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The quest for understanding long-distance ™

singularities of scattering amplitudes

Motivation:
Determine long-distance singularities beyond what is accessible in fixed-order calculations

Catani (1998); Mert-Aybat, Dixon & Sterman (2006); Becher & Neubert; EG & Magnea (2009); ...

v Essential check of future amplitude computations.
v/ Cancellation of singularities in cross sections.

v/ Resummation of large logarithms.

v' Understand the physical and mathematical principles underlining the structure of gauge-theory amplitudes
IR singularities are universal wrt the underlying hard process.
IR singularities are largely theory-independent.
Exponentiation: access to all-order properties.
Relation between general kinematics and special limits (soft, collinear, Regge,..)
Bootstrap!
Stepping beyond the planar limit.



IR Singularities using Wilson lines

Factorization at fixed angles:
all kinematic invariants are simultaneously taken large p; - p; = Q?%5; - B > A?

Soft singularities factorise to all orders:
M j(pi,er) = ZSJK (vij, €1r) Hi (pi)
K

IR can be computed from Wilson lines — process independent!

5 hard gluon amplitude 5 Wilson line amplitude
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> By
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Due to rescaling symmetry it only depends on angles: 7ij = 5252
\/ T

S is multiplicatively renormalizable [Brandt, Neri & Sato]. Anomalous dimension: T
UV-IR connection, just as in the cusp anom. dim. [Korchemsky & Radyushkin (1986)]



IR Factorization of amplitudes with
Mmassless \egs

Fixed angle scattering Jot 1
with massless partons p; = 0

Jet 5

Sij = 2p;i - pj = 20; - 63@2 > A2

IR singularities can be factorised Jot 2
— all originate in soft and collinear regions of loop momenta

Jet 3

Soft (matrix in colour flow space) Jets (colour singlet)
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The soft function: lightlike Wilson lines S = (¢35, ® ¢5, ® ...¢g )



IR singularities in amplitudes with
massless legs

Exponentiation:
.
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Rescaling symmetry of Wilson-line velocities & soft/jet factorisation imply:
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dl e} Becher & Neubert, EG & Magnea (2009)
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The Dipole Formula (full result to 2 loops): inhomogeneous solution = linear in the log
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: : : : Catani (1998); Dixon, Mert-Aybat & Sterman (2006)
Lightlike Cusp anomalous dimension Becher & Neubert, EG & Magnea (2009)
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Corrections to the Dipole Formula

dI’ . :
Z — I‘;?USP allows two types of corrections to the dipole formula:

— d 10g(—8fij)
YEL) Becher & Neubert, EG & Magnea (2009)

1. Corrections governed by higher Casimir contributions
to the cusp anomalous dimension — starting at 4 loops:
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2. Functions of conformally-invariant cross ratios — starting at 3-loops:

I' = FDip. T A(pijkl) (pi - pj)(Pk - 1)

Pijkl =
7 (pz' 'pk)(pj 'pz)

3 . . .
A% >Was computed using Feynman diagrams in 2016
A. Almelid, C. Duhr, EG, Phys. Rev. Lett. 117, 172002



The 3-loop correction to the soft
anomalous dimension

@. Almelid, C. Duhr, EG
Phys. Rev. Lett. 117, 172002
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L10..(2) are the single-valued harmonic polylogarithms (SVHPLSs) introduced
by Francis Brown in 2009. They are single-valued in the region where zZ = 27

The result is very elegant. Can we re-derive it by boostrap?
Yes! @. Almelid, C. Duhr, EG, A. McLeod, C.D. White, JHEP 09 (2017) 073



Colour structure of the 3-loop
Soft anomalous dimension

Non-Abelian exponentiation theorem [EG, Smillie, White (2013)] implies that the Soft
Anomalous Dimension has fully connected colour factors, such as f®°¢ f% T?T? TS T¢

Applying colour conservation one finds that the answer can be expressed in terms
of colour structures involving four generators correlating 3 and 4 lines.

Bose symmetry then implies the structure:
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Corrections to the light-like soft
anomalous dimension through 4 loop

Using non-Abelian exponentiation and colour conservation [Becher & Neubert (2019)]
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But structures with an odd number of generators, Tijum = if*? f*<o /o (T¢TVTLTITS,) |

are excluded based on symmetry under reversal of all lines (argument based on

rapidity anomalous dimension, related to the soft one by conformal mapping)
[Vladimirov (2017)]



Corrections to the light-like soft
anomalous dimension through 4 loop

Using non-Abelian exponentiation, colour conservation and the absence of odd
structures [Vladimirov (2017)] along with the relation with the lightlike cusp anomalous
dimension [Becher & Neubert (2019)]
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Direct computation is beyond what is currently possible.



The Space of Functions

1 lightlike velocities 3; are described by
N points of the Riemann sphere

For a given set of 4 lines {i,j,k,l} there are
two independent cross ratios {pijxi, piik;}

o (Bi - B5) (Be - B) _ | (2 — 2j) (& — 21)
Y (Bi - Be)(Bs - B1) | (=i — 2x) (25 — 21)
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We can further use SL(2,C) invariance to fix three of the points:
i = &, Zj — 07 Rk = O, 2] = 1 {pijkla pzlkg} — {227 (1 — Z)(l — 2)}

lterated integrals on a Riemann sphere with 1 marked points are combinations
of multiple polylogarithms (MPLs) with rational coefficients.  F.C.S. Brown (2009)

- Absence of singularities in Euclidean kinematics implies: Single-Valued MPLs.
- If singularities only appear when points coincide, one obtains Single-Valued HPLs, i.e.

Symbol alphabet: {z, 2,1 — 2,1 — z}
- At 3-loops we expect pure functions of uniform weight — a property of A/ = 4 SYM

@. Almelid, C. Duhr, EG, A. McLeod, C.D. White (2017)



The collinear IImit

12
M, (1,92, {p;}i 1) =5 Sp (p1, 92 11) M1 (P, {p;}; 1) " b,

IR singularities of the splitting amplitude are those present in n-parton scattering (with 1&2)
while not in (n-1)-parton scattering:

FSp — Fn - Fn_l Becher & Neubert (2009), ...

The expectation (see e.g. [Catani, de Florian, Rodrigo 1112.4405, Feige & Schwartz
1403.6472]) is that the final-state splitting amplitude depends exclusively on the variables

of the collinear pair.
This is automatically realised by the dipole formula for the singularities.



Collinear limit constraints at 3 and 4 loops

Requiring that splitting amplitude is independent of the rest of the process implies:
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Becher & Neubert (2020) JHEP 01 (2020) 025

Using the known four-loop result for the lightlike cusp anomalous dimension:

9 Boels, Huber and Yang, 1705.03444
grlas) | _ (G, 316, Moch et al., 1707.08315
12ij = | g T g ) P12 Grozin, Henn, Stahlhofen, 1708.01221
Henn, Korchemsky and Mistlberger 1911.10174

p12t§a0gR(pl2137 ,CYS) 12

This weight 6 coefficient cannot be obtained from a pure SVHPL ansatz for
Grpijie, piriji os) — SVMPLs with the additional letter 2z — z are essential

Minimal alphabet: {z,z,1 -2,1-2,2 -z} Duhr, EG, Maher & McLeod (to appear)



The Regge limit overlap with infrared singularities

Exponentiation of infrared (soft) singularities 1/¢
In fixed-angle amplitude using factorisation into
Soft-Collinear-Hard subprocesses

High-energy limit
of the soft
anomalous dimension

= Soft limit of BFKL

High-Energy limit:
BFKL resummation of log(s/1)
Regge factorization

Regge limit




The soft anomalous dimension In the
high-energy limit — three loops

t S—Uu

11
AB) =012 +ir [Tf, T2, T2 ]} — GL+O(L)

Absence of OéiLk fork > 1 inthe real part Caron-Huot, EG, Vernazza JHEP 06 (2017) 016
and for k > 2 in the imaginary part,

IS a non-trivial prediction from rapidity evolution,
which underpins the structure of corrections to the dipole formula.

The only term in the real part of the soft anom. dim. linear in the high-energy
logarithm is the cusp anomalous dimension, generalising the Korchemsky &
Korchemskaya relation between the gluon Regge trajectory and cusp to 3 loops.



The soft anomalous dimension In the
high-energy limit — four loops

Falcioni, EG, Maher, Milloy, Vernazza (2021)
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All Regge-limit constraints at four loops:
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Unitarity cut of the 3-loop web

The analytic structure of webs can be explored by unitarity cuts using the
relation between discontinuities and cuts: [Cutkosky (1960), 't Hooft & Veltman (1974)]

Disc ' = (—1) Z Cuts F

Cutting a Wilson line, along with all the gluons emitted from it, yields a vanishing cut.
[Andries Waelkens, PhD (2017)]

Examples of vanishing cuts of the 3-loop web:




Unitarity cut of the 3-loop web

The analytic structure of webs can be explored by unitarity cuts using the
relation between discontinuities and cuts: [Cutkosky (1960), 't Hooft & Veltman (1974)]

Disc ' = (—1) Z Cuts F

Cut

512




lterated unitarity cuts

The relation between discontinuity and unitarity cuts was generalised to
iterated discontinuities and iterated unitary cuts in [Abreu, Britto, Duhr, EG (2014)]

by excluding all crossed cuts.

Discg, ... s, F' = (—1)]‘C Z Cuts, ... s F

{cuts}

Example:

only the following 6 diagrams
contribute to the double .
discontinuity (crossed cuts are (a) Cut [456]
not included in the sum). 5

p3 + ko

(c) Cut [1236] (d) Cut [2346]

(e) Cut [23456] (f) Cut [1356]

Figure 11: Cut diagrams contributing to the Cutp% ) Cutpg sequence of unitarity cuts.



Sequential unitarity cuts of the 3-loop web

We observe: There are no compatible (nhon-crossed) non-vanishing unitarity cuts on
the (12) and (34) channels.

The red (12) and blue (34) channels cuts (the only
non-vanishing cuts on the respective channels)
are incompatible. Hence the iterated cut vanishes.

Discs,y 550 [W13)(24)] = Cits,, s34 [W(13)(20)] = 0

Indeed, using the computed expression for the web: DisCs, 554 [W(13)(24)] = O
[Niamh Maher, PhD (2022)]

Note that this double discontinuity vanishes for generic (non-lightlike) Wilson lines.



Vanishing iterated discontinuities as constraints

Discs,y 550 [W(13)(24)] = Cits,, s34 [W(13)(20)] = 0

For generic Wilson lines:
Vanishing double discontinuity of all
3-loop webs correlating all 6 angles!

For (nearly) lightlike Wilson lines:

For the anomalous dimension, the vanishing of the double discontinuity above
translates into an adjacency condition for the first two entries in the symbol:
any repeated entries are forbidden (in fact, this applies throughout the symbol!)

ZQ z
zZ QR z
l—2®1—=2
l1-2®1—-=2

[Niamh Maher, PhD (2022)]



Conclusions

The soft anomalous dimension of massless scattering:

v’ Colour structure is dictated by non-Abelian exponentiation:
the anomalous dimension features only fully-connected colour structures.

v/ Kinematic dependence is constrained by factorisation & rescaling symmetry
V' Space of functions: SVHPLs at 3 loops, SVMPLs at 4 loops

V' Analytic structure is highly constrained at 3 loops by (hon-Steinmann)
vanishing double discontinuities (applies also in the non-lightlike case!).

V' At 3 loops, constraints from collinear limits and the Regge limit
allow to bootstrap the general-kinematics result.

v At 4 loops, despite recent progress, available constraints are not
sufficient to fully determine the soft anomalous dimension.



IR Singularities in QCD using Wilson lines

IR singularities in general kinematics — state of the art:

- Massless particles scattering:
3 loops for any number of legs

reproduced by bootstrap
Constraints at 4 loops

[Almelid, Duhr & EG (2015)]
[Almelid, Duhr, EG, McLeod & White (2017)]

[Vladimirov (2017), Becher & Neubert (2020); Falcioni et al. (2021)]
- Massive+massless particles scattering

2 loops for any number of massive legs
[Ferroglia, Neubert, Pecjak & Li Lin Yang (2009)]

3 loops for 2 massive legs (angle-dependent cusp)
[Grozin, Henn, Korchemsky & Marquard (2015)]

4 loops for 2 massive legs (angle-dependent cusp) at small angles
[Grozin, Lee & Pikelner (2022)]

Partial calculation 3 loops for one massive, others massless
[Liu & Schalch (2022)]



IR singularities in amplitudes with
massless legs

Exponentiation:

Di 1 w AN’ 2 Di
M(;,as,e> :Pexp{—Q/O VF ()\,Ozs()\ ,6)) H ;,Ozs

The Dipole Formula:

1 \2 z
o () = 7 (0 Y- I (2 ) Ty 4 3 0 ()
Vol (i,5) '
Catani (1998)

Lightlike Cusp anomalous dimension Dixon, Mert-Aybat and Sterman (2006)
Becher & Neubert, EG & Magnea (2009)

Rescaling symmetry of Wilson-line velocities & soft/jet factorisation imply:
A. The anomalous dimension | to two loops is a dipole sum.

(tripoles, fabe T¢T5TS, would be incompatible with rescaling symmetry.) ’
B. Strong constraints on higher-order corrections. %



Corrections to the light-like soft
anomalous dimension through 3 100p

Using non-Abelian exponentiation and colour conservation
1 — S -
L ({sij}, A ) :—Z’YK(OZS) Z T;-T;In ( b\ ]> + Z vilas)
(4,7) z
1

2 fan) Y g e (TVTY 4+ TVTY) TOT
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Diagrammatic origin of the 3-loop anomalous
dimension near the lightlike limit

3-loop webs involving 4 Wilson lines

Single connected subgraph

Each web depends on all six angles -
can form conformally-invariant
cross ratios (cicrs)

Two connected subgraphs
Depends on 714, Y23, Y24, 734 only.

Cannot form cicrs - yields products
of logs for near lightlike kinematics

Three connected subgraphs
(multiple gluon exchanges)

Depends on 3 angles only!

Cannot form cicrs - yields products
of logs for near lightlike kinematics




Collinear limit constraints at 3 loops

The 3-loop splitting amplitude

g

AG) = (AP - AP )| = -2
( n1) 1)|2 (47r

n

) (G 26aGa) |70 5o (T4, TS} T4, T4} + SCAT - T

can be computed from A(sgﬁ = (A - Aég))‘ = A§3)|

1|2 1|2

This leads to a constraint upon requiring

that the same may also be obtained from (A{® — Ai(f’))‘m



Kinematic variables

. Almelid, C. Duhr, EG, A. McLeod, C.D. White, “Bootstrapping the QCD soft anomalous
dimension” JHEP 09 (2017) 073

For /37 # 0: using rescaling symmetry the “d‘v
velocities 5; map to a hyperbolic 3D space: "
: _//

(B0 = (31 = (B2 = (39 = B2 30 >0

The lightlike limit corresponds to the
boundary of this space: 3; map to points \‘,
on a Riemann sphere. —

0
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. . . ZiZi Zi+ Zi Zi — Z; 2iZ;
Parametrising: g = (1+ R R YRR S )

maps angles to distances: 28; - 3; = |z — z;|°
The rescaling-invariant kinematic variables are:
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Y (Bi - Be)(Bj - B1) | (2 — 2x) (25 — 21)
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The quest for understanding long-distance

singularities of scattering amplitudes

outline

v/ Factorisation & rescaling symmetry for lightlike Wilson lines - dipole formula
V' soft anomalous dimension at 3-loop
Vv’ Colour structure: non-Abelian exponentiation; webs at 3 and 4 loops

v Space of functions and constraints from collinear and Regge limits
— the bootstrap program

v Analytic structure: vanishing cuts and discontinuities



The soft anomalous dimension In the
high-energy limit — four loops

Falcioni, EG, Maher, Milloy, Vernazza (2021)
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Explicit computation from rapidity evolution equations:
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The collinear Iimit at 3 loops

Starting at 3 loops there are diagrams that could introduce correlation between
collinear partons and the rest of the process:

dip.
I'sp(p1,p2; 1) = T'gp (p1,p2; ) + Asp

Requiring that the splitting amplitude
singularities are independent of the 4
rest of the process amounts to a

constraint on the structure of the correction.

The 3-loop splitting amplitude

Qs ? abe pcde a c 1
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Requiring that the same may also be obtained from (Af) — Aé?’))‘ implies:

1|2

[Becher & Neubert (2009); Dixon, EG & Magnea (2010); Almelid, Duhr, EG, McLeod & White (2017), Becher & Neubert (2020)]



