Conformal Dark Sectors

Aqeel Ahmed

PUSHING THE LIMITS OF THEORETICAL PHYSICS - MITP, MAINZ

MAY 8-12, 2023

Happy Birthday Matthias!

Happy 10th Anniversory

- In a generic framework, dark matter (DM) is the lightest stable particle in a dark sector (DS)
- Dark sector interacts with the Standard Model (SM) through a portal

- $\mathcal{O}_{\rm SM/DS}$ are the gauge single operators with dimension $\Delta_{\rm SM/DS}$
- = $M_{
 m UV}$ is the UV scale where portal interaction is generated with $\hat{\lambda} \sim 1$

 ${\ \ }$ The portal interaction is more relevant for the smallest $\Delta_{\rm SM/DS}$

$$\frac{\hat{\lambda}}{M_{\rm UV}^{\Delta_{\rm SM}+\Delta_{\rm DS}-4}}\mathcal{O}_{\rm SM}\mathcal{O}_{\rm DS}$$

• \mathcal{O}_{SM} can be constructed from the SM fields for $\Delta_{SM} \ge 2$.

- The portal interaction is more relevant for the smallest $\Delta_{
m SM/DS}$

$$\frac{\hat{\lambda}}{M_{\rm UV}^{\Delta_{\rm SM}+\Delta_{\rm DS}-4}}\mathcal{O}_{\rm SM}\mathcal{O}_{\rm DS}$$

- \mathcal{O}_{SM} can be constructed from the SM fields for $\Delta_{SM} \ge 2$.
- Based on the lowest dimension SM operators \mathcal{O}_{SM} :

$\mathcal{O}_{ m SM}$	$\Delta_{\rm SM}$	$\mathcal{O}_{ m DS}$	portal
$H^{\dagger}H$	2	scalar	Higgs portal
$B_{\mu u}$	2	tensor	Hypercharge portal
LH	5/2	fermion	Neutrino portal
:	:	:	

- The portal interaction is more relevant for the smallest $\Delta_{\rm SM/DS}$

$$\frac{\hat{\lambda}}{M_{\rm UV}^{\Delta_{\rm SM}+\Delta_{\rm DS}-4}}\mathcal{O}_{\rm SM}\mathcal{O}_{\rm DS}$$

- \mathcal{O}_{SM} can be constructed from the SM fields for $\Delta_{SM} \ge 2$.
- Based on the lowest dimension SM operators \mathcal{O}_{SM} :

$\Delta_{\rm SM}$	$\mathcal{O}_{ m DS}$	portal
2	scalar	Higgs portal
2	tensor	Hypercharge portal
5/2	fermion	Neutrino portal
:	:	
	$\begin{array}{c} \Delta_{\rm SM} \\ 2 \\ 2 \\ 5/2 \\ \vdots \end{array}$	$\begin{array}{c c} \Delta_{\rm SM} & \mathcal{O}_{\rm DS} \\ \hline 2 & {\rm scalar} \\ 2 & {\rm tensor} \\ 5/2 & {\rm fermion} \\ \vdots & \vdots \\ \end{array}$

• \mathcal{O}_{DS} is completely unknown (spin/Lorentz structure is fixed by \mathcal{O}_{SM})

- DS is a strongly coupled conformal field theory (CFT) below a UV scale M_{UV}
- UV Lagrangian for the dark sector

 $\mathcal{L}_{\rm UV} \supset \mathcal{L}_{\rm CFT} + \lambda_{\rm def} \mathcal{O}_{\rm def}$

where \mathcal{O}_{def} a relevant deformation operator with coupling λ_{def} .

- This deformation grows large in the IR, such that it breaks the conformal dynamics at a scale Λ.
- CFT contains an operator \mathcal{O}_{DS} with scaling dimension Δ_{DS} that gives composite states at scale Λ .

- DM χ is the lightest stable composite state
- Natural expectation is $m_{\chi} \sim \Lambda$ (exception if DM is pseudo-Goldstone)
- DM has strong self-interactions
- DM signals depend on the energy scale
- For $E\ll\Lambda$, DM is like a *particle*
- For $E \sim \Lambda$, DM is a *composite state*
- For $E \gg \Lambda$, DM behaves as *unparticle/continuum states*

NEUTRINO PORTAL CONFORMAL DARK SECTOR

• As a concrete realization of this framework, we discuss neutrino portal composite DM with the composite scale $\Lambda \lesssim v_{\rm SM}$.

[with Z. Chacko, N. Desai, S. Doshi, C. Kilic, S. Najjari, arXiv:2305.nnnn]

Aqeel Ahmed – MPIK

💎 Neutrino Portal Conformal Dark Sector

- As a concrete realization of this framework, we discuss neutrino portal composite DM with the composite scale $\Lambda \lesssim v_{\rm SM}$.
 - [with Z. Chacko, N. Desai, S. Doshi, C. Kilic, S. Najjari, arXiv:2305.nnnn]

- CFT contains fermionic operators \mathcal{O}_{χ} and \mathcal{O}_{N} with scaling dimensions Δ_{χ} and Δ_{N} .
- At scale Λ , DS states includes a composite DM candidate χ and three heavy singlet neutrinos N with $m_{\chi}, m_N \sim \Lambda$.
- SM particles are elementary.

In the UV, DS interacts with the SM only through the neutrino portal

$$\mathcal{L}_{\mathrm{UV}} \supset -\frac{\hat{\lambda}}{M_{\mathrm{UV}}^{\Delta_N - 3/2}} LH \mathcal{O}_N + \mathrm{h.c.}$$

with $(\hat{\lambda} \sim 1)$

In the UV, DS interacts with the SM only through the neutrino portal

$$\mathcal{L}_{\mathrm{UV}} \supset -\frac{\hat{\lambda}}{M_{\mathrm{UV}}^{\Delta_N - 3/2}} LH \mathcal{O}_N + \mathrm{h.c.}$$
 with $(\hat{\lambda} \sim 1)$

• At or below the conformal breaking scale Λ , the portal interaction is

$$\mathcal{L}_{\mathrm{IR}} \supset -\lambda \, LHN + \mathrm{h.c.}$$
 with $\lambda \sim \hat{\lambda} \left(\frac{\Lambda}{M_{\mathrm{UV}}} \right)^{\Delta_N - 3/2}$

 $(\hat{\lambda} \sim 1)$

In the UV, DS interacts with the SM only through the neutrino portal

$$\mathcal{L}_{\mathrm{UV}} \supset -\frac{\hat{\lambda}}{M_{\mathrm{UV}}^{\Delta_N - 3/2}} LH\mathcal{O}_N + \mathrm{h.c.}$$
 with

• At or below the conformal breaking scale Λ , the portal interaction is

$$\mathcal{L}_{\mathrm{IR}} \supset -\lambda \, LHN + \mathrm{h.c.}$$
 with $\lambda \sim \hat{\lambda} \left(\frac{\Lambda}{M_{\mathrm{UV}}}\right)^{\Delta_{N}-3/2}$

- For $3/2 \leq \Delta_N \leq 5/2$, the coupling $\lambda \ll 1$ for $\Lambda \ll M_{\rm UV}$.
- Naturally small portal coupling λ provides a simple explanation for both the smallness of the neutrino masses and the DM abundance.

 Neutrino masses are generated via the *inverse seesaw* mechanism, [see also Chacko,Fox,Harnik,Liu:2012.01443]

$$\mathcal{L}_{\mathrm{IR}} \supset -\left[m_N N^c N + \frac{\mu^c}{2} (N^c)^2 + \lambda L H N + \mathrm{h.c.}\right]$$

 SM neutrinos acquire masses and mixing with the composite states N as,

Smallness of the SM neutrino masses can be explained by either small neutrino mixing λ or small lepton number violating coupling μ^c .

• In a strongly coupled theory composite DM χ and singlet neutrino N involve non-renormalizable interactions at the scale Λ ,

$$\mathcal{L}_{\mathrm{IR}} \supset -\frac{y_{\mathrm{eff}}^2}{\Lambda^2} (\bar{\chi}^c N)^2 + \cdots$$

where $y_{\rm eff} \sim 4\pi/\mathcal{N}$ in Large- \mathcal{N} limit.

• In a strongly coupled theory composite DM χ and singlet neutrino N involve non-renormalizable interactions at the scale Λ ,

$$\mathcal{L}_{\mathrm{IR}} \supset -\frac{y_{\mathrm{eff}}^2}{\Lambda^2} \left(\bar{\chi}^c N
ight)^2 + \cdots$$

where $y_{\rm eff} \sim 4\pi/\mathcal{N}$ in Large- \mathcal{N} limit.

Thermal equilibrium between the DS and SM is achieved for portal coupling

$$\lambda \gtrsim \frac{\Lambda}{v_{\rm EW}} \left(\frac{\Lambda}{4\pi M_{\rm Pl}}\right)^{1/4}, \qquad |U_{N\ell}|^2 > \sqrt{\frac{\Lambda}{4\pi M_{\rm Pl}}}$$

- DM can be produced in three different ways:
- Standard 2 \rightarrow 2 freeze-out (WIMP): $\chi\chi \rightarrow NN, N\nu, \nu\nu$
- **2** Dark $3 \rightarrow 2$ freeze-out (SIMP): $\chi \chi \chi \rightarrow \chi \chi$

- DM can be produced in three different ways:
- Standard 2 \rightarrow 2 freeze-out (WIMP): $\chi\chi \rightarrow NN, N\nu, \nu\nu$
- **2** Dark $3 \rightarrow 2$ freeze-out (SIMP): $\chi \chi \chi \rightarrow \chi \chi$

• In the following, I will discuss the WIMP-like standard (2 \rightarrow 2) freeze-out for $\chi\chi \rightarrow NN, N\nu, \nu\nu$

DM Relic Abundance

The dominant DM annihilation channels to the visible sector are

DM Relic Abundance

The dominant DM annihilation channels to the visible sector are

- At the freeze-out temperatures $T \sim m_\chi/10$,
 - $\langle \sigma_{\chi\bar{\chi}\to N\bar{N}}v\rangle \sim \frac{y_{\text{eff}}^4}{40\pi\,\Lambda^2}, \qquad \langle \sigma_{\chi\bar{\chi}\to N\bar{\nu}}v\rangle \sim \frac{y_{\text{eff}}^4\,U_{N\ell}^2}{40\pi\,\Lambda^2}, \qquad \langle \sigma_{\chi\bar{\chi}\to\nu\bar{\nu}}v\rangle \sim \frac{y_{\text{eff}}^4\,U_{N\ell}^4}{40\pi\,\Lambda^2}$
- DM abundance requires $\langle \sigma v \rangle \sim 10^{-8} \text{ GeV}^{-2}$.

DM Relic Abundance

The dominant DM annihilation channels to the visible sector are

• At the freeze-out temperatures $T \sim m_{\chi}/10$, $\langle \sigma_{\chi\bar{\chi}\to N\bar{N}}v \rangle \sim \frac{y_{\text{eff}}^4}{40\pi\Lambda^2}, \qquad \langle \sigma_{\chi\bar{\chi}\to N\bar{\nu}}v \rangle \sim \frac{y_{\text{eff}}^4 U_{N\ell}^2}{40\pi\Lambda^2}, \qquad \langle \sigma_{\chi}v \rangle = \frac{y_{\text{eff}}^4 V_{N\ell}^2}{40\pi\Lambda^2}, \qquad \langle \sigma_{\chi}v \rangle = \frac{y_{\text{ef$

$$\langle \sigma_{\chi\bar{\chi}\to\nu\bar{\nu}}v\rangle \!\sim\! \frac{y_{\rm eff}^4 \, U_{N\ell}^4}{40\pi\,\Lambda^2}$$

- DM abundance requires $\langle \sigma v \rangle \sim 10^{-8} \text{ GeV}^{-2}$.
- Note $\chi \bar{\chi} \to N \bar{N}$ channel leads to DM under-abundance due to strong coupling $y_{\text{eff}} \sim 4\pi$ for $\Lambda \lesssim \mathcal{O}(100)$ GeV.
- Hence viable DM production channels are: $\chi \bar{\chi} \rightarrow N \bar{\nu}$ and $\chi \bar{\chi} \rightarrow \nu \bar{\nu}$.

DM direct detection

- Dominant contribution to DM–Nucleon arises from Z-boson exchange.
- Spin-independent DM-Nucleon cross-

section is:
$$\sigma_{\chi n} \sim \frac{g^4 \, y_{\rm eff}^4 \, U_{N\ell}^4}{\pi (4\pi)^4} \frac{\mu_{\chi n}^2}{m_Z^4}$$

DM direct detection

Spin-independent DM-Nucleon cross-

section is: $\sigma_{\chi n} \sim rac{g^4 \, y_{
m eff}^4 \, U_{N\ell}^4}{\pi (4\pi)^4} rac{\mu_{\chi n}^2}{m_\pi^4}$

Aqeel Ahmed – MPIK

Conformal Dark Sectors

MITP@10YEARS - 11/18

- For $\chi\bar{\chi} \to N\bar{\nu}$, the final state N decays to visible end-products electrons, photons etc.
 - ▶ Planck CMB data excludes $m_{\chi} \lesssim 1$ GeV at 95% C.L.
 - ► Gamma-rays data from the Galactic Center (GC) and Dwarf Spheroidal Satellite (dSphs) galaxies excludes $m_{\chi} \in [1 20]$ GeV.

- For $\chi\bar{\chi} \to N\bar{\nu}$, the final state N decays to visible end-products electrons, photons etc.
 - ▶ Planck CMB data excludes $m_{\chi} \lesssim 1$ GeV at 95% C.L.
 - ► Gamma-rays data from the Galactic Center (GC) and Dwarf Spheroidal Satellite (dSphs) galaxies excludes $m_{\chi} \in [1-20]$ GeV.
- $\chi \bar{\chi} \to N \bar{\nu}$ or $\chi \bar{\chi} \to \nu \bar{\nu}$ annihilation channels give rise to monochromatic neutrinos in the final state.
 - Possibility of observing neutrino-line signals.
 - ► Future experiments HyperK and DUNE will have the required sensitivity.

Composite DM phenomenology

Summary for a benchmark in the DM mass range $1/2 \leq m_{\chi}/m_N \leq 1$ where the dominant DM annihilation channel is $\chi \bar{\chi} \to N \bar{\nu}$.

Composite DM phenomenology

• Summary for a benchmark in the DM mass range $m_{\chi}/m_N \lesssim 1/2$ where the dominant DM annihilation channel is $\chi \bar{\chi} \rightarrow \nu \bar{\nu}$.

- At colliders and beam-dump experiments, DM can be pair produced in association with one or more composite singlet neutrinos.
- To discover the DM, it is therefore necessary to first discover the composite singlet neutrinos N.

 Searches for N are broadly divided based on whether N decays promptly, displaced or long-lived.

Collider signals

Contours of the N lifetime (in meters) with prompt (red), displaced (green) and long-lived (blue) shaded regions

Aqeel Ahmed – MPIK

- We presented a class of models in which DM is a composite state of a strongly coupled conformal hidden sector.
- In our example we consider the neutrino portal interactions between the SM and DS.
- DM relic abundance is set by annihilation into neutrinos.
- This scenario can lead to signals in DM direct/indirect detection experiments as well as in colliders/beam-dump facilities.
- Higgs boson emerging as a pNGB from a conformal sector can explain the SM hierarchy problem up to UV scale.

Long-Live MITP! & Long-Live Matthias!

- We assume that the hidden sector possesses a global symmetry such that \mathcal{O}_N , and therefore N, carries charge -1.
- Due to neutrino portal interaction this symmetry leads to an overall lepton number symmetry, under which N, N^c carry charges -1, +1.
- To employ the *inverse seesaw* mechanism we add a lepton number violating deformation in the UV theory through a scalar operator \mathcal{O}_{2N^c}

$$\mathcal{L}_{\mathrm{UV}} \supset -\frac{\hat{\mu}^c}{M_{\mathrm{UV}}^{\Delta_{2N^c}-4}}\mathcal{O}_{2N^c} + \mathrm{h.c.}$$

 $\Delta_{2N^c} \geq 1$ is scaling dimension of \mathcal{O}_{2N^c} and $\hat{\mu}^c$ is a small parameter.

- \$\mathcal{O}_{2N^c}\$ carries a charge of +2 under the hidden sector's global symmetry, so this deformation violates lepton number by two units.
- In the low-energy effective theory at scale Λ , this deformation gives, $\mathcal{L}_{\mathrm{IR}} \supset -\frac{\mu^c}{2} (N^c)^2 + \mathrm{h.c.}$ with $\mu^c \sim \hat{\mu}^c \Lambda \left(\frac{\Lambda}{M_{\mathrm{UV}}}\right)^{\Delta_{2N^c-4}}$

- For $\chi \bar{\chi} \to N \bar{\nu}$, the final state N decays to visible end-products electrons, photons etc., which can alter the CMB measurements.
- CMB data from Planck collaboration constraints at 95% C.L. on

$$f_{\rm eff}(m_{\chi}) \frac{\langle \sigma v \rangle}{m_{\chi}} < 3.2 \times 10^{-28} \, {\rm cm}^3 \, {\rm s}^{-1} \, {\rm GeV}^{-1}$$

 $f_{
m eff}(m_\chi)$ is the effective fraction of energy transferred to the IGM.

HINDIRECT DETECTION: GAMMA RAY CONSTRAINT

- For $\chi\bar{\chi} \to N\bar{\nu}$ channel, the final state N decays also lead to gamma ray signals.
- Fermi-LAT data from the Galactic Center (GC) and Dwarf Spheroidal Satellite (dSphs) galaxies puts constraints on our model parameters

HINDIRECT DETECTION: NEUTRINO-LINE SIGNALS

- The dominant annihilation channel $\chi \bar{\chi} \to N \bar{\nu}$ or $\chi \bar{\chi} \to \nu \bar{\nu}$, gives rise to monochromatic neutrinos in the final state.
- In dense DM matter environments e.g. the center of our Milky Way galaxy such DM annihilations could lead to the possibility of observing neutrino-line signals in neutrino detection experiments.

Aqeel Ahmed – MPIK

(-bran

R'.The two branes correspond to the UV and IR scales,

- The two branes correspond to the UV and IR sca $M_{\rm UV}\equiv 1/R$ and $\Lambda\equiv 1/R'.$
- The SM is localized at the UV brane which corresponds to the elementary states in the 4D dual picture.
- New composite states corresponding to the strongly coupled hidden sector are in the bulk and at the IR-brane.

Interaction between 5D neutrinos with the SM is

$$S_{\rm UV} \supset \int d^4x \int dz \left(\frac{R}{z}\right)^4 \delta(z-R)\sqrt{R}\,\hat{\lambda}\,LH\,\Psi_N(x,z)$$

- After choosing appropriate boundary conditions and Kaluza-Klein (KK) decomposing the bulk fields, 4D effective theory contains KK towers of singlet neutrinos N_n , N_n^c , fermion DM χ_n , χ_n^c , as well as the singlet scalar ϕ_n modes.
- Neutrino portal interaction is $S_{\rm UV} \supset \sum_N \lambda_n LH N_n(x)$ where λ_n contains the bulk neutrino $\Psi_N(x, R)$ wave-function.
- DM and singlet neutrino interact through Yukawa term.

$$S_{\text{bulk}} \supset \int d^4x \int dz \sqrt{g} \, \hat{y} \, \bar{\Psi}^c_{\chi} \Psi_N \, \Phi = \sum_{n,p,q} y_{npq} \, \bar{\chi}^c_n N_p \phi_q$$

Holographic model reproduces our 4D CFT result

 \Leftrightarrow

 \Leftrightarrow

 \Leftrightarrow

 \iff

4D strongly coupled CFT

- Energy scale μ
- UV cutoff scale $M_{\rm UV}$
- CFT breaking scale Λ
- CFT operators $\mathcal{O}(x)$
- Scaling dimensions $\Delta_{\mathcal{O}} \quad \iff$
- Composite states $\chi, N \iff$
- Unparticles/continuum states
- Elementary states, e.g. $SM \iff$

5D weakly coupled theory

- 5D space $z=1/\mu$
 - UV brane location $R=1/M_{
 m UV}$
- IR brane location $R'=1/\Lambda$
- Bulk fields $\Psi(x,z)$
- Bulk mass $c_{\Psi} \!=\! \Delta_{\mathcal{O}} \!-\! 2$
- Lowest KK modes χ_1, N_1
- Tower of KK modes, n > 1
- UV brane localized fields

There are various direct and indirect probes of composite neutrino N. [Chacko,Fox,Harnik,Liu:2012.01443]

There are various direct and indirect probes of composite neutrino N.
 [Chacko FoxHamikLiu:2012.0143]

• Constraint on neutrino mixing due to composite neutrino *N* searches.

