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Effective Field Theories

Effective Field Theories (EFTs) are a powerful tool for processes with
multiple scales present at the same time!

Upon closer inspection, any realistic process falls under this umbrella:

A multitude of EFT constructions have been devised to deal with this:
SMEFT/LEFT, χPT, (b)HQET, (p)NRQFT, SCET...

Expand, factorize, renormalize, resum logs, ...

B → ℓνγ e+e− → W+W−
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EFTs in BSM Physics

Match any high-scale New Physics to an agreed-upon parameterization∗.

Low-energy phenomenology can be extracted from reference results
derived using said parameterization!

Resummation of logarithmic corrections is an additional benefit.

While technically relatively simple, complete one-loop matching to
SMEFT(-like) EFTs does come with its own sources of nastiness!

Target basis needs to be known, can be tricky if UV theory has
multiple scales itself or features additional light degrees of freedom.

Lots of book-keeping → mistakes happen.
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EFTs in BSM Physics

On top of all that:

[C. Cornella, MITP Workshop MODEL2019]

Once this needs to be done multiple times, work adds up quickly!
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Functional One-Loop Matching - Why?

While giving up some intuition from experience in computing matching
diagrammatically...

Functional matching requires no knowledge of a target basis.
Makes symmetry/multiplicity factors completely trivial.
Leads to a very algorithmic, even brain-dead approach.
Lends itself extremely well to automation (→ see Javi’s talk!)

Brought to you by the collaboration:

Javier Fuentes-Mart́ın, MK, Julie Pagès, Anders Eller Thomsen, Felix Wilsch
[Matchete (2021), JHEP 04 281], [Matchete (2023), JHEP 02 031], [Matchete (2021), arXiv:2212.04510]
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Part I - Obtaining an Effective Lagrangian
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The Wilsonian Effective Action

Scenario: Two-scales, separated by a cutoff Λ. Want to compute
scattering at energies E < Λ.
Split field content ϕ into modes ω > Λ (“hard”) and ω < Λ (“soft”):

ϕ → ϕH + ϕS

Matrix elements at low energies derived from the generating functional:

Z[JS ] =
∫

DϕSDϕH exp
{
iS(ϕS , ϕH) + i

∫
d4xJS(x)ϕS(x)

}
From this, one defines the Wilsonian effective action:∫

DϕH exp
{
iS(ϕS , ϕH)

}
≡ exp

{
iSΛ(ϕS)

}
and also SΛ =

∫
d4xLeff(x)

Can compute SΛ directly from this definition!
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The Background Field Expansion

Want to compute the path integral perturbatively, split

ϕ = φ+ η

Expand in the quantum field η:

L = L(φ) + ηi ·
[
δL
δϕi

]
(φ) + 1

2 η̄iηj

[
δ2L
δϕ̄iδϕj

]
(φ) + O(η3)

classical field, satisfies eom quantum fluctuation

tree-level eom → 0 fluctuation operator Qij(φ)
(indices on fields here denote hard or soft)

The path-integral of the one-loop piece is Gaussian:

exp
{
iS

(1)
eff

}
=

∫
Dη exp

{1
2 η̄Qη

}
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Supertraces

From this, one finds the effective action given by

S
(1)
eff = i

2STr
(

log Q
)

= ± i

2

∫
ddk

(2π)d
⟨k|tr log Q|k⟩

This supertrace generalizes the usual trace to operators with fermionic
and bosonic fields with appropriate signs.

[Cohen et al (2020), 2011.02484]

One now splits the fluctuation operator into:

Qij = δij∆−1
i −Xij = ∆−1

i (δij − ∆iXij)

∆−1
i =

{
−(D2 + M2

i ) scalar
i /D − Mi fermion

gµν(D2 + M2
i ) vector

Xij = (interactions)

and expands the log in the interactions:

S
(1)
eff = i

2STr(log ∆−1) − i

2

∞∑
n=1

STr[(∆X)n]
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The Method of Regions

This is just the usual one-loop effective action Seff . How to get to the
Wilsonian effective action SΛ from here?

Remember, in SΛ only the integral over hard modes was carried out!
→ Need to “select” only those pieces of the integrals∫

ddk

(2π)d
⟨k|tr log Q|k⟩

An intuitive way to realize this, would be to evaluate the integral with a
lower momentum cutoff in place.
In dimensional regularization however, we can simply expand the
integrands around this limit, by power-counting the loop momentum k
like the heavy masses M .

[Beneke, Smirnov (1997), hep-ph/9711391]
[Jantzen (2011), 1111.2589]

Each propagator now has virtuality k2 ∼ M2.
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The Method of Regions - Example

Take this simple scalar loop graph with p2
1 ∼ p2

2 ∼ (p1 · p2) ≪ M2:

∼
∫

ddl

(2π)d

1
l2

1
(l − p1)2

1
(l + p2)2 −M2

l2 ∼ M2

∼
∫

ddl

(2π)d

1
l2

1
l2

1
l2 −M2

“hard region”

l2 ∼ (pi · pj)

∼
∫

ddl

(2π)d

1
l2

1
(l − p1)2

1
(−M2)

“soft region”
The hard region corresponds to the one-loop matching correction to an
operator ϕ3, the soft region to a matrix element of an operator ϕ4

〈
T

{
ϕ4, i

∫
d4xL(x)

}〉
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The Method of Regions

This of course generalizes to any more complicated multiscale problem,
too.
Each region comes with a characteristic virtuality, representing a
matching step:

µ2 ∼ l2
p2k · qk2

QCDHQET × SCET IHQET × SCET II

iA = Si(ω, µs) ⊗ Jij(ω, ν, µhc) ⊗ Hj(ν, µh)

⇒ Region analysis an important tool, both for computing ingredients of
factorization formulas as well as checking your EFT constructions!
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The Method of Regions

Further features:
Power-corrections: The method of regions allows to extract
matching coefficients to any order in power-counting!
Overcounting? Said that “hard region”: l2 ∼ M2, but we still
integrate over all ddl.
→ Not in dimensional regularization and as long as we identify
ϵIR = ϵUV. Then the overlaps are all scaleless integrals.
Matching: Along those lines, graphs with purely soft modes are
automatically zero and thus the method automatically “selects” the
correct amplitudes and directly yields matching coefficients.

From this it follows that evaluating the effective action in the hard
region, directly yields the Wilsonian effective action!

[Fuentes et al (2016), 1607.02142]

S
(1)
eff

∣∣∣
hard

= ± i

2

∫
h

ddk

(2π)d
⟨k|tr log Q|k⟩ = S

(1)
Λ .
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Hard-Region Supertraces

We can now evaluate the supetraces in the hard region:

S
(1)
Λ = i

2STrh(log ∆−1) − i

2

∞∑
n=1

STrh[(∆X)n]

The fluctuation operator and thus ∆ and X depend on the classical
fields φ and derivatives.

⇒ SΛ is of the form i

∫
d4x

∑
i

Ci(µ) · Oi(φ, iDµ)

with loop functions Ci(µ) and composite operators of classical fields and
covariant derivatives.

This is almost an effective Lagrangian!

The expression is not manifestly gauge-invariant and contains
redundant operators.
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The Covariant-Derivative Expansion

The supertraces contain open covariant derivatives:∫
ddk

(2π)d
tr (Q(φ, iDµ)) · 1 ⊃ . . . Dµ1

that cannot be set to zero, as is clear from e.g Fµν = i[Dµ, Dν ]/g.

To this end, one uses the Covariant-Derivative Expansion (CDE) and
introduces the unitary operator UD satisfying

UD = exp(iD · ∂k) , U †
DUD = 1 , UD · 1 = 1 .

Now insert Q · 1 = U †
DQUD · 1 and commute UD to the left.

The resulting expression will have all all open derivatives in
commutators and thus be expressed through covariant derivatives and
field-strength tensors.

[Gaillard (1986), Nucl. Phys. B 268]
[Chan (1986), Phys. Rev. Lett. 57]

[Cheyette (1988), Nucl. Phys. B. 297]
[Henning et al (2018), JHEP 01 123]
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Advantages of the Functional Formalism

The functional matching procedure with CDE yields the complete
effective action. Just extract the fluctuation operator from the
Lagrangian, compute

S
(1)
Λ = i

2STrh(log ∆−1) − i

2

∞∑
n=1

STrh[(∆X)n]

and truncate the sum in the last term.

No need to enumerate diagram topologies, compute symmetry factors.

The result is manifestly gauge-invariant, operators with Fµν and iDµ

emerge in a transparent way.

Lends itself extremely well to automation.
[Das Bakshi et al (2018), 1808.04403]

[Cohen et al (2020), 2012.07851]
[Matchete collaboration (2020), 2012.08506]

[Carmona et al (2021), 2112.10787]
→ stay tuned for Javi’s talk!
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The Matching Checklist

Straightforward algorithm:
Define your UV Lagrangian LUV and identify heavy fields.
Compute the equations of motions for the heavy fields and solve
for them to express them through soft (classical) modes:

δLUV
δϕH

= 0 ⇒ ϕH = φH(φS)

Split ϕ = φ+ η Compute the fluctuation operator with at least
one of the η a hard mode:

Qij = δ2LUV
δη̄iδηj

Compute the hard supertraces, with power-type traces up to the
desired order, replace classical hard modes with their eom.
Perform the CDE expansion.
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Part II - Reduction to a Basis
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Redundant Operators and Field Redefinitions

Our procedure generates interaction terms with derivatives in Leff , some
containing objects like

D2ϕ , i /Dψ , DµF
µν , . . .

Operators containing such expressions are deemed redundant and can be
removed.
Use IBP relations to bring as many derivatives as possible into this form!
Caution: Field redefinitions and equation-of-motion identities are
not equivalent in the presence of power-corrections!

[Matchete collaboration (2022), arXiv:2212.04510]
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Dirac Algebra and Evanescent Operators

Effective Lagrangians might contain operators that are related to each
other by Dirac algebra: Fierz identities, Chisholm identities.

Allow us to reduce the operator list further, but rely on
four-dimensional Dirac algebra!

These identities thus do not hold in dimensional regularization with
d = 4 − 2ϵ.

Difference between original and reduced operator is formally of O (ϵ):

Rℓe = (ℓ̄e)(ēℓ) d=4−→ −1
2(ℓ̄γµℓ)(ēγµe) = −1

2Qℓe

⇒ Eℓe = Rℓe + 1
2Qℓe

Eℓe does not generate tree-level matrix elements, things change when it
is inserted into loop graphs.
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Evanescent Operators - An Example

Consider 2HDM, integrate out second Higgs doublet Φ:

L ⊃ LSM +DµΦ†DµΦ −M2
Φ Φ†Φ −

(
ypr

Φe ℓpΦer + h.c.
)

Generates, amongst many other operators:

[Rℓe]prst = (ℓ̄per)(ēsℓt)

−1
2[Qℓe]ptsr = −1

2(ℓ̄pγµℓt)(ēsγ
µer)

[QeW ]pr = ℓ̄pσµνer τ
IHW Iµν

The operators Rℓe and Qℓe generate different amplitudes for the dipole
transitions!

Rℓe + 1
2 Qℓe

This graph contributes through ϵ · (1/ϵUV) and
can be absorbed into a finite counterterm to
QeW !
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Evanescent Operators - Functional Treatment

We can treat these contributions in a similar fashion to the matching:
Reduce operators using d = 4 identities.
Define evanescent operators as difference between original and
reduced.
From the resulting effective Lagrangian, evaluate the one-loop
effective action with one evanescent insertion.
We are only interested in UV poles → evaluate the hard region
only, with appropriate IR regulators in place.
Absorb these contributions into matching coefficients of physical
operators, then drop evanescent operators!

Note: This procedure is almost identical to obtaining counterterms for
the physical operators!
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Evanescent Operators in the SMEFT

For all the details, and an exhaustive list of one-loop evanescent shifts
for the SMEFT (even in an interactive form!) see our paper

[Matchete collaboration (2023), JHEP 02 031]

Possible tree-level mediators leading to......redundant operators......which can be reduced.
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Conclusions
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Conclusions

One-loop matching is a repetitive, mechanical, but crucial task in
BSM physics.
Functional matching with the CDE and the Method of Regions
are an economical way to compute effective Lagrangians.
The target basis needs not to be known.
Instead of constructing Feynman graphs, matching is a matter of
evaluating a simple expression and applying power-counting.
IBP relations, field redefinitions and treatment of evanescent
operators are straightforward, yield the reduced operator basis.
Evanescent treatment is just deriving counterterms with extra
steps → computing anomalous dimensions very simple from here.
Well-suited for automation! (→ Javi’s talk next!)
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Bonus slides
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There are no bonus slides.
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