Flavor symmetries

Yuval Grossman

Cornell

U-spin

Happy birthday Matthias

U-spin

Flavor sum rules

Based on M. Gavrilova, YG, S. Schacht, 2205.12975

U-spin

Flavor physics

- The goal: overconstraing the CKM matrix
- For that we need that
 - Number of theory parameters < Number of observable
- The problem (in many cases): QCD
 - Calculate (Lattice)
 - Use approximate symmetries to reduce the number of parameters

Flavor sum rules

- Relation between amplitudes \rightarrow less parameters
- The approximate symmetries are SU(3) and its subgroups: isospin ($u \leftrightarrow d$), U-spin ($d \leftrightarrow s$), and V-spin ($u \leftrightarrow s$)
- The breaking are O(1%) for isospin and O(30%) for U-spin and V-spin
- U-spin is "nicer" because the d and s has the same electric charge.
- Is U-spin useful?

Example: D sum rules

$$D \to P^+ P^- \qquad P = \pi, K$$

- In the U-spin limit all 4 amplitudes are the same
- Experimentally

$$\frac{A(KK)}{A(\pi\pi)} = 1.82 \qquad \frac{A(K\pi)}{A(\pi K)} = 1.15 \qquad \frac{A(\pi K)}{A(\pi\pi)} = 1.26$$
$$\frac{A(KK) + A(\pi\pi)}{A(K\pi) + A(\pi K)} = 1.04$$

The last relation is valid up to 2nd order, while the first three are valid only to 1st order

Y. Grossman

Higher order sum rules

- **•** A formal expansion in ϵ
 - To what order we can expand?
 - How to do the expansion?
- How practical higher order sumrules are?
 - Can we do precision physics with U-spin?

This talk is on the mathematical structure of U-spin sumrules to all orders

The traditional way

The U-spin set

- A U-spin set is a set of amplitudes (processes) that are related by U-spin
- An amplitude is defined by the U-spin properties of the
 - initial state
 - final state
 - Hamiltonian
- U-spin limit Hamiltonian

$$H = \sum_{m} f_{u,m} H_m^u$$

- $f_{u,m}$: Weak parameters (CKM matrix elements)
- H_m^u : operators

Y. Grossman

U-spin

The standard way

- Two reasons for sum rules
 - Relations between the CKM parameters
 - The matrix element is independent on m (Wigner-Eckart theorem)

$$A_j = \sum C_{j\alpha} X_{\alpha}$$

- $C_{j\alpha}$: *m*-dependent number (CG)
- X_{α} : *m*-independent reduced matrix element
- Example D decays
 - One sumrule is due to $V_{us} \approx -V_{cd}$
 - Two sumrules are due to the *m*-independence of the $\Delta U = 1$ matrix element

The breaking expansion

- The reason is the mass different: $m_s \neq m_d$
- The small parameters is at most

$$\epsilon \sim \frac{m_s - m_d}{\Lambda_{\rm QCD}} \approx 0.3$$

- It contributes to H with H_{ϵ} a spurion with u = 1, m = 0
- We add it to H as

$$H^{(b+1)} = H^{(b)} \otimes H_{\epsilon}$$

Getting the sum rules

- Find the rotation matrix from the physical basis to the U-spin basis up to a specific order, b
- Find the null space of that matrix

Example

$\mathcal{A}_j = f_{u,m}$	$\sum C_{j\alpha} X_{\alpha}$
	α

 X_{α} is a short notation for reduced matrix elements

- Below is the matrix $C_{j\alpha}$ up to b = 2
- To find the sum rules one needs to find the null space of the matrix C^T_{jα}

Example: $C_b \rightarrow L_b P^+ P^-$

Decay amplitude	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X10	X11	X_{12}	<i>X</i> ₁₃	X14	X_{15}	X16	X17	X18	X_{19}	X_{20}
$A\left(\Lambda_c^+ \to \Sigma^+ K^- K^+\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3\sqrt{2}}$	$\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2\sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Xi_c^+ \to p\pi^-\pi^+\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3\sqrt{2}}$	$-\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2\sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Lambda_c^+ \to \Sigma^+ \pi^- \pi^+\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3\sqrt{2}}$	$-\frac{1}{3\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$\frac{1}{2\sqrt{5}}$	$-\frac{1}{2\sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2\sqrt{3}}$	0	0	0
$A\left(\Xi_c^+ \to pK^-K^+\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3\sqrt{2}}$	$\frac{1}{3\sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$\frac{1}{2\sqrt{5}}$	$-\frac{1}{2\sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2\sqrt{3}}$	0	0	0
$A\left(\Lambda_c^+ \to \Sigma^+ \pi^- K^+\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3\sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{3\sqrt{5}}$	0	0	0	$\frac{1}{3\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	$\frac{1}{3}\sqrt{\frac{2}{15}}$	$\frac{1}{3}\sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	$\frac{1}{3\sqrt{6}}$	$\frac{1}{3\sqrt{2}}$
$A\left(\Xi_c^+ \to pK^-\pi^+\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3\sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$-\frac{2}{3\sqrt{5}}$	0	0	0	$-\frac{1}{3\sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	$\frac{1}{3}\sqrt{\frac{2}{15}}$	$\frac{1}{3}\sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	$\frac{1}{3\sqrt{6}}$	$\frac{1}{3\sqrt{2}}$
$A\left(\Lambda_c^+ \to pK^-\pi^+\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3\sqrt{2}}$	$-\frac{1}{3\sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{5}}$	$-\frac{1}{2\sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2\sqrt{3}}$	0	0	0
$A\left(\Xi_c^+ \to \Sigma^+ \pi^- K^+\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3\sqrt{2}}$	$\frac{1}{3\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{15}}$	$-\frac{1}{2\sqrt{5}}$	$-\frac{1}{2\sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2\sqrt{3}}$	0	0	0
$A\left(\Lambda_c^+ \to pK^-K^+\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{2}{3\sqrt{5}}$	0	0	0	$\frac{1}{3\sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	$\frac{1}{3}\sqrt{\frac{2}{15}}$	$-\frac{1}{3}\sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	$\frac{1}{3\sqrt{6}}$	$-\frac{1}{3\sqrt{2}}$
$A\left(\Xi_c^+ \to \Sigma^+ \pi^- \pi^+\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$-\frac{2}{3\sqrt{5}}$	0	0	0	$-\frac{1}{3\sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	$\frac{1}{3}\sqrt{\frac{2}{15}}$	$-\frac{1}{3}\sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	$\frac{1}{3\sqrt{6}}$	$-\frac{1}{3\sqrt{2}}$
$A\left(\Lambda_c^+ \to p\pi^-\pi^+\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$\frac{2}{3\sqrt{5}}$	0	0	0	$-\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	0
$A\left(\Xi_c^+ \to \Sigma^+ K^- K^+\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$-\frac{2}{3\sqrt{5}}$	0	0	0	$\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	$-\frac{2}{3}\sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	$-\frac{1}{3}\sqrt{\frac{2}{3}}$	0
$A\left(\Lambda_c^+ \to p\pi^- K^+\right)$	1	0	0	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2\sqrt{15}}$	$-\frac{1}{2}\sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2\sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
$A\left(\Xi_c^+ \to \Sigma^+ K^- \pi^+\right)$	1	0	0	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2\sqrt{15}}$	$-\frac{1}{2}\sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2\sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
Note, CKM-free							-													
amplitudes	b = 0 $b = 1$									b = 2										

Y. Grossman

U-spin

The U-spin expansion

U-spin

The basics

- We consider only one u in H_m^u
- Any U-spin system can be constructed from doublets
- We first study systems of doublets. Then we get the rest by "combining" doublets
- The movement of irreps between initial/final state and the Hamiltonian does not change the structure of the sum rules ("crossing symmetry")
- We consider a system with all the U-spin doublets in the final state.

We order the doublets in arbitrary but defined order. Each physics amplitude is a set of + and -

$$A_j = (-, +, +, ..., -), \qquad A_j = \sum C_{j\alpha} X_{\alpha}$$

We define "U-spin conjugation" $d \leftrightarrow s$ (or $+ \leftrightarrow -$)

$$\bar{A}_j = (+, -, -, ..., +), \qquad \bar{A}_j = \sum (-1)^b C_{j\alpha} X_{\alpha}$$

- \bullet α is a multi-index that include b
- X_{α} are the reduced matrix elements. Each X_{α} has a specific b
- The $(-1)^b$ factor is not trivial and important

Basis change

$$A_j = \sum C_{j\alpha} X_{\alpha} \qquad \bar{A}_j = \sum (-1)^b C_{j\alpha} X_{\alpha}$$

Then we do a basis change

$$a_j \equiv A_j - \bar{A}_j \qquad s_j \equiv A_j + \bar{A}_j$$

- \bullet a_j has only terms that are odd in b
- \bullet s_j has only terms that are even in b
- We have decoupling: a-type and s-type sumrules
- At leading order, $a_i = 0$ (Grounu, 2000)
- All sumrules are of the form

$$\sum a_j = 0 \qquad \sum s_j = 0$$

Y. Grossman

Coordinate notaion

$$A_j = (-, +, +, -, -, +) \equiv (3, 4)$$

- The locations of the without the first one
- It has a length of d = n/2 1
- The U-spin set is mapped to a d-dimensional lattice
- Results:
 - We can read the sumrules very easily from the lattice
 - The highest order that we have a sumrule is d
 - We know the number of sumrules at each order
 - There is only one sumrule in the highest order

The lattice

- Points represent zero order *a*-type sumrules
- Lines represent 1st order s-type sumrules
- The plane represents the 2nd order *a*-type sumrule

Generalization: 4 doublets and a triplet

- Points represent zero order *a*-type sumrules
- Lines represent 1st order s-type sumrules
- The plane represents the 2nd order *a*-type sumrule

Generalization sumrules

• Sum rules valid up to b = 0

$$a_{(1,2)} = a_{(1,3)} = a_{(1,4)} = a_{(2,3)} = a_{(2,4)} = a_{(3,4)} = a_{(4,4)} = 0$$

• Sum rules valid up to b = 1

$$\begin{aligned} s_{(1,2)} + s_{(1,3)} + \sqrt{2}s_{(1,4)} &= 0\\ s_{(1,2)} + s_{(2,3)} + \sqrt{2}s_{(2,4)} &= 0\\ s_{(1,3)} + s_{(2,3)} + \sqrt{2}s_{(3,4)} &= 0\\ s_{(1,4)} + s_{(2,4)} + s_{(3,4)} + \sqrt{2}s_{(4,4)} &= 0 \end{aligned}$$

• Sum rules valid up to b = 2

 $a_{(1,2)} + a_{(1,3)} + a_{(2,3)} + a_{(4,4)} + \sqrt{2}a_{(1,4)} + \sqrt{2}a_{(2,4)} + \sqrt{2}a_{(3,4)} = 0$

U-spin

Mainz, May 11, 2023

p. 21

Y. Grossman

The traditional way

$\mathcal{A}_{j} = f_{u,m} \sum_{\alpha} C_{j\alpha} X_{\alpha} \qquad \qquad X_{\alpha} \text{ is a short notation for reduced matrix elements}}$ $Example: C_{b} \rightarrow L_{b} P^{+} P^{-}$ $\overset{\text{Below is the matrix } C_{j\alpha} \text{ up to } b = 2$ $\overset{\text{To find the sum rules one needs to find the null space of the matrix } C_{j\alpha}^{T}}$															the					
Decay amplitude	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X8	X_9	X10	X11	X_{12}	X_{13}	X14	X_{15}	X16	X17	X18	X_{19}	X_{20}
$ \begin{array}{c} \hline A\left(\Lambda_c^+ \to \Sigma^+ K^- K^+\right) \\ A\left(\Xi_c^+ \to p\pi^-\pi^+\right) \\ A\left(\Lambda_c^+ \to \Sigma^+\pi^-\pi^+\right) \\ A\left(\Xi_c^+ \to pK^-K^+\right) \\ A\left(\Xi_c^+ \to \Sigma^+\pi^-K^+\right) \\ A\left(\Xi_c^+ \to pK^-\pi^+\right) \\ A\left(\Xi_c^+ \to \Sigma^+\pi^-K^+\right) \\ A\left(\Xi_c^+ \to \Sigma^+\pi^-K^+\right) \\ A\left(\Xi_c^+ \to \Sigma^+\pi^-\pi^+\right) \\ A\left(\Xi_c^+ \to \Sigma^+\pi^-\pi^+\right) \\ A\left(\Xi_c^+ \to \Sigma^+\pi^-\pi^+\right) \\ A\left(\Xi_c^+ \to \Sigma^+K^-K^+\right) \\ \end{array} $	$\begin{array}{c} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{\sqrt{2}}{3} \\ $	$-\frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ -\frac{1}{3\sqrt{2}} \\ -\frac{1}{3\sqrt{2}} \\ \frac{1}{3} \\ \frac{1}{3} \\ -\frac{1}{3\sqrt{2}} \\ \frac{1}{3\sqrt{2}} \\ \frac{\sqrt{2}}{3} \\$	$\begin{array}{c} 0 \\ 0 \\ -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ 0 \\ 0 \end{array}$	$-\frac{1}{\sqrt{10}}$ $\frac{2}{3\sqrt{5}}$ $-\frac{2}{3\sqrt{5}}$	$-\frac{1}{3\sqrt{2}}$ $\frac{1}{3\sqrt{2}}$ 0 0 $-\frac{1}{3\sqrt{2}}$	$-\frac{\sqrt{2}}{3}$ $-\frac{1}{3\sqrt{2}}$ $\frac{1}{3\sqrt{2}}$ 0 0	$ \begin{array}{c} 0 \\ 0 \\ \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ 0 \\ 0 \\ -\frac{1}{\sqrt{6}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{3\sqrt{2}} \\ -\frac{1}{3\sqrt{2}} \\ 0 \\ 0 \\ -\frac{1}{3\sqrt{2}} \\ -\frac{\sqrt{2}}{3} \\ \frac{\sqrt{2}}{3} \\ \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ 0 \\ 0 \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ 0 \\ 0 \\ -\frac{1}{2\sqrt{15}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15$	$\begin{array}{c} \frac{1}{\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ \frac{1}{3}\sqrt{\frac{2}{15}} \\ \frac{1}{3}\sqrt{\frac{2}{15}} \\ -\frac{1}{2\sqrt{15}} \\ -\frac{1}{2\sqrt{15}} \\ \frac{1}{3}\sqrt{\frac{2}{15}} \\ \frac{1}{3}\sqrt{\frac{2}{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15}} \\ -\frac{2}{3}\sqrt{\frac{2}{15}} \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ \frac{1}{2\sqrt{5}} \\ \frac{1}{2\sqrt{5}} \\ \frac{1}{3}\sqrt{\frac{2}{5}} \\ \frac{1}{3}\sqrt{\frac{2}{5}} \\ -\frac{1}{2\sqrt{5}} \\ -\frac{1}{2\sqrt{5}} \\ -\frac{1}{3}\sqrt{\frac{2}{5}} \\ -\frac{1}{3}\sqrt{\frac{2}{5}} \\ 0 \\ 0 \\ \end{array}$	$-\frac{1}{2\sqrt{5}} -\frac{1}{2\sqrt{5}} -$	$\frac{1}{6}$	$ \begin{array}{c} -\frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{6} \\ \frac{1}{6} \\ 0 \\ 0 \\ \frac{1}{6} \\ \frac{1}{6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ -\frac{1}{2\sqrt{3}} \\ -\frac{1}{2\sqrt{3}} \\ 0 \\ 0 \\ \frac{1}{2\sqrt{3}} \\ \frac{1}{2\sqrt{3}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ \frac{1}{3\sqrt{6}}\\ \frac{1}{3\sqrt{6}}\\ 0\\ 0\\ \frac{1}{3\sqrt{6}}\\ -\frac{1}{3\sqrt{6}}\\ -\frac{1}{3\sqrt{2}}\\ -\frac{1}{3}\sqrt{\frac{2}{3}}\\ -\frac{1}{3}\sqrt{\frac{2}{3}} \end{array}$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ \frac{1}{3\sqrt{2}}\\ \frac{1}{3\sqrt{2}}\\ 0\\ 0\\ -\frac{1}{3\sqrt{2}}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$A\left(\Lambda_c^+ \to p\pi^- K^+\right)$	1	0	0	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2\sqrt{15}}$	$-\frac{1}{2}\sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2\sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									$\frac{1}{2\sqrt{15}}$	$-\frac{1}{2}\sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2\sqrt{5}}$ b	$\frac{1}{2}$ = 2	0	0	0	0	0	

Y. Grossman

U-spin

Conclusions

flavor sum rules

Flavor sumrules have very nice structure

U-spin