Flavor symmetries

Yuval Grossman

Cornell

Happy birthday Matthias

Flavor sum rules

Based on M. Gavrilova, YG, S. Schacht, 2205.12975

Flavor physics

- The goal: overconstraing the CKM matrix
- For that we need that

Number of theory parameters < Number of observable

- The problem (in many cases): QCD
- Calculate (Lattice)
- Use approximate symmetries to reduce the number of parameters

Flavor sum rules

- Relation between amplitudes \rightarrow less parameters
- The approximate symmetries are $\operatorname{SU}(3)$ and its subgroups: isospin $(u \leftrightarrow d)$, U-spin $(d \leftrightarrow s)$, and V-spin ($u \leftrightarrow s$)
- The breaking are $O(1 \%)$ for isospin and $O(30 \%)$ for U -spin and V -spin
- U-spin is "nicer" because the d and s has the same electric charge.
- Is U-spin useful?

Example: D sum rules

$$
D \rightarrow P^{+} P^{-} \quad P=\pi, K
$$

- In the U-spin limit all 4 amplitudes are the same
- Experimentally

$$
\begin{gathered}
\frac{A(K K)}{A(\pi \pi)}=1.82 \quad \frac{A(K \pi)}{A(\pi K)}=1.15 \quad \frac{A(\pi K)}{A(\pi \pi)}=1.26 \\
\frac{A(K K)+A(\pi \pi)}{A(K \pi)+A(\pi K)}=1.04
\end{gathered}
$$

- The last relation is valid up to 2nd order, while the first three are valid only to 1st order

Higher order sum rules

- A formal expansion in ϵ
- To what order we can expand?
- How to do the expansion?
- How practical higher order sumrules are?
- Can we do precision physics with U-spin?

This talk is on the mathematical structure of U-spin sumrules to all orders

The traditional way

The U-spin set

- A U-spin set is a set of amplitudes (processes) that are related by U-spin
- An amplitude is defined by the U-spin properties of the
- initial state
- final state
- Hamiltonian
- U-spin limit Hamiltonian

$$
H=\sum_{m} f_{u, m} H_{m}^{u}
$$

- $f_{u, m}$: Weak parameters (CKM matrix elements)
- H_{m}^{u} : operators

The standard way

- Two reasons for sum rules
- Relations between the CKM parameters
- The matrix element is independent on m (Wigner-Eckart theorem)

$$
A_{j}=\sum C_{j \alpha} X_{\alpha}
$$

- $C_{j \alpha}$: m-dependent number (CG)
- $X_{\alpha}: m$-independent reduced matrix element
- Example D decays
- One sumrule is due to $V_{u s} \approx-V_{c d}$
- Two sumrules are due to the m-independence of the $\Delta U=1$ matrix element

The breaking expansion

- The reason is the mass different: $m_{s} \neq m_{d}$
- The small parameters is at most

$$
\epsilon \sim \frac{m_{s}-m_{d}}{\Lambda_{\mathrm{QCD}}} \approx 0.3
$$

- It contributes to H with H_{ϵ} a spurion with $u=1, m=0$
- We add it to H as

$$
H^{(b+1)}=H^{(b)} \otimes H_{\epsilon}
$$

Getting the sum rules

- Find the rotation matrix from the physical basis to the U-spin basis up to a specific order, b
- Find the null space of that matrix

Example

$$
\mathcal{A}_{j}=f_{u, m} \sum_{\alpha} C_{j \alpha} X_{\alpha} \quad \begin{aligned}
& X_{\alpha} \text { is a short } \\
& \text { notation for reduced } \\
& \text { matrix elements }
\end{aligned}
$$

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

- Below is the matrix $C_{j \alpha}$ up to $b=2$
- To find the sum rules one needs to find the null space of the matrix $C_{j \alpha}^{T}$

The U-spin expansion

The basics

- We consider only one u in H_{m}^{u}
- Any U-spin system can be constructed from doublets
- We first study systems of doublets. Then we get the rest by "combining" doublets
- The movement of irreps between initial/final state and the Hamiltonian does not change the structure of the sum rules ("crossing symmetry")
- We consider a system with all the U-spin doublets in the final state.

U-spin pairs

We order the doublets in arbitrary but defined order. Each physics amplitude is a set of + and -

$$
A_{j}=(-,+,+, \ldots,-), \quad A_{j}=\sum C_{j \alpha} X_{\alpha}
$$

We define "U-spin conjugation" $d \leftrightarrow s$ (or $+\leftrightarrow-$)

$$
\bar{A}_{j}=(+,-,-, \ldots,+), \quad \bar{A}_{j}=\sum(-1)^{b} C_{j \alpha} X_{\alpha}
$$

- α is a multi-index that include b
- X_{α} are the reduced matrix elements. Each X_{α} has a specific b
- The $(-1)^{b}$ factor is not trivial and important

Basis change

$$
A_{j}=\sum C_{j \alpha} X_{\alpha} \quad \bar{A}_{j}=\sum(-1)^{b} C_{j \alpha} X_{\alpha}
$$

Then we do a basis change

$$
a_{j} \equiv A_{j}-\bar{A}_{j} \quad s_{j} \equiv A_{j}+\bar{A}_{j}
$$

- a_{j} has only terms that are odd in b
- s_{j} has only terms that are even in b
- We have decoupling: a-type and s-type sumrules
- At leading order, $a_{i}=0$ (Grounu, 2000)
- All sumrules are of the form

$$
\sum a_{j}=0 \quad \sum s_{j}=0
$$

Coordinate notaion

$$
A_{j}=(-,+,+,-,-,+) \equiv(3,4)
$$

- The locations of the - without the first one
- It has a length of $d=n / 2-1$
- The U-spin set is mapped to a d-dimensional lattice
- Results:
- We can read the sumrules very easily from the lattice
- The highest order that we have a sumrule is d
- We know the number of sumrules at each order
- There is only one sumrule in the highest order

The lattice

- Points represent zero order a-type sumrules
- Lines represent 1st order s-type sumrules
- The plane represents the 2 nd order a-type sumrule

Generalization: 4 doublets and a triplet

- Points represent zero order a-type sumrules
- Lines represent 1st order s-type sumrules
- The plane represents the 2 nd order a-type sumrule

Generalization sumrules

- Sum rules valid up to $b=0$

$$
a_{(1,2)}=a_{(1,3)}=a_{(1,4)}=a_{(2,3)}=a_{(2,4)}=a_{(3,4)}=a_{(4,4)}=0
$$

- Sum rules valid up to $b=1$

$$
\begin{aligned}
s_{(1,2)}+s_{(1,3)}+\sqrt{2} s_{(1,4)} & =0 \\
s_{(1,2)}+s_{(2,3)}+\sqrt{2} s_{(2,4)} & =0 \\
s_{(1,3)}+s_{(2,3)}+\sqrt{2} s_{(3,4)} & =0 \\
s_{(1,4)}+s_{(2,4)}+s_{(3,4)}+\sqrt{2} s_{(4,4)} & =0
\end{aligned}
$$

- Sum rules valid up to $b=2$

$a_{(1,2)}+a_{(1,3)}+a_{(2,3)}+a_{(4,4)}+\sqrt{2} a_{(1,4)}+\sqrt{2} a_{(2,4)}+\sqrt{2} a_{(3,4)}=0$

The traditional way

$$
\mathcal{A}_{j}=f_{u, m} \sum_{\alpha} C_{j \alpha} X_{\alpha} \quad \begin{aligned}
& X_{\alpha} \text { is a short } \\
& \text { notation for reduced } \\
& \text { matrix elements }
\end{aligned}
$$

Example: $C_{b} \rightarrow L_{b} P^{+} P^{-}$

- Below is the matrix $C_{j \alpha}$ up to $b=2$
- To find the sum rules one needs to find the null space of the matrix $C_{j \alpha}^{T}$

Decay amplitude	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}	X_{17}	X_{18}	X_{19}	X_{20}
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	$-\frac{2}{3}$	0	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{\sqrt{2}}{3}$	0	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{\sqrt{15}}$	0	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$-\frac{1}{3}$	0	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$-\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	0	(0	0	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{10}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2 \sqrt{3}}$	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} K^{+}\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{10}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	0	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2 \sqrt{5}}$	$-\frac{1}{2 \sqrt{5}}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{2 \sqrt{3}}$		0	0
$A\left(\Lambda_{c}^{+} \rightarrow p K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$\frac{2}{3 \sqrt{5}}$	$3 \sqrt{2}$ 0	3 0	0	$\frac{1}{3 \sqrt{2}}$	$-\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	2	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	- $\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	$-\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{1}{3 \sqrt{2}}$	$\frac{1}{\sqrt{6}}$	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$\frac{1}{3} \sqrt{\frac{2}{15}}$	$-\frac{1}{3} \sqrt{\frac{2}{5}}$	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$\frac{1}{3 \sqrt{6}}$	$-\frac{1}{3 \sqrt{2}}$
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} \pi^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	$\frac{2}{3 \sqrt{5}}$	0	0	0	$-\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} K^{+}\right)$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{2}}{3}$	0	- $\frac{2}{3 \sqrt{5}}$	0	0	0	$\frac{\sqrt{2}}{3}$	0	0	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	$-\frac{2}{3} \sqrt{\frac{2}{15}}$	0	0	0	0	0	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	$-\frac{1}{3} \sqrt{\frac{2}{3}}$	0
$A\left(\Lambda_{c}^{+} \rightarrow p \pi^{-} K^{+}\right)$	1	0	0	$\frac{1}{\sqrt{10}}$	$\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0
$A\left(\Xi_{c}^{+} \rightarrow \Sigma^{+} K^{-} \pi^{+}\right)$	1	0	0	- $\frac{1}{\sqrt{10}}$	- $\frac{1}{\sqrt{2}}$	0	0	0	0	$\frac{1}{2 \sqrt{15}}$	$-\frac{1}{2} \sqrt{\frac{3}{5}}$	0	0	$\frac{1}{2 \sqrt{5}}$	$\frac{1}{2}$	0	0	0	0	0

Conclusions

flavor sum rules

Flavor sumrules have very nice structure

