Inclusive Semi-Leptonic Decays

Thomas Mannel
Theoretische Physik I, Universität Siegen

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Contents

(1) Inclusive $V_{c b}$
(2) Inclusive $V_{u b}$

Introduction

Flavour Physics has become "en vogue" due to the Flavour Anomalies:

- Lepton Universality Violation in rare B decays
- Anomalies in cc interactions in semi-tauonic decays
- Rates and angular distributions FCNC decays
... but there are also "old" anomalies
- Kaon CPV: $\epsilon^{\prime} / \epsilon$
- CPV in Charm decays
- $V_{x b}$ inclusive vs. exclusive

We should not be too disappointed after Dec. 20th, there will always be some anomalies in flavour physics to be discussed.

- $B \rightarrow \pi \mu \nu$ [2102.07233]
- $B \rightarrow X_{u} \ell \nu$ [2102.00020]
- $B \rightarrow D^{(*)} \mu \nu$ [1908.09398]
- $B \rightarrow X_{c} \ell \nu[2107.00604]$
$-\frac{B_{s} \rightarrow K \mu \nu}{B_{s} \rightarrow D_{s} \mu \nu}\left(q^{2}>7 \mathrm{GeV}^{2}\right)$
$-\frac{B_{s} \rightarrow K \mu \nu}{B_{s} \rightarrow D_{s} \mu \nu}\left(q^{2}<7 \mathrm{GeV}^{2}\right)$
$-\frac{\Lambda_{b} \rightarrow p \mu \nu\left(q^{2}>15 \mathrm{GeV}^{2}\right)}{\Lambda_{b} \rightarrow \Lambda_{c} \mu \nu\left(q^{2}>7 \mathrm{GeV}^{2}\right)}$

Inclusive $V_{c b}$: Heavy Quark Expansion

Heavy Quark Expansion = Operator Product Expansion
(Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar. Wise, Neubert, M,...)

$$
\begin{aligned}
& \left.\Gamma \propto \sum_{X}(2 \pi)^{4} \delta^{4}\left(P_{B}-P_{X}\right)\left|\langle X| \mathcal{H}_{\text {eff }}\right| B(v)\right\rangle\left.\right|^{2} \\
& =\int d^{4} x\langle B(v)| \mathcal{H}_{\text {eff }}(x) \mathcal{H}_{\text {eff }}^{\dagger}(0)|B(v)\rangle \\
& =2 \operatorname{lm} \int d^{4} x\langle B(v)| T\left\{\mathcal{H}_{\text {eff }}(x) \mathcal{H}_{\text {eff }}^{\dagger}(0)\right\}|B(v)\rangle \\
& =2 \operatorname{lm} \int d^{4} x e^{-i m_{b} v \cdot x}\langle B(v)| T\left\{\widetilde{\mathcal{H}}_{\text {eff }}(x) \widetilde{\mathcal{H}}_{\text {eff }}^{\dagger}(0)\right\}|B(v)\rangle
\end{aligned}
$$

- Last step: $b(x)=b_{v}(x) \exp \left(-i m_{v} v x\right)$, corresponding to $p_{b}=m_{b} v+k$
Expansion in the residual momentum k
- Perform an "OPE": m_{b} is much larger than any scale appearing in the matrix element

$$
\int d^{4} x e^{-i m_{b} v x} T\left\{\widetilde{\mathcal{H}}_{e f f}(x) \widetilde{\mathcal{H}}_{\text {eff }}^{\dagger}(0)\right\}=\sum_{n=0}^{\infty}\left(\frac{1}{2 m_{Q}}\right)^{n} C_{n+3}(\mu) \mathcal{O}_{n+3}
$$

\rightarrow The rate for $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ can be written as

$$
\Gamma=\Gamma_{0}+\frac{1}{m_{Q}} \Gamma_{1}+\frac{1}{m_{Q}^{2}} \Gamma_{2}+\frac{1}{m_{Q}^{3}} \Gamma_{3}+\cdots
$$

- The Γ_{i} are power series in $\alpha_{s}\left(m_{Q}\right)$:
\rightarrow Perturbation theory!
- Works also for differential rates!
- Γ_{0} is the decay of a free quark ("Parton Model")
- Γ_{1} vanishes due to Heavy Quark Symmetries
- Γ_{2} is expressed in terms of two parameters

$$
\begin{aligned}
2 M_{H} \mu_{\pi}^{2} & =-\langle H(v)| \bar{Q}_{v}(i D)^{2} Q_{V}|H(v)\rangle \\
2 M_{H} \mu_{G}^{2} & =\langle H(v)| \bar{Q}_{V} \sigma_{\mu \nu}\left(i D^{\mu}\right)\left(i D^{\nu}\right) Q_{v}|H(v)\rangle
\end{aligned}
$$

μ_{π} : Kinetic energy and μ_{G} : Chromomagnetic moment

- Γ_{3} two more parameters

$$
\begin{aligned}
2 M_{H} \rho_{D}^{3} & =-\langle H(v)| \bar{Q}_{v}\left(i D_{\mu}\right)(i v D)\left(i D^{\mu}\right) Q_{v}|H(v)\rangle \\
2 M_{H} \rho_{L S}^{3} & =\langle H(v)| \bar{Q}_{v} \sigma_{\mu \nu}\left(i D^{\mu}\right)(i v D)\left(i D^{\nu}\right) Q_{v}|H(v)\rangle
\end{aligned}
$$

ρ_{D} : Darwin Term and $\rho_{L S}$: Spin-Orbit Term

- Γ_{4} and Γ_{5} have been computed Bigi, Uraltsev, Turczyk, Tm, ...

Structure of the HQE

- Structure of the expansion (@ tree):

$$
\begin{aligned}
d \Gamma= & d \Gamma_{0}+\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{2} d \Gamma_{2}+\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{3} d \Gamma_{3}+\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{4} d \Gamma_{4} \\
& +d \Gamma_{5}\left(a_{0}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{5}+a_{2}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{3}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{c}}\right)^{2}\right) \\
& +\ldots+d \Gamma_{7}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)^{3}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{c}}\right)^{4}
\end{aligned}
$$

- $d \Gamma_{3} \propto \ln \left(m_{c}^{2} / m_{b}^{2}\right)$
- Power counting $m_{c}^{2} \sim \Lambda_{\mathrm{QCD}} m_{b}$

Determination of the HQE Parameters

- $m_{b}, m_{c}, \mu_{\pi}, \mu_{G}, \rho_{D}$ etc. are determined from data
- Spectra: Hadronic invariant mass, Charegd lepton energy, Hadronic Energy
- However: There are corners in Phase Space where the OPE breaks down Moments of the spectra can be computed in the HQE

$m_{b}^{k i n}$	$\bar{m}_{c}(3 \mathrm{GeV})$	μ_{π}^{2}	ρ_{D}^{3}	μ_{G}^{2}	$\rho_{L S}^{3}$	$\mathrm{BR}_{c \ell \nu}$	$10^{3}\left\|V_{c b}\right\|$
4.553	0.987	0.465	0.170	0.332	-0.150	10.65	42.21
0.020	0.013	0.068	0.038	0.062	0.096	0.16	0.78

WITHOUT MASS CONSTRAINTS

$$
m_{b}^{k i n}(1 \mathrm{GeV})-0.85 \bar{m}_{c}(3 \mathrm{GeV})=3.714 \pm 0.018 \mathrm{C}
$$

Alberti, Healey, Nandi, Gambino arXiv 1411.6560, presented at MITP Challenges in semileptonic B decays in 2015

- Includes HQE parameters up to $1 / m^{3}$ and full α_{s} / m_{Q}^{2}

QCD Corrections

For a massless final-state quark:

$$
\Gamma_{0}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}} m_{b}^{5}\left(1+\sum_{k=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{k} g_{k}\right)=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}} m_{b}^{5}\left(1+\frac{\alpha_{s}}{\pi} g_{1}+\cdots\right)
$$

What is the mass m_{b} ?

- Start with the pole mass $m_{b}=m_{b}^{\text {pole }}$
- This yields a large g_{1}
- In fact, this leads in general to a bad behavior of the perturbative series
- Perturbative series is "asymptotic": Looks like a convergent series, but at some order k

$$
g_{k} \sim k!
$$

Renormalon Problem (of the Pole mass)

- Problem for a precision calculation!

- Switch to a "proper mass" $m_{b}^{\text {kin }}$:

This has a perturbative relation to the pole mass

$$
m_{b}^{\mathrm{kin}}(\mu)=m_{b}^{\text {pole }}\left(1+\sum_{k=1}^{\infty}\left(\frac{\alpha_{s}}{\pi}\right)^{k} m_{k}(\mu)\right)=m_{b}^{\mathrm{pole}}\left(1+\frac{\alpha_{s}}{\pi} m_{1}(\mu)+\cdots\right)
$$

- Insert this

$$
\Gamma_{0}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{192 \pi^{3}}\left(m_{b}^{\mathrm{kin}}(\mu)\right)^{5}\left(1+\frac{\alpha_{s}}{\pi}\left(g_{1}-m_{1}(\mu)\right)+\cdots\right)
$$

- $m_{b}^{\text {kin }}$ is much better known as the pole mass
- The perturbative series converges better: $\left|g_{1}-m_{1}\right| \ll g_{1}$

Present state of the $b \rightarrow c$ semileptonic Calculations

- Tree level terms up to and including $1 / m_{b}^{5}$ known Bigi, Zwicky, Uraltsev, Turczyk, Vos, Milutin, ThM, ..
- $\mathcal{O}\left(\alpha_{s}\right)$ and full $\mathcal{O}\left(\alpha_{s}^{2}\right)$ for the partonic rate and spectra are known Melnikov, Czarnecki, Pak
- $\mathcal{O}\left(\alpha_{s}^{3}\right)$ to the partonic rate known (Fael, Schorwad, Sterinhauser: 2011.13654)
- $\mathcal{O}\left(\alpha_{s}\right)$ for $1 / m_{b}^{2}$ is known for rates and spectra Becher, Boos, Lunghi, Gambino, Pivovarov, Rosenthal, Alberti
- $\mathcal{O}\left(\alpha_{s}\right)$ for $1 / m_{b}^{3}$ is known for rates and spectra Pivovarov, Moreno, ThM
- In the pipeline:
- Estimation of Duality Violation

$$
\text { We are moving towards a TH-uncertainty of } 1 \% \text { in } V_{c b, i n c!}!
$$

Recent Development: Reducing the Number of HQE Parameters

New Idea based on an old observation: Reparametrization Invariance Problem: Number of HQE parameters in higher orders!

Number of RPI operators

Reparametrization Invariance: (Dugan, Golden, Grinstein, Chen, Luke, Manohar...)

$$
R(q)=\int d^{4} x e^{i q x} T\left[\bar{Q}(x) \Gamma q(x) \bar{q}(0) \Gamma^{\dagger} Q(0)\right]
$$

and replace $Q(x)=\exp (-i m(v \cdot x)) Q_{v}(x)$

$$
R(S)=\int d^{4} x e^{-i S x} T\left[\bar{Q}_{v}(x) \Gamma q(x) \bar{q}(0) \Gamma^{\dagger} Q_{v}(0)\right]
$$

with $S=m v-q$. These expressions are independent of $v!$ Perform the HQE

$$
R(S)=\sum_{n=0}^{\infty}\left[C_{\mu_{1} \cdots \mu_{n}}^{(n)}(S)\right]_{\alpha \beta} \bar{Q}_{V, \alpha}\left(i D_{\mu_{1}} \ldots i D_{\mu_{n}}\right) Q_{V, \beta}
$$

All this is still invariant under reparametrization of v : (as long as the sum is not truncated)

$$
\begin{aligned}
& \delta_{\mathrm{RP}} v_{\mu}=\delta v_{\mu} \text { with } \quad v \cdot \delta v=0 \\
& \delta_{\mathrm{RP}} i D_{\mu}=-m \delta v_{\mu} \\
& \delta_{\mathrm{RP}} Q_{v}(x)=i m(x \cdot \delta v) Q_{v}(x) \quad \text { in particular } \quad \delta_{\mathrm{RP}} Q_{v}(0)=0 .
\end{aligned}
$$

The RP connects different orders in $1 / m$, which yields the master relation between the coefficients $n=0,1,2, \ldots$

$$
\delta_{\mathrm{RP}} C_{\mu_{1} \cdots \mu_{n}}^{(n)}=m \delta v^{\alpha}\left(C_{\alpha \mu_{1} \cdots \mu_{n}}^{(n+1)}+C_{\mu_{1} \alpha \mu_{2} \cdots \mu_{n}}^{(n+1)}+\cdots+C_{\mu_{1} \cdots \mu_{n} \alpha}^{(n+1)}\right)
$$

Use these coefficients, integrate over phase space, get a total rate $\Gamma=\operatorname{Im}\langle B| R|B\rangle=\operatorname{Im}\langle R\rangle$ The coeffcients of the OPE will depend only on v

$$
R=\sum_{n=0}^{\infty} c_{\mu_{1} \cdots \mu_{n}}^{(n)}(v) \otimes \bar{Q}_{v}\left(i D_{\mu_{1}} \ldots i D_{\mu_{n}}\right) Q_{v}
$$

and satisfy the master relation between different orders in the HQE

Making use of RPI ...

- RPI is a consequence of Lorentz invariance of QCD
- RPI is an exact symmetry: the relations must hold to all order in α_{s}
- Resummation of towers of terms from different orders
- For Lorentz invariant observables:
- The master relations are identical for all observables
- "Rigid" relations between coefficients
- Reduction of HQE parameters due to RPI

HQE parameters (for the total rate) to $O\left(1 / m^{4}\right)$

$$
\begin{array}{rlr}
2 m_{H} \mu_{3} & =\langle H(p)| \bar{Q}_{V} Q_{V}|H(p)\rangle=\left\langle\bar{Q}_{V} Q_{V}\right\rangle \quad \mu_{3}=1+\frac{\mu_{\pi}^{2}-\mu_{G}^{2}}{2 m_{Q}^{2}} \\
2 m_{H} \mu_{G} & =\left\langle\bar{Q}_{V}\left(i D^{\mu}\right)\left(i D^{\nu}\right)\left(-i \sigma_{\mu \nu}\right) Q_{V}\right\rangle \\
2 m_{H} \rho_{D} & =\left\langle\bar{Q}_{V}\left[\left(i D^{\mu}\right),\left[\left((i v D)+\frac{(i D)^{2}}{2 m}\right),\left(i D_{\mu}\right)\right]\right] Q_{V}\right\rangle \\
2 m_{H} r_{G}^{4} & =\left\langle\bar{Q}_{V}\left[\left(i D_{\mu}\right),\left(i D_{\nu}\right)\right]\left[\left(i D^{\mu}\right),\left(i D^{\nu}\right)\right] Q_{v}\right\rangle & \left\langle G^{2}\right\rangle \\
2 m_{H} r_{E}^{4} & =\left\langle\bar{Q}_{V}\left[(i v D),\left(i D_{\mu}\right)\right]\left[(i v D),\left(i D^{\mu}\right)\right] Q_{v}\right\rangle & \left\langle\vec{E}^{2}\right\rangle \\
2 m_{H} s_{B}^{4} & =\left\langle\bar{Q}_{V}\left[\left(i D_{\mu}\right),\left(i D_{\alpha}\right)\right]\left[\left(i D^{\mu}\right),\left(i D_{\beta}\right)\right]\left(-i \sigma^{\alpha \beta}\right) Q_{v}\right\rangle & \langle(\vec{B} \times \vec{B}) \cdot \vec{\sigma}\rangle \\
2 m_{H} s_{E}^{4} & =\left\langle\bar{Q}_{V}\left[(i v D),\left(i D_{\alpha}\right)\right]\left[(i v D),\left(i D_{\beta}\right)\right]\left(-i \sigma^{\alpha \beta}\right) Q_{v}\right\rangle & \langle(\vec{E} \times \vec{E}) \cdot \vec{\sigma}\rangle \\
2 m_{H} s_{q B}^{4} & =\left\langle\bar{Q}_{V}\left[i D_{\mu},\left[i D^{\mu},\left[i D_{\alpha}, i D_{\beta}\right]\right]\right]\left(-i \sigma^{\alpha \beta}\right) Q_{v}\right\rangle & \langle\square \vec{\sigma} \cdot \vec{B}\rangle
\end{array}
$$

Alternative $V_{c b}$ Determination

The leptonic invariant mass is RPI: and so are

$$
\begin{align*}
& \frac{1}{\Gamma_{0}} \int d \hat{q}^{2}\left(\hat{q}^{2}\right)^{n} \frac{d \Gamma}{d \hat{q}^{2}} \text { and } \frac{1}{\Gamma_{0}} \int_{q_{\mathrm{cut}}^{2}} d \hat{q}^{2}\left(\hat{q}^{2}\right)^{n} \frac{d \Gamma}{d \hat{q}^{2}} \\
& \mathcal{Q}_{1}=\frac{3}{10} \mu_{3}-\frac{7}{5} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}}(19+8 \log \rho)-\frac{r_{E}^{4}}{m_{b}^{4}}\left(\frac{1292}{45}+\frac{40}{3} \log \rho\right)-\frac{s_{B}^{4}}{m_{b}^{4}}(8+2 \log \rho) \\
&+\frac{13}{120} \frac{s_{q B}^{4}}{m_{b}^{4}}+\frac{s_{E}^{4}}{m_{b}^{4}}\left(\frac{63}{5}+4 \log \rho\right)+\frac{r_{G}^{4}}{m_{b}^{4}}\left(\frac{827}{45}+\frac{22}{3} \log \rho\right), \tag{4.10}\\
& \mathcal{Q}_{2}=\frac{2}{15} \mu_{3}-\frac{16}{15} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}}\left(\frac{358}{15}+8 \log \rho\right)-\frac{r_{E}^{4}}{m_{b}^{4}}\left(\frac{2888}{45}+\frac{64}{3} \log \rho\right)-\frac{s_{B}^{4}}{m_{b}^{4}}\left(\frac{259}{15}+4 \log \rho\right) \\
&+\frac{s_{q B}^{4}}{m_{b}^{4}}\left(\frac{251}{180}+\frac{1}{3} \log \rho\right)+\frac{s_{E}^{4}}{m_{b}^{4}}\left(\frac{908}{45}+\frac{16}{3} \log \rho\right)+\frac{r_{G}^{4}}{m_{b}^{4}}\left(\frac{1373}{45}+\frac{28}{3} \log \rho\right), \tag{4.11}
\end{align*}
$$

Data on q^{2} Moments I

Belle Collaboration [2109.01685, 2105.08001]

Data on q^{2} Moments II

2205.10274 (Bernlochner et al.)

\Longrightarrow New $V_{c b}$ Determination

$$
\begin{gathered}
R^{*}\left(q_{\mathrm{cut}}^{2}\right) \quad\left\langle\left(q^{2}\right)^{n}\right\rangle_{\mathrm{cut}} \\
\mu_{3}, \mu_{G}^{2}, \tilde{\rho}_{D}^{3}, r_{E}^{4}, r_{G}^{4}, s_{E}^{4}, s_{B}^{4}, s_{q B}^{4}, m_{b}, m_{c} \\
\operatorname{Br}\left(\bar{B} \rightarrow X_{c} \ell \bar{\nu}\right) \propto \frac{\left|V_{c b}\right|^{2}}{\tau_{B}}\left[\Gamma_{\mu_{3}} \mu_{3}+\Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\Gamma_{\tilde{\rho}_{D}} \frac{\tilde{\rho}_{D}^{3}}{m_{b}^{3}}\right. \\
\left.+\Gamma_{r_{E}} \frac{r_{E}^{4}}{m_{b}^{4}}+\Gamma_{r_{G}} \frac{r_{G}^{4}}{m_{b}^{4}}+\Gamma_{s_{B}} \frac{s_{B}^{4}}{m_{b}^{4}}+\Gamma_{s_{E}} \frac{s_{E}^{4}}{m_{b}^{4}}+\Gamma_{s_{q B}} \frac{s_{q B}^{4}}{m_{b}^{4}}\right] \\
V_{c b}=(41.69 \pm 0.63) \cdot 10^{-3}
\end{gathered}
$$

- Agrees with previous determinations

- It includes a data driven determination of the $1 / m^{4}$ HQE Parameters
- $1 / m^{4}$ turns our to be small \rightarrow good fot the HQE

Interesting side remark: The value of ρ_{D} :

- Gambino et al.: $\rho_{D}=(0.185 \pm 0.031) G e V^{3}$ (kinetic scheme)
- Bernlochner et al. $\rho_{D}=(0.03 \pm 0.02) G e V^{3}$ (kinetic scheme)

-	SM: $\mathrm{NLO}+1 / m_{b}^{3}$	---	Scen. I: $\mathrm{NLO}+1 / m_{b}^{3}$
---	Scen. II: NLO $+1 / m_{b}^{3}$	---	Scen. III: NLO $+1 / m_{b}^{3}$
I	SM uncertainty	I	Belle 2021
Belle-II 2022			

-	SM: NLO $+1 / m_{b}^{3}$	---
- Scen. I: $\mathrm{NLO}+1 / m_{b}^{3}$		
Scen. II: NLO $+1 / m_{b}^{3}$	---	Scen. III: $\mathrm{NLO}+1 / m_{b}^{3}$
SM uncertainty	I	Belle-II 2022

Under investigation ...

- Move on to dim-8 operators:
- Study of the $1 / m_{b}^{3} \times 1 / m_{c}^{2}$ terms
- "Intrinsic" charm contributions:

$$
\begin{aligned}
\left\langle\bar{c}_{\alpha} \gamma^{\nu} c_{\beta}\right\rangle_{A}= & +\frac{2}{3} \frac{1}{(4 \pi)^{2}} \ln \left(\frac{m_{b}^{2}}{m_{c}^{2}}\right)\left[D_{\kappa}, G^{\kappa \nu}\right] \\
& +\frac{i}{240 \pi^{2} m_{C}^{2}}\left(13\left[D^{\kappa},\left[G_{\lambda \nu}, G^{\lambda, \kappa}\right]\right]+8 i\left[D^{\kappa},\left[D^{\lambda},\left[D_{\lambda}, G_{\kappa \nu}\right]\right]\right]\right. \\
& \left.-4 i\left[D^{\lambda},\left[D^{\kappa},\left[D_{\lambda}, G_{\kappa \nu}\right]\right]\right]\right)_{\beta \alpha}+\cdots \\
\left\langle\bar{C}_{\alpha} \gamma_{\nu} \gamma_{5} C_{\beta}\right\rangle_{A}= & +\frac{1}{48 \pi^{2} m_{C}^{2}}\left(2\left\{\left[D_{\kappa}, G^{\kappa \lambda}\right], \tilde{G}_{\nu \lambda}\right\}+\left\{\left[D_{\kappa}, \tilde{G}_{\nu \lambda}\right], G^{\kappa \lambda}\right\}\right)_{\beta \alpha}+\cdots
\end{aligned}
$$

Inclusive $V_{u b}$

- Problem: Cuts needed to suppress charmed decays
- Forces us into corners of phase space, where the usual OPE breaks down
- Expansion parameter $\Lambda_{\mathrm{QCD}} /\left(m_{b}-2 E_{\ell}\right)$
- Instead of HQE Parameters: Shape Functions $f(\omega)$

$$
2 M_{B} f(\omega)=\langle B(v)| \bar{b}_{v} \delta(\omega+i(n \cdot D))|B(v)\rangle
$$

- Universal for all heavy-to-light decays
- Systematics: Sott CollinearE Effective $T_{\text {heory }}$ calculation
- Several subleading shape functions
- perturbative QCD corrections

Shape Functions

- Shape function vs. local OPE: Moment Expansion

$$
f(\omega)=\delta(\omega)+\frac{\mu_{\pi}^{2}}{6 m_{b}^{2}} \delta^{\prime \prime}(\omega)-\frac{\rho_{D}^{3}}{18 m_{b}^{3}} \delta^{\prime \prime \prime}(\omega)+\cdots
$$

- Perturbative "jetlike" contributions: Convolution

$$
S(\omega, \mu)=\int d k C_{0}(\omega-k, \mu) f(k)
$$

- Charged Lepton Energy Spectrum (н: hard acd corrections)

$$
\frac{d \Gamma}{d y}=\frac{G_{F}^{2}\left|V_{u b}^{2}\right| m_{b}^{5}}{96 \pi^{3}} \int d \omega \Theta\left(m_{b}(1-y)-\omega\right) H(\mu) S(\omega, \mu)
$$

Approaches

- Obtaining the Shape functions:
- From Comparison with $B \rightarrow X_{s} \gamma$
- From the knowledge of (a few) moments
- From modeling
- QCD based:
- BLNP (Bosch, Lange, Neubert, Paz)
- GGOU (Gambino, Giordano, Ossola, Uraltsev)
- SIMBA (Tackmann, Tackmann, Lacker, Liegti, Stewart ...)
- QCD inspired:
- Dressed Gluon Exponentiation (Andersen, Gardi)
- Analytic Coupling (Aglietti, Ricciardi et al.)
- Attempts to avoid the shape functions (Bauer Ligeti, Luke ...)

Bosch Lange Neubert Paz Approach 2004/2005

Study the triple differential rate in the variables $P_{\ell}=M_{B}-2 E_{\ell}$ and $P_{ \pm}=E_{X} \mp\left|\vec{P}_{X}\right|$

$$
\begin{aligned}
\frac{d^{3} \Gamma}{d P_{+} d P_{-} d P_{l}}= & \frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{16 \pi^{3}}\left(M_{B}-P_{+}\right)\left[\left(P_{-}-P_{+}\right)\left(M_{B}-P_{-}+P_{l}-P_{+}\right) \mathcal{F}_{1}\right. \\
& \left.+\left(M_{B}-P_{-}\right)\left(P_{-}-P_{+}\right) \mathcal{F}_{2}+\left(P_{-}-P_{l}\right)\left(P_{l}-P_{+}\right) \mathcal{F}_{3}\right],
\end{aligned}
$$

At leading power in $1 / m$ and α_{s} :

$$
\begin{aligned}
& \mathcal{F}_{1}^{(0) \mathrm{OPE}}\left(y, P_{+}\right)=\delta\left(p_{+}\right)+\frac{1}{6} \mu_{\pi}^{2} \delta^{\prime \prime}\left(p_{+}\right)-\frac{\rho_{D}^{3}}{18} \delta^{\prime \prime \prime}\left(p_{+}\right)+\ldots, \\
& \mathcal{F}_{2}^{(0) \mathrm{OPE}}\left(y, P_{+}\right)=\mathcal{F}_{3}^{(0)}\left(y, P_{+}\right)=0,
\end{aligned}
$$

with $p_{+}=P_{+}-\bar{\Lambda}$ and $y=\left(P_{-}-P_{+}\right) /\left(M_{B}-P_{+}\right)$

Include QCD corrections to the leading power:

- Multiplication with a Hard Function
- Convolution with a jet function

$$
\mathcal{F}_{1}^{(0) \text { fact }}\left(y, P_{+}\right)=H\left(y, \mu_{f}\right) \int d \hat{\omega} p_{-} J\left(p_{-}\left(P_{+}-\hat{\omega}\right), \mu_{f}\right) \hat{S}\left(\hat{\omega}, \mu_{f}\right)
$$

- Deal with the radiative tail (convloution ansatz als SIMBA)

$$
\hat{S}\left(\hat{\omega}, \mu_{0}\right)=\int_{0}^{\hat{\omega}} d \hat{k} S^{(\text {part })}\left(\hat{\omega}-\hat{k}, \mu_{0}\right) \hat{F}(\hat{k})
$$

with a partonic function $S^{\text {(part) }}$

- Finally: construct a Model $\hat{F}(\hat{k})$

What can be improved in the BLNP approach?

- Include higher moments into the shape function model
- Include the NLO QCD corrections consistently
- Switch to the kinetic scheme to link to $b \rightarrow c$
- Improve the modelling of the shape function: for example

Naively:

$$
M_{n}=\int d \omega \omega^{n} f(\omega)=\frac{1}{2 M_{B}}\langle B| \bar{h}_{v}(\text { inD })^{n} h_{v}|B\rangle=c_{n} \Lambda_{\mathrm{QCD}}^{n} \quad \text { with } \quad c_{n} \sim \mathcal{O}(1)
$$

Most of the model shape functions do not satisfy this: e.g. the model from Mattias and myself:
$f(\omega)=\frac{32}{\pi^{2} \bar{\Lambda}}\left(1-\frac{\omega}{\Lambda}\right)^{2} \exp \left(-\frac{4}{\pi}\left(1-\frac{\omega}{\Lambda}\right)^{2}\right)$ has stronlgy growing c_{n} as $n \rightarrow \infty$
This is on its way!

Some final and Personal Remarks

T. Mannel, Siegen University Inclusive Semi-Leptonics

