dilute, weakly-coupled gas of “continuum” states, but

do not assume that it 1s in thermal and/or chemical equilibrium

phase-space density is function of time: f(p,u?,t):

Boltzmann equation for toy model with 2 <= 2 scattering ( msm <« po ):

2 r2

i o =3[ 5 p(") /dH#: dllodllg (2m)* 6% (ks + kp —p —p')

)|M|* (Ff(1+ fa)(1+ fB) — fafs(1 £ f)(1 + 1)),



Equilibrium and Non-equilibrium Thermodynamics

4 Non-equilibrium Thermodynamics

- Consider a dilute, weakly-coupled gas of “continuum” states, but

do not assume that it 1s in thermal and/or chemical equilibrium

phase-space density is function of time: f(p,u?,t):

Boltzmann equation for toy model with 2 <= 2 scattering ( msm <« po ):

2 r2

- ot 2] 2%

p(") /dl—[#: dllodllg (2m)* 6% (ks + kp —p —p')

x|MI> (FF(1+ fa)(1 £ fB) — fafs(1+ A £ f),

- Generalization to gas in FRW background:

Ey

Of (E, % t) H] |25f(E,u2=t) _ 1]‘ du'
Ot N OE 2

o p(u”) f dll,r dllzdllp

x(2m)* 6 (ka + kp —p — P') IMP* (f§' — fafB).

H = a/a is the Hubble, |p|? = E? — u?



Freeze-Out of Gapped Continuum DM

4 Evolution of DM number density

(Integrating both sides of the Boltzmann equation)

on . . -
~— +3Hn = — < J’U) ( n2 _ ng ) identical to that of the usual particle cold relic!

ot 4
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=P can use the usual formula

for relic density



Freeze-Out of Gapped Continuum DM

4 Evolution of DM number density

(Integrating both sides of the Boltzmann equation)

on . . -
~— +3Hn = — < 0’0) (nz - nz ) identical to that of the usual particle cold relic!

ot 9
=P can use the usual formula

for relic density

continuum physics

1 d 2 d 2 12
00) = - [ Do pu?) [ D plu?) [ dity’ dI dsd
eq

x(2m)*6%(ka + kg —p —p') IM|* exp (=B(E4 + Ep)) -




Freeze-Out of Gapped Continuum DM

§ My < !JO annihilation;: DM+DM <= SM+SM

= - - p - - " AR PO _~ - " ]~ e L L R L~ P - .

quasi-elastic scattering (QES): DM+SM <= DM+SM
annihilation is in equilibrium, DM particles
] _ are at the same temperature T as the SM
j| sutficiently strong and is at zero chemical potential
¥ coupling between
{|the SM and DM "> po
mass gap
« L= po o |
P < annihilation rate drops exponentially, and
i g % 1" S o | annihilations decouple
SM.
M —(SM rate of quasi-elastic scattering of a DM
M particle does not experience an exponential

drop : maintain thermal equilibrium between
— ¢ Bl the SM and DM (same T, and chemical)




Gapped Continuum Z-portal DM

4 Z-portal Model (with Z, symmetry)
~ Consider a complex scalar field @ with no SM gauge quantum

numbers (this plays the role of DM field, and 1s lifted to SD)



Gapped Continuum Z-portal DM

4 Z portal Model (with Z, symmetry)
Consider a complex scalar field @ with no SM gauge quantum

numbers (this plays the role of DM field, and 1s lifted to SD)

~— Add another complex scalar field iy which 1s a doublet under SU(2)L
and carries U(1)y charge —1/2

L — LSM —+ L(I) + LX -+ Lint includes couplings to the SM Z and U(1)y
Ls = ' (p)Z(p*)®(p)
Ly = (DuX)T (D¥x) — XXTX

Lint = —APxYH + c.c.

1 _
spectral density: P(Pz) = ;ImE 1(p2)



Gapped Continuum Z-portal DM

4 Z portal Model (with Z, symmetry)
Consider a complex scalar field @ with no SM gauge quantum

numbers (this plays the role of DM field, and 1s lifted to SD)

~— Add another complex scalar field iy which 1s a doublet under SU(2)L
and carries U(1)y charge —1/2

L — ‘CSM —+ L(I) + LX -+ Lint includes couplings to the SM Z and U(1)y
Ls = 3" (p)=(p*)®(p)
Ly = (DNX)T (D¥x) — XXTX

Lint = —APxYH + c.c.

1 _
spectral density: P(Pz) = ;ImE 1(102)

- When the Higgs gets a vev, Lint-term induces mass mixing between @ and the

neutral components of . The mass eigenstates are

ézcosaCI)-i—sinaXO, Y = —sina® + cosa x°.



Dark Matter Continuum Spectral Density from 5D Model

4 Warped 5D model
: 1
- Scalar gapped continuum: L=./9 [59M NDy® Dy® — V(@)J
In conformally flat coordinate, Schrédinger form of eom: ¥ = e~ 243

(—83 + V(z)) U(z) = p°¥(2)

150 |
o @’(R,p))-l Z w
G(R, R;p) (¢(R, p) 3
QU
1 S0t
p(p) = ~Im G(R, R;p)




Dark Matter Continuum Spectral Density from 5D Model

4 Warped 5D model

- Scalar gapped continuum near the gap:

In conformally flat coordinate, Schrodinger form of eom:

(—63 + V(z)) U(z) = p*¥(2)

lim ‘A/(Z) s u,g (1 + 6—23(2P01/3) "l' §e—z(2#0/3))

2—00 3

2 Z z
U(z, 1) = C LT (3¢~ 220/3) exp (g\/l = M_2 log (e_z_lf'?_) - §e_%o_)




Dark Matter Continuum Spectral Density from 5D Model

4 Warped 5D |
0.5
- Scalar gap
0.4
N
In conformally o
~ 03
=,
) T 02
lim V(z) =¢
Fmee 0.1
0.0 ‘
U(z,p) = ( 750.0 750.2 750.4 750.6 750.8 751 .o,
ulGeV]

can expand the arguments of the Laguerre polynomial around the mass gap

1
p(p) = —Im G(R, B; p), —




Gapped Continuum Z-portal DM

4 Z-portal Model

L = \/g2 + ¢” sin? o (&)28#@1 — @1aﬂ<i>2) ZH

The mixing angle is given by

g 107} BBN — ]
w2 1 — ]
;.—'——"
107 + =  CMB, py =27 -
== CMB, p, =I
7-portal particle DM DD —  BBN, p, =27
--------------------- — DD, p, 2r
107 '
40 60 80 100 120 140



Gapped Continuum Z-portal DM

4 Z-portal Model

L = /g2 + g2 sin’ a (EISZ(?“&)I - i)la,,fi)g) As

The mixing angle is given by

o

The salient feature of the gapped
continuum DM: there is a generic
rate suppression, which makes it
compatible with the current null
result of direct detection
experiments.

SIn“ o
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Gapped Continuum Nature of DM "z

-

4 Direct

detection

quasi elastic scattering (QES): DM(uw1) + SM1— DM(2) + SM»

C

C

even after freeze out, distribution of DM state keeps evolving:

1stribution 1s peaked at the mass gap (Uo)at very late time (these

ecays are important for CMB physics), and DM states pass through

t!

e earth with non-relativistic speed (v~10-3)
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4 Direct detection
quasi elastic scattering (QES): DM(uw1) + SM1— DM(2) + SM»
~ even after freeze out, distribution of DM state keeps evolving:

distribution 1s peaked at the mass gap (Uo)at very late time (these

decays are important for CMB physics), and DM states pass through

the earth with non-relativistic speed (v~10-3)

=> If incoming DM state has w,= po +A, accessible
final continuum modes are in very narrow window
w2 € [Uo, Lo+ A+Q]. For weak scale po, this basically
means that the integral appearing in the QES cross
section is constrained to a tiny interval in u, and
leads to a significant suppression of the rate

o~ [ U p(43) & (s, )
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M,
.f

’ Direct detection Q is the kinetic energy of the collision in the center-of-mass frame

A <« o 1n today’s universe, while Q « o as long as ambient DM is non-

quasi elastic scatterfumesmns

even after freez:
distribution 18
cﬂecays are imp e.g. A ~ 100 keV at the present time, while Q ~ 1 keV ugh
uo at the weak scale = ~109 suppression

the earth with

r is a positive number that depends on the behavior of the spectral density near the gap (r=1/2 for XD)

=> If incoming DM state h® W= po+A, accessible
final continuum modes ardfin very narrow window
W € [Uo, Lo+ A+Q]. For wedk scale uo, this basically
means that the integral appearing in the QES cross
section is constrained to altiny interval in u, and
leads to a significant suppression of the rate

Q>

d 2
UN/%P(M@ (11, p2)
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¢ Direct detection  1°° 7

quasi elastic sce

~ evenaftert 10" ~. 1
distribution |

decays are 1 & | —— CMB, p, =27

~_ 107 F == CMB, p,=1 -

1 . g : r H()

the ecarth wi-Z | — DD, p, =27
107

- Wm == -
——_‘-———
e om =m == ==

10

Q

‘ =

=

NN
-}
=
Sty
Q>
5
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4 Direct detection

quasi elastic sce

= even after t
distribution
decays are 1 &

f'\l

the earth wi.:

Slll

10° |

107 |

107 ¢

AN
1.x10™ ./? N
. l' fl ~\
8. x10™ [ b
1 /1
2 6.x107° ,' f
=N ' |
4 %10 [ |
] |
2. x107° ’n |
0.t ! ‘l
0 2000 4000 6000

(1| GeV

8000

fincludes a large range of dark matter masses, but, because
the dark matter particles are non-relativistic, only a small
range of masses is kinematically accessible.

dpy 2\ A
o~ [ F2p43) 0

(OD) |

hermal re

- CMB, p, =27 |
== (CMB, p, =1
- DD, p,=27

The mechanism would be that the amplitude for matter-
dark matter scattering would satisfy a sum rule that

(11, p2)
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¢ Direct detection  1°°

quasi elastic sce

even aftert  10?

distribution

= CMB, p, =27 |
= CMB, p, =1
Future Direct Detection will be able to DD, p, =2
probe it before hitting the neutrino floor.
(may probe the continuum nature!)

decays are 1 &
1 N 107 |
the earth wi.

S111

X

F )

il The mechanism would pe tnat the amplitude for matter- [
| dark matter scattering would satisfy a sum rule that '
fincludes a large range of dark matter masses, but, because
%107 /“\ § the dark matter particles are non-relativistic, only a small
8.x10% [ [ range of masses is kinematically accessible.

3 6.x107° I

= :
4. %1077 | '
2.x107°t | |

0.} £ d 2
0 2000 4000 6000 8000 / :UQ
0‘ ~J

— 2 ~
s o p(ps) & (p1, p2)

- .
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eC .
Ge, S1, Nal, LXe, 5erma1 .
10
0 dR = CMB, p, =27 |
g | dE ¢ - CMB, p, =1
re Direct Detection will be able to DD, p, =2 ]
7 it before hitting the neutrino floor. —
6 y probe the continuum nature!)
> 2chanism would pe that the ampiitude for matter-
9 matter scattering would satisfy a sum rule that
3 a large range of dark matter masses, but, because
p) k matter particles are non-relativistic, only a small [
1 ange of masses is kinematically accessible.
0

012345678910

E/(E,r) o~ [ U p(43) & (s, )
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10
9 dR —— CMB, /)O :271' I
g | dE ¢ - CMB, p, =1
re Direct Detection will be able to DD _ 1
7 : e : y Py =2T
it before hitting the neutrino floor.
6 1y probe the continuum nature!)
5

2chanism would pe that the ampiitude for matter-
matter scattering would satisfy a sum rule that
. a large range of dark matter masses, but, because
continuum DM , C ..
{ k matter particles are non-relativistic, only a small
ange of masses is kinematically accessible.

— -

S = N W A

0123456789 10

E/(E W3 u2) 6
(K1) T o p(u3) 6 (11, p2)



Gapped Continuum Nature of DM

4 Colliders Phenomenology

for low energy ex;
LEP bound for Z-

periments (low compared to gap scale): e.g.
vortal WIC:

Same suppression mec|
Detection applies!

45 St O
P
c}:+

nanism (by continuum kinematics) as in Direct
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for low energy ex;
LEP bound for Z-

periments (low compared to gap scale): e.g.
vortal WIC:

Same suppression mec|
Detection applies!

nanism (by continuum kinematics) as in Direct




Gapped Continuum Nature of DM

4 Colliders Phenomenology with S. Ferrante & M. Perelstein

for high enough energy: (no suppression, an rich pheno)
SM1+SM2 — DM(uw1) + DM(u2)

/dﬂp M)/ p(#z) & (p1, p2)

DM(p1) 7
/
M, m SM,
> \.——/ -
/
¥



Gapped Continuum Nature of DM

4 Colliders Phenomenology with S. Ferrante & M. Perelstein
forl |
SM1 | ﬂ —
| L\ ﬁ e
102.: W HM{L ;] ::‘5‘
4
-~ & | SN
@ C A QO
3 S (50°
S o1 ¢ 1¢§Qﬁﬁ>
4 W o
] : )

10° MJ Lln 1 [Lﬂﬂﬂﬂ 11

100 120 140 160 180 200
U (GeV)




Gapped Continuum Nature of DM
with C. Csaki & A. Ismail

4 Other DM candidates: fermions, vectors

1

107
10-8 [l [
50 100 150 200 250 50 100 150 200 250 300
o |GeV) Mo |GeV]

Ly = i E(p*)7" puibL Ly = % ()2 (%) [n‘“’ - (1= %)] V. (p)

Ly =ixpo"Dyxy +iXpo" Duxr — M(XLXR + XpXL) \

) = e pe T ] 9z
Liny = —kXpYLH. Lint = TGMVPU Vp,Zpra

-2
gzsm-a—
Lo — [ L. — .
efi — Lgm + Ly 2 vy Legt = Lsm + Ly + Lint.

KU

VoM

sino =



Summary

Happy

60th
Birthday!

Everything is EFT (my first lesson learned from Matthias)
Gapped Continuum DM = theoretically and phenomenologically motivating!

A gapped continuum arises naturally near the quantum critical point. We
model DM as a continuum S-dimensional field coupled to the SM particles on
the brane 1n the soft-wall model

Revival of Weakly Interacting Massive Continuum (WIC) !

Many possible models + many detailed pheno study to be done.

Continuum Phenomenology = totally new —needs a systematic
investigations

Many more: including conformal freeze-in continuum DM (with Hong,
Kurup, Lee), etc
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Everything is EFT (my first lesson learned from Matthias)
Gapped Continuum DM = theoretically and phenomenologically motivating!

A gapped continuum arises naturally near the quantum critical point. We
model DM as a continuum 5-dimensional field coupled to the SM particles on
the brane 1n the soft-wall model

Revival of Weakly Interacting Massive Continuum (WIC) !

Many possible models + many detailed pheno study to be done.

Continuum Phenomenology = totally new —needs a systematic
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Many more: including conformal freeze-in continuum DM (with Hong,
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