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The problem is Matthias… because the directors keep repeating me 
• Try to be as good as Matthias first.

• Then you can think of a Centre.



Outline
1) CP violation: 
• The collective nature of CPV: real vs. imaginary interactions?

• The (flavour-)invariant measures of CPV

• Beyond Jarlskog: the 699 (minimal) CPV invariants of SMEFT6


• Opportunistic CP violation: new interference with CKM phase.

2) ALP shift symmetry 
• Beyond Jarlskog: the 13 invariants of ALP shift-symmetry breaking

• The collective nature of shift-symmetry breaking

• RG invariance of the invariants

3

Note 1: I’ll consider only heavy/decoupling new physics

Note 2: I’ll assume that SU(2)xU(1) is linearly realised above the weak scale, i.e. SMEFT rather than HEFT. Our 
construction can be generalised but we haven’t gone through this exercise (yet). I’ll also assume that possible 
B and L violating effects are pushed to a high scale irrelevant for our discussion.



Part I. Does new physics break CP?
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Testing quark flavor (take II)

• Assume that NP is negligible in tree-level processes, arbitrary in FCNCs (loops)

• Consider tree-level + meson mixing:

General parametrization of many models
by two real parameters (in addition to SM):

h e2i�=ANP(B0!B0)/ASM(B0!B0)
-"

NP parameters
SM:

CSM

m
2
W

NP:
CNP

⇤2

What is the scale ⇤? How different is the CNP coupling from CSM?

• Is h = O(1) allowed? If not, the CKM mechanism dominates

To answer, redo CKM fit: tree-dominated unchanged, loop-mediated modified

(Importance of these constraints known since the 1970s, conservative picture of future progress)

Z L – p. 26
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New physics in B meson mixing: future sensitivity and limitations
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The mixing of neutral mesons is sensitive to some of the highest scales probed in laboratory
experiments. In light of the planned LHCb Upgrade II, a possible upgrade of Belle II, and the broad
interest in flavor physics in the tera-Z phase of the proposed FCC-ee program, we study constraints
on new physics contributions to Bd and Bs mixings which can be obtained in these benchmark
scenarios. We explore the limitations of this program, and identify the measurement of |Vcb| as
one of the key ingredients in which progress beyond current expectations is necessary to maximize
future sensitivity. We speculate on possible solutions to this bottleneck. Given the current tension
with the standard model (SM) in semileptonic B decays, we explore how its resolution may impact
the search for new physics in mixing. Even if new physics has the same CKM and loop suppressions
of flavor changing processes as the SM, the sensitivity will reach 2TeV, and it can be much higher
if any SM suppressions are lifted. We illustrate the discovery potential of this program.

I. INTRODUCTION

The mixing of neutral mesons has provided severe con-
straints on new degrees of freedom at high energies: since
measurements of mixing and CP violation in neutral
kaons in the 1960s, it has provided precious information
on charm and top quarks before their discovery. The
hypothesis of Kobayashi–Maskawa for the origin of CP
violation [1] observed in kaons was only tested experi-
mentally when BaBar and Belle around 2003–2004 estab-
lished CP violation in good agreement with the predic-
tions of the standard model (SM) [2, 3]. These B-factory
results showed that the standard model (SM) source of
CP violation in the flavor sector was the dominant part.
However, even after BaBar and Belle, and the LHCb re-
sults of the last decade, new physics (NP) is still allowed
to contribute at the 20–30% level, compared to the SM,
in flavor-changing neutral current (FCNC) processes.
Since neutral-meson mixings are FCNC processes

which are suppressed in the SM, they provide strong con-
straints on new physics. This led to the development
of numerous mechanisms to suppress such contributions,
should NP exist at the TeV scale. Low-energy supersym-
metry is one example, where the ansatz of degeneracy or
alignment were both motivated by constraints from neu-
tral meson mixing and other FCNC processes. In a large
class of NP models the unitarity of the CKM matrix is
maintained, and the most significant NP effects occur in
observables that vanish at tree level in the SM [4–7]. In
such scenarios, which encompass a large class of models,
possible effects of heavy particles in each neutral meson
system can be described by two real parameters,

M12 =
(

M12

)

SM
×
(

1 + hd,s e
2iσd,s

)

, (1)

where M12 relates to the time evolution of the two-state

neutral meson system (for a review, see [8]). However,
the extraction of NP contribution to meson mixing is en-
tangled with the determination of the SM parameters,
namely the CKM elements. It is not enough to mea-
sure the mixing amplitude itself, only the combination
of many measurements can reveal a deviation from the
SM. In the SM CKM fit [2, 9], the constraints come
from ∆F = 1 processes dominated by tree-level charged-
current interactions, and ∆F = 2 meson mixing pro-
cesses, which first arise at one-loop level. We can modify
the CKM fit to constrain new physics in ∆F = 2 pro-
cesses, under the assumption that it does not significantly
affect the SM tree-level charged-current interactions.
The parameterization in Eq. (1) is convenient because

any NP contribution to M12 is additive, so it is easy to
read off from a fit the bounds on the magnitude and the
phase of the NP contribution, or to convert the result to
bounds on SMEFT operators [10, 11]. In particular, for
the NP contribution to the mixing of a meson with qiq̄j
flavor quantum numbers, due to the operator

C2
ij

Λ2

(

q̄i,Lγµqj,L
)2

, (2)

where Cij is related to the flavour dependence and Λ to
the NP energy scale, one finds [12]

h " 1.5
|Cij |2

|λtij |2
(4π)2

GFΛ2
"

|Cij |2

|λtij |2

(

4.5TeV

Λ

)2

,

σ = arg
(

Cij λ
t∗
ij

)

, (3)

where λtij = V ∗
ti Vtj and V is the CKM matrix. Operators

of different chiralities have conversion factors differing
by O(1) factors [13]. Minimal flavor violation (MFV),
where the NP contributions are aligned with the SM ones,
correspond to σ = 0 (mod π/2).
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• Unlike B & L numbers, CP is not an accidental symmetry of SM4


• But its violation is “screened” by the CKM selection rules (see next slides). Not large enough for baryogenesis.


• BSM CPV effects can be O(1) in most loop-level FCNC processes


• On the other hand, there are already strong (indirect) constraints, e.g., EDMs


• We need a map/guide to explore CPV effects:  
• What are the BSM sources of CPV?

• What could be their sizes? 

• What should be the structure of CPV to allow new physics still accessible at colliders? MCPV?

https://inspirehep.net/literature?q=find%20eprint%202006.04824


CPV in SM4
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CPV comes from mixing among quarks and the resulting couplings to W

CP-Violating Invariants in the SMEFT | Emanuele Gendy 15.11.2021 4

CP-Violation in the Standard Model

In the Electroweak sector, CP violation is encoded in the CKM matrix

Taken from: Matthew D. Schwartz, “Quantum Field Theory and the Standard Model”

Under CP:

so a complex CKM matrix breaks CP 
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Phases in CKM (can) break CP!
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Are Phases a Sign of CPV?
Only after exhausting all flavour symmetries!
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to any number of generations. In appendix B, we consider generic properties of flavor-
invariants with three generations, in particular algebraic relations between them which are
consistent with the counting of physical parameters at leading order. Appendices D and
E then contain a full list of linear CP-odd invariants (for operators respectively bilinear
and quartic in fermion fields), which map to all independent Lagrangian parameters which
are physical at first BSM order. Finally, appendix F includes ✓QCD, which allows to build
flavor-invariants with new algebraic structures, but does not suffice to make new parameters
physical at leading order.

2 The collective nature of CP breaking in the SM(EFT)

In order to motivate why we define CP-odd invariants, it is useful to review first one impor-
tant and interesting aspect of CP breaking in SMEFT: it is collective. Indeed, it relies on
the simultaneous presence of several complex parameters in the Lagrangian, which cannot
all be made simultaneously real, even using the freedom to redefine fields (or equivalently,
to define appropriately the CP transformation). Readers familiar with the details of CP
violation in the SM can safely skip this section, although we use it to establish our con-
ventions and present several of the claims related to CP violation which will be repeatedly
encountered in this paper.

2.1 CP-violation and complex parameters

The usual lore is that complex parameters in the Lagrangian violate CP. At the level
of the fermionic Lagrangian, this claim leaves implicit crucial subtleties related to field
redefinitions. The correct statement is instead that the Lagrangian is CP-symmetric iff one
can redefine the fields so as to make all couplings real4. In the SM, this explains why only
one phase out of the six naively contained in the CKM matrix is physical and breaks CP.
For instance, were the CKM matrix equal to the following unitary matrix

VCKM =
�
��
�

72−21i
325

4
13 −

12i
13

−84−288i
325

24i
65

7
65

−96−28i
325 −57

65 −
24i
65

�
��
�

, (2.1)

it would not violate CP, although it is explicitly complex. Indeed, one can write

�
��
�

72−21i
325

4
13 −

12i
13

−84−288i
325

24i
65

7
65

−96−28i
325 −57

65 −
24i
65

�
��
�
=
�
��
�

3−4i
5 0 0

0 4−3i
5 0

0 0 3−4i
5

�
��
�

�
��
�

3
13

4
13

12
13

−12
13

24
65

7
65

− 4
13 −

57
65

24
65

�
��
�

�
��
�

4+3i
5 0 0

0 3+4i
5 0

0 0 4−3i
5

�
��
�

(2.2)

4This is strictly speaking only true for non-degenerate spectra, as there exists the possibility that the
couplings are pseudo-real, namely related to their complex conjugates via flavor transformations. Then
one would get a CP-symmetric Lagrangian iff there exists a flavor transformation which sends all couplings
to their complex conjugates at once. In this text, we focus mainly on non-degenerate spectra where the
statement holds, see section 4.2, appendix A and Ref. [3] for more details.

– 6 –
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invariants with three generations, in particular algebraic relations between them which are
consistent with the counting of physical parameters at leading order. Appendices D and
E then contain a full list of linear CP-odd invariants (for operators respectively bilinear
and quartic in fermion fields), which map to all independent Lagrangian parameters which
are physical at first BSM order. Finally, appendix F includes ✓QCD, which allows to build
flavor-invariants with new algebraic structures, but does not suffice to make new parameters
physical at leading order.

2 The collective nature of CP breaking in the SM(EFT)

In order to motivate why we define CP-odd invariants, it is useful to review first one impor-
tant and interesting aspect of CP breaking in SMEFT: it is collective. Indeed, it relies on
the simultaneous presence of several complex parameters in the Lagrangian, which cannot
all be made simultaneously real, even using the freedom to redefine fields (or equivalently,
to define appropriately the CP transformation). Readers familiar with the details of CP
violation in the SM can safely skip this section, although we use it to establish our con-
ventions and present several of the claims related to CP violation which will be repeatedly
encountered in this paper.

2.1 CP-violation and complex parameters

The usual lore is that complex parameters in the Lagrangian violate CP. At the level
of the fermionic Lagrangian, this claim leaves implicit crucial subtleties related to field
redefinitions. The correct statement is instead that the Lagrangian is CP-symmetric iff one
can redefine the fields so as to make all couplings real4. In the SM, this explains why only
one phase out of the six naively contained in the CKM matrix is physical and breaks CP.
For instance, were the CKM matrix equal to the following unitary matrix
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4This is strictly speaking only true for non-degenerate spectra, as there exists the possibility that the
couplings are pseudo-real, namely related to their complex conjugates via flavor transformations. Then
one would get a CP-symmetric Lagrangian iff there exists a flavor transformation which sends all couplings
to their complex conjugates at once. In this text, we focus mainly on non-degenerate spectra where the
statement holds, see section 4.2, appendix A and Ref. [3] for more details.
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and absorb all the factorized diagonal phases into the fermion fields, in order to obtain a
real orthogonal CKM matrix. Such a manipulation cannot be done for the following matrix,
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however, whether it yields a CPV SM depends on the fermion spectrum. Indeed, were two
quark masses equal, the kinetic lagrangian would have a U(2) flavor symmetry and allows
for more general fermion field redefinitions. For instance, if mu = mc, we can redefine the
two first flavors of up-type quarks in order to absorb the 2×2 unitary matrix which appears
at the top of the right-hand-side of the following equality,
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obtaining again a real orthogonal CKM matrix.
As already appears in these numerical examples, and as we will repeatedly illustrate, it

is more convenient to phrase the condition of CP-violation in a way which does not demand
to scan over all possible field redefinitions. If the theory preserves CP, the following CP
transformation of the (non-degenerate) fermionic mass eigenstates  (together with those
of bosonic fields [3]) leaves the Lagrangian invariant in some field basis

(CP) (t, �x)(CP)−1 = �0C T (t,−�x) . (2.5)

As we anticipated, this implies that the Lagrangian couplings are real (in this field basis).
For instance, if we assume that there exists the following coupling in the theory,

L ⊃ c1212 � 1�
µ 2� � 1�µ 2� + h.c. , (2.6)

we learn from the invariance under the CP transformation in eq. (2.5) that c1212 is real.
However, the opposite statement is that the theory violates CP iff the transformation in
(2.5) is never a symmetry, whatever the field basis chosen. This is not equivalent to saying
that c1212 is complex in some basis, but that whatever the basis chosen, there exists at least
one Lagrangian parameter which is genuinely complex5. Therefore, the condition for CPV
which we look for takes the following schematic form

CPV ⇐⇒ Im (something independent of the field basis) ≠ 0

Such a basis-independent object precisely defines a CP-odd flavor-invariant, as we now
explain.

5For pseudo-real couplings, the statement is rather that all complex couplings cannot be turned simul-
taneously into their conjugates via a same change of basis. If the opposite held, there would exist two bases
where the imaginary parts of all complex quantities have opposite signs, while the real parts are identical,
therefore imaginary parts of flavor invariants vanish, since imaginary parts of products of coefficients of the
form Im (c1c2...cn) are linear combinations of terms with an odd numbers of imaginary parts Im ci.
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to any number of generations. In appendix B, we consider generic properties of flavor-
invariants with three generations, in particular algebraic relations between them which are
consistent with the counting of physical parameters at leading order. Appendices D and
E then contain a full list of linear CP-odd invariants (for operators respectively bilinear
and quartic in fermion fields), which map to all independent Lagrangian parameters which
are physical at first BSM order. Finally, appendix F includes ✓QCD, which allows to build
flavor-invariants with new algebraic structures, but does not suffice to make new parameters
physical at leading order.
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the simultaneous presence of several complex parameters in the Lagrangian, which cannot
all be made simultaneously real, even using the freedom to redefine fields (or equivalently,
to define appropriately the CP transformation). Readers familiar with the details of CP
violation in the SM can safely skip this section, although we use it to establish our con-
ventions and present several of the claims related to CP violation which will be repeatedly
encountered in this paper.
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4This is strictly speaking only true for non-degenerate spectra, as there exists the possibility that the
couplings are pseudo-real, namely related to their complex conjugates via flavor transformations. Then
one would get a CP-symmetric Lagrangian iff there exists a flavor transformation which sends all couplings
to their complex conjugates at once. In this text, we focus mainly on non-degenerate spectra where the
statement holds, see section 4.2, appendix A and Ref. [3] for more details.
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As already appears in these numerical examples, and as we will repeatedly illustrate, it

is more convenient to phrase the condition of CP-violation in a way which does not demand
to scan over all possible field redefinitions. If the theory preserves CP, the following CP
transformation of the (non-degenerate) fermionic mass eigenstates  (together with those
of bosonic fields [3]) leaves the Lagrangian invariant in some field basis

(CP) (t, �x)(CP)−1 = �0C T (t,−�x) . (2.5)

As we anticipated, this implies that the Lagrangian couplings are real (in this field basis).
For instance, if we assume that there exists the following coupling in the theory,

L ⊃ c1212 � 1�
µ 2� � 1�µ 2� + h.c. , (2.6)

we learn from the invariance under the CP transformation in eq. (2.5) that c1212 is real.
However, the opposite statement is that the theory violates CP iff the transformation in
(2.5) is never a symmetry, whatever the field basis chosen. This is not equivalent to saying
that c1212 is complex in some basis, but that whatever the basis chosen, there exists at least
one Lagrangian parameter which is genuinely complex5. Therefore, the condition for CPV
which we look for takes the following schematic form

CPV ⇐⇒ Im (something independent of the field basis) ≠ 0

Such a basis-independent object precisely defines a CP-odd flavor-invariant, as we now
explain.

5For pseudo-real couplings, the statement is rather that all complex couplings cannot be turned simul-
taneously into their conjugates via a same change of basis. If the opposite held, there would exist two bases
where the imaginary parts of all complex quantities have opposite signs, while the real parts are identical,
therefore imaginary parts of flavor invariants vanish, since imaginary parts of products of coefficients of the
form Im (c1c2...cn) are linear combinations of terms with an odd numbers of imaginary parts Im ci.
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to any number of generations. In appendix B, we consider generic properties of flavor-
invariants with three generations, in particular algebraic relations between them which are
consistent with the counting of physical parameters at leading order. Appendices D and
E then contain a full list of linear CP-odd invariants (for operators respectively bilinear
and quartic in fermion fields), which map to all independent Lagrangian parameters which
are physical at first BSM order. Finally, appendix F includes ✓QCD, which allows to build
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However, the opposite statement is that the theory violates CP iff the transformation in
(2.5) is never a symmetry, whatever the field basis chosen. This is not equivalent to saying
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which we look for takes the following schematic form
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Such a basis-independent object precisely defines a CP-odd flavor-invariant, as we now
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12.1 Introduction
The masses and mixings of quarks have a common origin in the Standard Model (SM). They

arise from the Yukawa interactions with the Higgs condensate,

LY = ≠Y
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where Y
u,d are 3◊3 complex matrices, „ is the Higgs field, i, j are generation labels, and ‘ is the 2◊2

antisymmetric tensor. Q
I
L are left-handed quark doublets, and d

I
R and u

I
R are right-handed down-

and up-type quark singlets, respectively, in the weak-eigenstate basis. When „ acquires a vacuum
expectation value, È„Í = (0, v/

Ô
2), Eq. (12.1) yields mass terms for the quarks. The physical states

are obtained by diagonalizing Y
u,d by four unitary matrices, V

u,d
L,R, as M

f
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Ô

2),
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This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] is a 3 ◊ 3 unitary matrix. It can be
parameterized by three mixing angles and the CP -violating KM phase [2]. Of the many possible
conventions, a standard choice has become [3]
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where sij = sin ◊ij , cij = cos ◊ij , and ” is the phase responsible for all CP -violating phenomena in
flavor-changing processes in the SM. The angles ◊ij can be chosen to lie in the first quadrant, so
sij , cij Ø 0.

It is known experimentally that s13 π s23 π s12 π 1, and it is convenient to exhibit this
hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = ⁄ = |Vus|


|Vud|2 + |Vus|2
, s23 = A⁄

2 = ⁄

----
Vcb

Vus

---- ,

s13e
i” = V

ú

ub = A⁄
3(fl + i÷) = A⁄
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These relations ensure that fl̄ + i÷̄ = ≠(VudV
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cb) is phase convention independent, and the
CKM matrix written in terms of ⁄, A, fl̄, and ÷̄ is unitary to all orders in ⁄. The definitions of fl̄, ÷̄

reproduce all approximate results in the literature; i.e., fl̄ = fl(1≠⁄
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/2+. . .),

and one can write VCKM to O(⁄4) either in terms of fl̄, ÷̄ or, traditionally,
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P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
1st June, 2020 8:27am
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CP-Violation in the Standard Model
CP-Violation must thus have a flavor-independent meaning. In the SM, this is provided by the 
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Jarlskog Invariant
The SM CPV order 
• The lowest order flavour invariant sensitive to CPV


• Explicitly


• Even if δ~O(1), large suppression effects due to collective nature of CPV


• Important property: CP is conserved iff J4=0 (neglecting θQCD for now)
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The masses and mixings of quarks have a common origin in the Standard Model (SM). They
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R and u
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R are right-handed down-

and up-type quark singlets, respectively, in the weak-eigenstate basis. When „ acquires a vacuum
expectation value, È„Í = (0, v/
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2), Eq. (12.1) yields mass terms for the quarks. The physical states

are obtained by diagonalizing Y
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This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2] is a 3 ◊ 3 unitary matrix. It can be
parameterized by three mixing angles and the CP -violating KM phase [2]. Of the many possible
conventions, a standard choice has become [3]
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where sij = sin ◊ij , cij = cos ◊ij , and ” is the phase responsible for all CP -violating phenomena in
flavor-changing processes in the SM. The angles ◊ij can be chosen to lie in the first quadrant, so
sij , cij Ø 0.

It is known experimentally that s13 π s23 π s12 π 1, and it is convenient to exhibit this
hierarchy using the Wolfenstein parameterization. We define [4–6]
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cb) is phase convention independent, and the
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where sij = sin ◊ij , cij = cos ◊ij , and ” is the phase responsible for all CP -violating phenomena in
flavor-changing processes in the SM. The angles ◊ij can be chosen to lie in the first quadrant, so
sij , cij Ø 0.

It is known experimentally that s13 π s23 π s12 π 1, and it is convenient to exhibit this
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BSM CPV is also a Collective Effect
The example of electron EDM
• “Imaginary” Yukawa coupling gives rise to eEDM through Barr-Zee diagram

9

L = y h ̄ 

Brod, Haisch, Zupan ’13

Constrained indirectly: one-loop impact on Electric Dipole 
Moments (EDM): 

e.g.  de < 8.7 10-29 e cm  (ACME 13)

too strong to compete!

CP-violating Higgs couplings
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electron EDM
• dominant contribution from 

2-loop Barr-Zee type diagram

• depends on electron yukawa

• setting ye=1 is then quite constraining

• the constraint vanishes, if the Higgs does not couple to electrons 

• e.g. if it only couples to the 3rd gen.
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As we know from the SM, the presence of phases alone does not necessary imply CPV. 

Take a SMEFT with just one generation and only turn on the modified Yukawa  operator!uH
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 • The Yukawa can be made real by chiral rotation: 


• The “phase” will appear in the mass


• The CPV effect is captured by Im (y†.m), which is invariant under chiral rotation

Trivial here, but can get complicated: flavour indices, links to UV parameters…
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Dim-6 Yukawa’s Contribution to EDMs
CP doesn’t say Wilson coefficients are real
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(9R+9I)

3x3 complex

(9R+9I)

One can choose U(3)QxU(3)U transformations to make CuH (or ghuu) *real*

CPV effects ↔︎ Im CuH 

Phases can be moved to mass matrices — even in mass basis, ∃ residual U(1)’s to move phase around

(flavour basis fully specified by the location of the phase in the CKM matrix)

gijhuu hūiuj

Y ij

u
+ 3v2Cij

uH
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Constrained indirectly: one-loop impact on Electric Dipole 
Moments (EDM): 

e.g.  de < 8.7 10-29 e cm  (ACME 13)

too strong to compete!

CP-violating Higgs couplings

HEFT2013, Oct 10 2013J. Zupan     Constraints on CPV Higgs...

electron EDM
• dominant contribution from 

2-loop Barr-Zee type diagram

• depends on electron yukawa

• setting ye=1 is then quite constraining

• the constraint vanishes, if the Higgs does not couple to electrons 

• e.g. if it only couples to the 3rd gen.
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At two loops and 1/Λ2 order, Barr-Zee diagrams depends only on three phases captured by three invariants

(only diagonal phases can contribute at 2-loops because no FCNC in SM)
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Beyond Jarlskog: Building SM6 invariants
Examples of invariants from with bilinear operators
• For each operators, e.g. the dim-6 Yukawa operators, we can build a series of CP-odd 

invariants:

12

• Of course, they are not all independent:

e.g., for 3 families, 

• Only need to consider only a finite set of invariants:

allow to capture the three phases in C(1,3)
HQ

in such limits. Another example is that of CuH .
When Yd = 0, one finds only two invariants in the associated set in Table 8, whereas three
sources of CPV remain as shown in Table 6. One could therefore conclude that one of the
invariants in the set should be replaced by the missing

ImTr �X2
uCuHY †

u
� . (A.27)

However, this choice would not allow to retain a sufficient rank for the set, as one finds

ImTr �X2
uCuHY †

u
� = (m2

u +m2
t )ImTr �XuCuHY †

u
� −m2

um
2
t ImTr �CuHY †

u
� (A.28)

when mu = mc (one can use formulae like (4.7) to express the mass factors in terms of
invariants), whereas all nine sources of CPV in CuH remain physical and independent in
this case, as per Tables 3 and 4. Therefore, it may seem that one needs strictly more than
nine invariants to capture the nine CPV phases in CuH . These examples suggest that the
necessary and sufficient conditions presented in section 4.1 are not sufficient anymore when
masses can vanish. However, this is a consequence of our assumption that invariants should
correspond to traces of a monomial of degree one in SMEFT coefficients, and arbitrary
degree in Yukawa matrices. Instead, one could enlarge the set of invariants and include
traces of sums over monomials of various degrees. For instance, defining instead Xu ≡
1+YuY †

u , and similarly for other fermions, without changing the expression of the invariants
is sufficient to ensure that the vanishing of our sets is a necessary and sufficient condition
for the conservation of CP at leading order.
B Generalities about invariants

B.1 Properties of 3 × 3 matrices

Here we discuss some properties of generic 3 × 3 matrices, which we use throughout the
paper and will refer to later on. We will follow mostly Ref. [24]. The starting point is the
Cayley–Hamilton theorem, which allows to rewrite the n-th power of a n × n matrix A in
terms of the powers < n, and that for n = 3 takes the form

A3 = A2Tr(A) − 1

2
A �Tr(A)2 −Tr�A2�� + 1

6
�Tr(A)3 − 3Tr�A2�Tr(A) + 2Tr�A3�� I3×3 .

(B.1)

Multiplying by A and taking the trace results in

Tr�A4� = 1

6
Tr(A)4 −Tr�A2�Tr(A)2 + 4

3
Tr�A3�Tr(A) + 1

2
Tr�A2�2. (B.2)

Shifting A → A + B + C in Eq. (B.2), with B and C some other generic 3 matrices, and
taking the terms of order A2BC, one obtains

0 = Tr(A)2Tr(B)Tr(C) −Tr(BC)Tr(A)2 − 2Tr(AB)Tr(A)Tr(C)+
+ 2Tr(AC)Tr(A)Tr(B) + 2Tr(ABC)Tr(A) + 2Tr(ACB)Tr(A)+
−Tr�A2�Tr(B)Tr(C) + 2Tr(AB)Tr(AC) +Tr�A2�Tr(BC)+
+ 2Tr(C)Tr�A2B� + 2Tr(B)Tr�A2C� − 2Tr�A2BC� − 2Tr�A2CB� − 2Tr(ABAC) .

(B.3)

– 38 –
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Opportunistic CP violation
Opportunistic CPV = interference with CKM phase

13

• If J4=0, we can find 699 independent invariants ⇒ minimal basis of invariants. 


“CP is conserved iff J4 and the invariants of the minimal basis are all vanishing”


• If J4≠0, we can actually build more invariants! Not surprising, because CP-even BSM can 
interfere with CP-odd SM. But what was maybe unexpected is that many of these 
interfering invariants can be much larger than J4 → maximal basis of invariants.

dim (maximal basis) = number of physical (real and imaginary) parameters 
that can interfere with SM 


and thus can show up in observables at leading O(1/Λ2)

Opportunistic CPV relies on interference with SM phase but it doesn’t 
have to suffer from the same collective suppression!

How many independent invariants at a given order in Cabibbo expansion?



Taylor Rank
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Taylor rank at each order in � for all bilinear operators
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Figure 2: Number of independent invariants from the maximal (blue step-wise line) and the minimal
(dark yellow step-wise line) sets, denoted as Taylor rank rn in the text, at each order n in the � expansion
for all bilinear operators. At a fixed order in �, the top x-axis shows the value of ⇤ for which an invariant
appearing at such order would be comparable to J4, assuming it scales as v2�⇤2, with v ∼ 246 GeV the vev

of the Higgs field. The vertical dashed line marks the order �36 (corresponding to ⇤ = v, as indicated)
where the SM4 J4 shows up, while the horizontal lines mark the values for the maximal and minimal rank,
also labeled on the right y-axis. Each plot corresponds to a group of operators in Table 3 (excluding those

with 0 maximal and minimal sets), of which only one is chosen as a representative.
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Figure 2: Number of independent invariants from the maximal (blue step-wise line) and the minimal
(dark yellow step-wise line) sets, denoted as Taylor rank rn in the text, at each order n in the � expansion
for all bilinear operators. At a fixed order in �, the top x-axis shows the value of ⇤ for which an invariant
appearing at such order would be comparable to J4, assuming it scales as v2�⇤2, with v ∼ 246 GeV the vev

of the Higgs field. The vertical dashed line marks the order �36 (corresponding to ⇤ = v, as indicated)
where the SM4 J4 shows up, while the horizontal lines mark the values for the maximal and minimal rank,
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with 0 maximal and minimal sets), of which only one is chosen as a representative.
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• The BSM invariants are suppressed by scale of new physics

• but not necessarily by small Yukawa/mixing angles as J4
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Figure 2: Number of independent invariants from the maximal (blue step-wise line) and the minimal
(dark yellow step-wise line) sets, denoted as Taylor rank rn in the text, at each order n in the � expansion
for all bilinear operators. At a fixed order in �, the top x-axis shows the value of ⇤ for which an invariant
appearing at such order would be comparable to J4, assuming it scales as v2�⇤2, with v ∼ 246 GeV the vev

of the Higgs field. The vertical dashed line marks the order �36 (corresponding to ⇤ = v, as indicated)
where the SM4 J4 shows up, while the horizontal lines mark the values for the maximal and minimal rank,
also labeled on the right y-axis. Each plot corresponds to a group of operators in Table 3 (excluding those

with 0 maximal and minimal sets), of which only one is chosen as a representative.
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Figure 2: Number of independent invariants from the maximal (blue step-wise line) and the minimal
(dark yellow step-wise line) sets, denoted as Taylor rank rn in the text, at each order n in the � expansion
for all bilinear operators. At a fixed order in �, the top x-axis shows the value of ⇤ for which an invariant
appearing at such order would be comparable to J4, assuming it scales as v2�⇤2, with v ∼ 246 GeV the vev

of the Higgs field. The vertical dashed line marks the order �36 (corresponding to ⇤ = v, as indicated)
where the SM4 J4 shows up, while the horizontal lines mark the values for the maximal and minimal rank,
also labeled on the right y-axis. Each plot corresponds to a group of operators in Table 3 (excluding those

with 0 maximal and minimal sets), of which only one is chosen as a representative.
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• The BSM invariants are suppressed by scale of new physics

• but not necessarily by small Yukawa/mixing angles as J4
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Taylor rank at each order in � for all operators

(a) Bilinears (b) 4-Fermi

852

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600
1010 105 100 10-5 10-10 10-15

699

1551

λ order n

Ta
yl
or

-r
an
k
r λ
(n
)

Λ [GeV]

J4

min rank

max rank

(c) Total

Figure 4: Number of independent invariants from the maximal (blue step-wise line) and the minimal
(dark yellow step-wise line) sets, denoted as Taylor rank rn in the text, at each order n in the � expansion
for the sum of all bilinear operators (a), 4-Fermi operators (b), and all operators (c). At a fixed order in

�, the top x-axis shows the value of ⇤ for which an invariant appearing at such order would be
comparable to J4, assuming it scales as v2�⇤2. The vertical dashed line marks the order �36

(corresponding to ⇤ = v, as indicated) where the SM4 J4 shows up, while the horizontal lines mark the
values for the maximal and minimal rank, also labeled on the right y-axis. Finally, in each plot we

highlighted the sources of opportunistic CPV as the difference between maximal and minimal ranks.

5 Flavor scenarios

In the previous section, we explained how to compute the Taylor ranks of a set of CP-odd
invariants associated to a dimension-six operator. In order to do this, an understanding of
the �-scaling of the building blocks of each invariant was needed. For the Yukawa matrices,
this is done by means of the parametrization in Eqs. (2.5)-(2.11). On the other hand, the
flavor structure of the Wilson coefficients is obviously unknown, as it can only be specified
when measured or when a specific UV model is selected. To get the results displayed in
Figures 2, 3, and 4, we adopted an anarchic assumption, where all coefficient entries are
assumed to be O(1). However, different ansatzes, appropriately justified, can be made on
such coefficients. In the next sections, we consider four of these scenarios, starting from
the anarchic one used in the results above. We first summarize their characteristics, and,
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Models of Flavours
Beyond generic flavour model: MFV
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• Other constraints from CP-even observables: totally flavour generic/anarchic dim-6 
operators are severely constrained. How do additional flavour structure affect the 
orders of CPV computed above in the generic case?

• Let’s first stick to the canonical flavour “model”: Minimal Flavour Violation
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Taylor rank at each order in � for all bilinear operators: flavor scenarios

Figure 6: Plot comparing the Taylor rank obtained for bilinear operators at each order in � for the four
different flavor scenarios described in the text: anarchic entries, Minimal Flavor Violation, U(2)5 and

Froggatt–Nielsen. The dashed vertical line marks the order �36 that characterizes the Jarlskog invariant
J4, while horizontal lines have been placed to indicate the minimal and maximal rank for each operator.
Each of the first 7 plots corresponds to a group of operators in Table 3 (excluding those with 0 maximal
and minimal sets), only one of which is chosen as a representative, while the last one is the total Taylor
rank for all bilinear operators. Notice that the line corresponding to MFV only becomes larger than the

minimal rank after reaching O��36
�. Indeed, the only way to start resolving real entries is via interference

with a CP-odd quantity. As the MFV flavorful building blocks are just Yu,d, the first possible object is the
familiar J4, appearing at �36.
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CPV Orders in Alignment Models
Froggatt-Nielsen-type & U(2)3 Flavour Structure
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• Another popular flavour structure is alignment inherited e.g. from U(1)FN symmetry


• The U(1) charges of the quarks will imprint a particular scaling of the dim.6 WC:

Generic Flavour Structure

Λ >1’000 TeV ⇒ ~120 sources of CPV larger than SM
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MFV Flavour Structure

Λ > 5-10 TeV ⇒ ~50 sources of CPV larger than SM

We couldn’t explore effects of Flavour assumptions

on 4 Fermi operators (too computational intensive)



Part II. CPV in Axion couplings to fermions?
Axion/ALP=Goldstone boson → shift-symmetry
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couplings, whose fermionic sector reads

LSM ⊃ �
 ∈SM

i ̄ �D − �Q̄YuH̃u + Q̄YdHd + L̄YeHe + h.c.� . (1.2)

Our main goal is then to revisit the conditions for these couplings to be interpreted as the
shift-invariant couplings of an axion, and to quantify the deviations from such conditions.

The common answer to the first part of the question is that one should be able to
capture those interactions using the following Lagrangian (see [53, 54] for a discussion of
redundant operators),

L = LSM +
1

2
(@µa) (@

µ
a) +

@µa

f
�

 ∈SM
 ̄c �

µ
 +O �

1

f2
� , (1.3)

where the sum runs over all Weyl fermion multiplets of the SM and the c are hermitian
matrices in flavor space. The Lagrangian of Eq. (1.3) makes the axion shift symmetry
a → a + ✏f manifest. Then, one can map the couplings of Eq. (1.3) onto those of Eq. (1.1)
via field redefinitions [53, 55], in order to describe shift-invariant couplings using Eq. (1.1).
For this mapping procedure to be possible, constraints must hold on the Ỹ couplings of
Eq. (1.1) [53, 55]. These constraints can also be understood only in terms of the operator
basis of Eq. (1.1), where the shift invariance is never manifest: they allow one to absorb an
axion shift via appropriate field redefinitions [53].

Unfortunately, these conditions are implicit : given a set of couplings, one has to check
whether a set of equations can be solved (we will review this approach in more details
later on). In addition, they do not allow to differentiate between approximate and badly
broken shift symmetries, nor to identify a power counting parameter which suppresses the
breaking. Instead, we will present explicit conditions on the Wilson coefficients of Eq. (1.1),
which can be directly evaluated given a set of couplings and immediately yield an answer.
Therefore, such conditions define quantities which vanish iff the axion shift symmetry is
preserved, and whose size quantifies how badly it is broken, hence those quantities are order
parameters of the breaking of the axion shift symmetry.

This is very similar in spirit to finding the Jarlskog invariant for CP-violation in the
SM [56, 57] instead of scanning possible field redefinitions which absorb unphysical complex
Lagrangian parameters. It may therefore not come as a surprise that our conditions are
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1 Introduction

Axions, which we take here to be any sort of pseudo-Nambu–Goldstone bosons (pNGBs), are
leading candidates for physics beyond the Standard Model (SM). Indeed, they are predicted
by several well-motivated extensions of the SM, and help solving many issues at once, first
of which the strong-CP [1–8] and dark matter problems [9–11] (see [12] for a recent review
of axion physics). Their pNGB nature is rooted in the presence of an approximate shift
symmetry of the axion field, which we also refer to as a Peccei–Quinn (PQ) symmetry. The
symmetry allows, for instance, QCD axions to receive their mass mostly from QCD or fuzzy
axion dark matter to be ultra-light. These features are inherited from the parametrically-
close presence of a shift symmetric point, and are sharper when we approach it. However,
there are several reasons to study the surroundings of that point and allow for some amount
of shift breaking. First, quantum gravity objects to exact global symmetries and is expected
to generate irreducible corrections to axion potentials and interactions [13–15]. The need
to suppress these gravitational shift-breaking contributions is present in any pNGB model,
and goes under the name of axion quality problem. Second, there are cases where shift-
breaking is a key aspect of model building: for instance, a slight amount of shift-breaking is
responsible for the scanning of the Higgs mass and the resolution of the hierarchy problem
in relaxion models [16]. Therefore, considering shift-breaking ALP interactions seems to be
necessary to make contact with theory and phenomenology.

Consequently, it is important to clearly pinpoint the presence of physical shift-symmetry-
breaking couplings, as well as to quantify their magnitude. The way to do this depends on
the precise framework used to describe the axion couplings. For instance, one could study a
precise UV model containing a pseudoscalar. Instead, we work here at the level of effective
couplings to SM fields, because effective field theories are the appropriate tools to encode
axion interactions with SM particles, in a way which systematically captures and connects
all contributions of an axion to high-energy observables. Indeed, being pNGBs, axions are
generically light, hence they can be produced and contribute to processes at all energy scales
of interest for high-energy physics. In addition, they arise in very diverse UV models, and
can couple to all particles of the SM in all the ways compatible with their pNGB nature.
Therefore, in a bottom-up approach, their couplings are essentially free parameters, up to
the constraints imposed by the pNGB shift symmetry, which is precisely what an EFT
approach encodes. For these reasons, axion EFTs have been systematically studied since
the early days of axion physics [17, 18], and are for instance used in the context of flavor
physics [19–33] or LHC observables [34–52].

In this paper, we carry on the systematic study of the structural properties of axion
EFTs, with a focus on the breaking of axion shift-invariance due to the axion couplings to
SM fermions. We work in a non-redundant operator basis which captures the most generic
leading-order couplings of a light pseudoscalar a to SM fermions, namely
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where f is the axion decay constant (we henceforth take f � v, the electroweak scale),
Ỹu,d,e are generic complex matrices in flavor space, H̃ ≡ i�2
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discuss illustrative examples and properties in Section 3: we compute the invariants as-
sociated to specific UV models (Section 3.1), we study the CP-parities of the invariants
(Section 3.2), and we repeat their derivation in the low-energy below the electroweak scale
(Section 3.3), emphasizing the connection to UV completions which realize non-linearly the
electroweak symmetry. In Section 4, we study the renormalization group (RG) running of
the invariants. First, we show in Section 4.1 that the linear space which they generate is
RG-closed, as it should for any complete set of order parameters. We perform a similar
analysis below the electroweak scale in Section 4.2, and show that matching conditions to
a UV theory which realizes the electroweak symmetry linearly are conserved by the RG
flow at leading order. Therefore, they can be used when analyzing low-energy observables,
such as electric dipole moments (EDM). We end in Section 4.3 by exhibiting sum-rules on
the axion-induced RG running in the Standard Model Effective Field Theory (SMEFT),
which can shed light on the axion properties from observing the SMEFT RG runing. Last,
Section 5 discusses the invariant associated to the non-perturbative shift-breaking induced
by the axion-gluon coupling, which receives a contribution from flavored couplings when
navigating between the bases of Eqs. (1.1)-(1.3), as well as its RG running. Finally, we
conclude in Section 6. Some appendices complete the paper. Appendix A presents matrix
relations which we used to construct the invariants. Appendix B discusses the fate of the
axion shift-symmetry at remarkable points of the parameter space of the SM, e.g. where
fermion masses are degenerate or the CKM matrix possesses texture zeros, which require
the use of flavor-invariants non-linear in the axion couplings, discussed in Appendix C.
Eventually, Appendix D gives more details on the RGEs used in Section 5.

2 Flavor-invariant order parameters for the breaking of an axion shift
symmetry

In this section, we ask the following questions: given a set of couplings Ỹu,d,e in the operator
basis of Eq. (1.1), under which conditions do they describe the couplings of a shift-symmetric
axion? And if they do not, which are the order parameters of shift-symmetry breaking?

A partial answer has been long known: when the shift symmetry of the axion is exact,
it is possible to express the axion-fermion interactions using the Lagrangian of Eq. (1.3).
Integrating by parts and using the fermionic equations of motion of the SM, one finds that
the Lagrangian in Eq. (1.1) can arise from a Lagrangian of the form given in Eq. (1.3) when1

∃cQ,u,d,L,e hermitian, such that: Ỹu,d = i(Yu,dcu,d − cQYu,d) , Ỹe = i(Yece − cLYe) . (2.1)

1
Strictly speaking, one should consider that there could exist a flavor transformation which sends Ỹu,d,e

to that in Eq. (2.1) without changing the Yukawa couplings (that happens when those are invariant under

a subset flavor transformations, such as the usual baryon and three lepton numbers). However, explicitly

taking this into account is unnecessary, since it amounts to redefining cL,e,Q,u,d. In addition, although we

do not write the bosonic couplings of the axion to the Higgs or the gauge fields explicitly, we assume that

the basis of Eqs. (1.1)-(1.3) do not contain redundant operators such as @µa �iH
†
D

µ
H + h.c.�, which merely

amounts to shifting the value of the fermionic Wilson coefficients. Finally, shift symmetry correlates the

O(1�f2
) couplings involving two axion fields and those at O(1�f), and similarly for higher-point couplings.

In this paper, we only focus on the constraints at O(1�f).
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couplings, whose fermionic sector reads

LSM ⊃ �
 ∈SM

i ̄ �D − �Q̄YuH̃u + Q̄YdHd + L̄YeHe + h.c.� . (1.2)

Our main goal is then to revisit the conditions for these couplings to be interpreted as the
shift-invariant couplings of an axion, and to quantify the deviations from such conditions.

The common answer to the first part of the question is that one should be able to
capture those interactions using the following Lagrangian (see [53, 54] for a discussion of
redundant operators),

L = LSM +
1

2
(@µa) (@

µ
a) +

@µa

f
�

 ∈SM
 ̄c �

µ
 +O �

1

f2
� , (1.3)

where the sum runs over all Weyl fermion multiplets of the SM and the c are hermitian
matrices in flavor space. The Lagrangian of Eq. (1.3) makes the axion shift symmetry
a → a + ✏f manifest. Then, one can map the couplings of Eq. (1.3) onto those of Eq. (1.1)
via field redefinitions [53, 55], in order to describe shift-invariant couplings using Eq. (1.1).
For this mapping procedure to be possible, constraints must hold on the Ỹ couplings of
Eq. (1.1) [53, 55]. These constraints can also be understood only in terms of the operator
basis of Eq. (1.1), where the shift invariance is never manifest: they allow one to absorb an
axion shift via appropriate field redefinitions [53].

Unfortunately, these conditions are implicit : given a set of couplings, one has to check
whether a set of equations can be solved (we will review this approach in more details
later on). In addition, they do not allow to differentiate between approximate and badly
broken shift symmetries, nor to identify a power counting parameter which suppresses the
breaking. Instead, we will present explicit conditions on the Wilson coefficients of Eq. (1.1),
which can be directly evaluated given a set of couplings and immediately yield an answer.
Therefore, such conditions define quantities which vanish iff the axion shift symmetry is
preserved, and whose size quantifies how badly it is broken, hence those quantities are order
parameters of the breaking of the axion shift symmetry.

This is very similar in spirit to finding the Jarlskog invariant for CP-violation in the
SM [56, 57] instead of scanning possible field redefinitions which absorb unphysical complex
Lagrangian parameters. It may therefore not come as a surprise that our conditions are
expressed in terms of flavor-invariants, namely combinations of Lagrangian parameters
which are left unchanged under flavor field redefinitions. This allows us to encode the
physical collective effects associated to the presence or absence of the axion shift symmetry.

Beyond explicit axion couplings to fermions, the CP-even axion-gauge bosons couplings
are also flavorful when the PQ and the gauge symmetries have mixed anomalies. They do
not break the shift symmetry at the perturbative level, but the gluon coupling does so at
the non-perturbative level, as is crucial in QCD axion solutions to the strong CP problem.
Therefore, we also study the order parameter for this non-perturbative breaking.

The organisation of the paper is as follows. In Section 2, we present flavor-invariant
order parameters for the breaking of the axion shift-symmetry: we first identify conditions
in a given flavor basis, which we then rephrase in a flavor-invariant language. We then
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1 Introduction

Axions, which we take here to be any sort of pseudo-Nambu–Goldstone bosons (pNGBs), are
leading candidates for physics beyond the Standard Model (SM). Indeed, they are predicted
by several well-motivated extensions of the SM, and help solving many issues at once, first
of which the strong-CP [1–8] and dark matter problems [9–11] (see [12] for a recent review
of axion physics). Their pNGB nature is rooted in the presence of an approximate shift
symmetry of the axion field, which we also refer to as a Peccei–Quinn (PQ) symmetry. The
symmetry allows, for instance, QCD axions to receive their mass mostly from QCD or fuzzy
axion dark matter to be ultra-light. These features are inherited from the parametrically-
close presence of a shift symmetric point, and are sharper when we approach it. However,
there are several reasons to study the surroundings of that point and allow for some amount
of shift breaking. First, quantum gravity objects to exact global symmetries and is expected
to generate irreducible corrections to axion potentials and interactions [13–15]. The need
to suppress these gravitational shift-breaking contributions is present in any pNGB model,
and goes under the name of axion quality problem. Second, there are cases where shift-
breaking is a key aspect of model building: for instance, a slight amount of shift-breaking is
responsible for the scanning of the Higgs mass and the resolution of the hierarchy problem
in relaxion models [16]. Therefore, considering shift-breaking ALP interactions seems to be
necessary to make contact with theory and phenomenology.

Consequently, it is important to clearly pinpoint the presence of physical shift-symmetry-
breaking couplings, as well as to quantify their magnitude. The way to do this depends on
the precise framework used to describe the axion couplings. For instance, one could study a
precise UV model containing a pseudoscalar. Instead, we work here at the level of effective
couplings to SM fields, because effective field theories are the appropriate tools to encode
axion interactions with SM particles, in a way which systematically captures and connects
all contributions of an axion to high-energy observables. Indeed, being pNGBs, axions are
generically light, hence they can be produced and contribute to processes at all energy scales
of interest for high-energy physics. In addition, they arise in very diverse UV models, and
can couple to all particles of the SM in all the ways compatible with their pNGB nature.
Therefore, in a bottom-up approach, their couplings are essentially free parameters, up to
the constraints imposed by the pNGB shift symmetry, which is precisely what an EFT
approach encodes. For these reasons, axion EFTs have been systematically studied since
the early days of axion physics [17, 18], and are for instance used in the context of flavor
physics [19–33] or LHC observables [34–52].

In this paper, we carry on the systematic study of the structural properties of axion
EFTs, with a focus on the breaking of axion shift-invariance due to the axion couplings to
SM fermions. We work in a non-redundant operator basis which captures the most generic
leading-order couplings of a light pseudoscalar a to SM fermions, namely

L = LSM +
1

2
(@µa) (@

µ
a) −

a

f
�Q̄ỸuH̃u + Q̄ỸdHd + L̄ỸeHe + h.c.� +O �

1

f2
� . (1.1)

where f is the axion decay constant (we henceforth take f � v, the electroweak scale),
Ỹu,d,e are generic complex matrices in flavor space, H̃ ≡ i�2

H
∗ and LSM contains the SM
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discuss illustrative examples and properties in Section 3: we compute the invariants as-
sociated to specific UV models (Section 3.1), we study the CP-parities of the invariants
(Section 3.2), and we repeat their derivation in the low-energy below the electroweak scale
(Section 3.3), emphasizing the connection to UV completions which realize non-linearly the
electroweak symmetry. In Section 4, we study the renormalization group (RG) running of
the invariants. First, we show in Section 4.1 that the linear space which they generate is
RG-closed, as it should for any complete set of order parameters. We perform a similar
analysis below the electroweak scale in Section 4.2, and show that matching conditions to
a UV theory which realizes the electroweak symmetry linearly are conserved by the RG
flow at leading order. Therefore, they can be used when analyzing low-energy observables,
such as electric dipole moments (EDM). We end in Section 4.3 by exhibiting sum-rules on
the axion-induced RG running in the Standard Model Effective Field Theory (SMEFT),
which can shed light on the axion properties from observing the SMEFT RG runing. Last,
Section 5 discusses the invariant associated to the non-perturbative shift-breaking induced
by the axion-gluon coupling, which receives a contribution from flavored couplings when
navigating between the bases of Eqs. (1.1)-(1.3), as well as its RG running. Finally, we
conclude in Section 6. Some appendices complete the paper. Appendix A presents matrix
relations which we used to construct the invariants. Appendix B discusses the fate of the
axion shift-symmetry at remarkable points of the parameter space of the SM, e.g. where
fermion masses are degenerate or the CKM matrix possesses texture zeros, which require
the use of flavor-invariants non-linear in the axion couplings, discussed in Appendix C.
Eventually, Appendix D gives more details on the RGEs used in Section 5.

2 Flavor-invariant order parameters for the breaking of an axion shift
symmetry

In this section, we ask the following questions: given a set of couplings Ỹu,d,e in the operator
basis of Eq. (1.1), under which conditions do they describe the couplings of a shift-symmetric
axion? And if they do not, which are the order parameters of shift-symmetry breaking?

A partial answer has been long known: when the shift symmetry of the axion is exact,
it is possible to express the axion-fermion interactions using the Lagrangian of Eq. (1.3).
Integrating by parts and using the fermionic equations of motion of the SM, one finds that
the Lagrangian in Eq. (1.1) can arise from a Lagrangian of the form given in Eq. (1.3) when1

∃cQ,u,d,L,e hermitian, such that: Ỹu,d = i(Yu,dcu,d − cQYu,d) , Ỹe = i(Yece − cLYe) . (2.1)

1
Strictly speaking, one should consider that there could exist a flavor transformation which sends Ỹu,d,e

to that in Eq. (2.1) without changing the Yukawa couplings (that happens when those are invariant under

a subset flavor transformations, such as the usual baryon and three lepton numbers). However, explicitly

taking this into account is unnecessary, since it amounts to redefining cL,e,Q,u,d. In addition, although we

do not write the bosonic couplings of the axion to the Higgs or the gauge fields explicitly, we assume that

the basis of Eqs. (1.1)-(1.3) do not contain redundant operators such as @µa �iH
†
D

µ
H + h.c.�, which merely

amounts to shifting the value of the fermionic Wilson coefficients. Finally, shift symmetry correlates the

O(1�f2
) couplings involving two axion fields and those at O(1�f), and similarly for higher-point couplings.

In this paper, we only focus on the constraints at O(1�f).
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Ỹe,ii, arg(Ỹe,ij Ỹe,ji) (i < j), �Ỹe,ij � and arg(Ỹe,12Ỹe,23Ỹe,31). They amount to 16 independent
quantities, 7 CP-odd and 9 CP-even. In the quark sector, all parameters are physical and
one finds 2 × 9 = 18 CP-even and 2 × 9 = 18 CP-odd couplings in the quark sector. When
the shift-symmetry is exact, we can start in the explicitly shift-invariant basis of Eq. (1.3),
where there are 2 hermitian matrices cL,e in the lepton sector and 3 hermitian matrices
cQ,u,d in the quark sector parametrizing all couplings to fermions. The lepton number
rephasings can be again used to remove two phases3. Furthermore, there exists a freedom
in the derivative basis, associated to the addition of the operator @µaJµ, for any conserved
fermionic current of the SM J

µ [54]. This operator does not induce any physical effect, as
it can be removed (at O(1�f)) thanks to an axion-dependent flavor transformation. Given
that there is an exact baryon number U(1)B symmetry in the quark sector and the U(1)Li

symmetries in the lepton sector, one can remove one diagonal entry of either cQ, cu and
three out of cL,e. This leads us to count 9 CP-even and 4 CP-odd couplings in the lepton
sector, as well as 17 CP-even and 9 CP-odd couplings in the quark sector. Hence, we expect
3 CP-odd relations in the lepton sector together with 9 CP-odd and 1 CP-even relation in
the quark sector that characterize the presence of a shift symmetry in the basis of Eq. (1.1).
We summarize the different countings in Table 1.

Shift-symmetric Wilson coefficients cQ,u,d,L,e Generic Wilson coefficients Ỹu,d,e Number of constraints
CP-even CP-odd CP-even CP-odd CP-even CP-odd

Quark sector 17 9 18 18 1 9
Lepton sector 9 4 9 7 0 3

Table 1: Number of physical coefficients at dimension-five in the EFTs of Eq. (1.3) and Eq. (1.1) (see the

text for details), and numbers of constraints that Ỹu,d,e need to verify to respect an exact shift invariance.

2.2 Flavor invariants in the lepton sector

Let us now derive those relations. We start with the lepton case, where the constraints
are simpler. As already mentioned, there exists a field redefinition which maps Eq. (1.3) to
Eq. (1.1), with [53, 55]

Ỹe = i(Yece − cLYe) (2.3)

in particular. For non-vanishing lepton masses, Ye is invertible and one can solve for ce,

ce = −iY
−1
e
�Ỹe + icLYe� . (2.4)

Imposing that ce should be hermitian leads to constraints, here expressed in a flavor basis
where Ye is diagonal and real,

∃cL hermitian s.t.
Ỹe,ij

ye,i

+
Ỹ
∗
e,ji

ye,j

+ icL,ij �
ye,j

ye,i

−
ye,i

ye,j

� = 0 ∀i, j . (2.5)

When i = j, cL disappears from the expression and one finds constraints on Ỹe, namely that
Ỹe,ii is purely imaginary. The constraints where i < j and i > j are complex conjugates of

3
The rephasing-invariants now read cL�e,ii, �cL�e,ij � (i < j), arg(ce,ijcL,ji) (i < j) and arg(cL,12cL,23cL,31).
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rephasings can be again used to remove two phases3. Furthermore, there exists a freedom
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it can be removed (at O(1�f)) thanks to an axion-dependent flavor transformation. Given
that there is an exact baryon number U(1)B symmetry in the quark sector and the U(1)Li

symmetries in the lepton sector, one can remove one diagonal entry of either cQ, cu and
three out of cL,e. This leads us to count 9 CP-even and 4 CP-odd couplings in the lepton
sector, as well as 17 CP-even and 9 CP-odd couplings in the quark sector. Hence, we expect
3 CP-odd relations in the lepton sector together with 9 CP-odd and 1 CP-even relation in
the quark sector that characterize the presence of a shift symmetry in the basis of Eq. (1.1).
We summarize the different countings in Table 1.

Shift-symmetric Wilson coefficients cQ,u,d,L,e Generic Wilson coefficients Ỹu,d,e Number of constraints
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are simpler. As already mentioned, there exists a field redefinition which maps Eq. (1.3) to
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Ỹe = i(Yece − cLYe) (2.3)

in particular. For non-vanishing lepton masses, Ye is invertible and one can solve for ce,
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couplings, whose fermionic sector reads

LSM ⊃ �
 ∈SM

i ̄ �D − �Q̄YuH̃u + Q̄YdHd + L̄YeHe + h.c.� . (1.2)

Our main goal is then to revisit the conditions for these couplings to be interpreted as the
shift-invariant couplings of an axion, and to quantify the deviations from such conditions.

The common answer to the first part of the question is that one should be able to
capture those interactions using the following Lagrangian (see [53, 54] for a discussion of
redundant operators),

L = LSM +
1

2
(@µa) (@

µ
a) +

@µa

f
�

 ∈SM
 ̄c �

µ
 +O �

1

f2
� , (1.3)

where the sum runs over all Weyl fermion multiplets of the SM and the c are hermitian
matrices in flavor space. The Lagrangian of Eq. (1.3) makes the axion shift symmetry
a → a + ✏f manifest. Then, one can map the couplings of Eq. (1.3) onto those of Eq. (1.1)
via field redefinitions [53, 55], in order to describe shift-invariant couplings using Eq. (1.1).
For this mapping procedure to be possible, constraints must hold on the Ỹ couplings of
Eq. (1.1) [53, 55]. These constraints can also be understood only in terms of the operator
basis of Eq. (1.1), where the shift invariance is never manifest: they allow one to absorb an
axion shift via appropriate field redefinitions [53].

Unfortunately, these conditions are implicit : given a set of couplings, one has to check
whether a set of equations can be solved (we will review this approach in more details
later on). In addition, they do not allow to differentiate between approximate and badly
broken shift symmetries, nor to identify a power counting parameter which suppresses the
breaking. Instead, we will present explicit conditions on the Wilson coefficients of Eq. (1.1),
which can be directly evaluated given a set of couplings and immediately yield an answer.
Therefore, such conditions define quantities which vanish iff the axion shift symmetry is
preserved, and whose size quantifies how badly it is broken, hence those quantities are order
parameters of the breaking of the axion shift symmetry.

This is very similar in spirit to finding the Jarlskog invariant for CP-violation in the
SM [56, 57] instead of scanning possible field redefinitions which absorb unphysical complex
Lagrangian parameters. It may therefore not come as a surprise that our conditions are
expressed in terms of flavor-invariants, namely combinations of Lagrangian parameters
which are left unchanged under flavor field redefinitions. This allows us to encode the
physical collective effects associated to the presence or absence of the axion shift symmetry.

Beyond explicit axion couplings to fermions, the CP-even axion-gauge bosons couplings
are also flavorful when the PQ and the gauge symmetries have mixed anomalies. They do
not break the shift symmetry at the perturbative level, but the gluon coupling does so at
the non-perturbative level, as is crucial in QCD axion solutions to the strong CP problem.
Therefore, we also study the order parameter for this non-perturbative breaking.

The organisation of the paper is as follows. In Section 2, we present flavor-invariant
order parameters for the breaking of the axion shift-symmetry: we first identify conditions
in a given flavor basis, which we then rephrase in a flavor-invariant language. We then
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1 Introduction

Axions, which we take here to be any sort of pseudo-Nambu–Goldstone bosons (pNGBs), are
leading candidates for physics beyond the Standard Model (SM). Indeed, they are predicted
by several well-motivated extensions of the SM, and help solving many issues at once, first
of which the strong-CP [1–8] and dark matter problems [9–11] (see [12] for a recent review
of axion physics). Their pNGB nature is rooted in the presence of an approximate shift
symmetry of the axion field, which we also refer to as a Peccei–Quinn (PQ) symmetry. The
symmetry allows, for instance, QCD axions to receive their mass mostly from QCD or fuzzy
axion dark matter to be ultra-light. These features are inherited from the parametrically-
close presence of a shift symmetric point, and are sharper when we approach it. However,
there are several reasons to study the surroundings of that point and allow for some amount
of shift breaking. First, quantum gravity objects to exact global symmetries and is expected
to generate irreducible corrections to axion potentials and interactions [13–15]. The need
to suppress these gravitational shift-breaking contributions is present in any pNGB model,
and goes under the name of axion quality problem. Second, there are cases where shift-
breaking is a key aspect of model building: for instance, a slight amount of shift-breaking is
responsible for the scanning of the Higgs mass and the resolution of the hierarchy problem
in relaxion models [16]. Therefore, considering shift-breaking ALP interactions seems to be
necessary to make contact with theory and phenomenology.

Consequently, it is important to clearly pinpoint the presence of physical shift-symmetry-
breaking couplings, as well as to quantify their magnitude. The way to do this depends on
the precise framework used to describe the axion couplings. For instance, one could study a
precise UV model containing a pseudoscalar. Instead, we work here at the level of effective
couplings to SM fields, because effective field theories are the appropriate tools to encode
axion interactions with SM particles, in a way which systematically captures and connects
all contributions of an axion to high-energy observables. Indeed, being pNGBs, axions are
generically light, hence they can be produced and contribute to processes at all energy scales
of interest for high-energy physics. In addition, they arise in very diverse UV models, and
can couple to all particles of the SM in all the ways compatible with their pNGB nature.
Therefore, in a bottom-up approach, their couplings are essentially free parameters, up to
the constraints imposed by the pNGB shift symmetry, which is precisely what an EFT
approach encodes. For these reasons, axion EFTs have been systematically studied since
the early days of axion physics [17, 18], and are for instance used in the context of flavor
physics [19–33] or LHC observables [34–52].

In this paper, we carry on the systematic study of the structural properties of axion
EFTs, with a focus on the breaking of axion shift-invariance due to the axion couplings to
SM fermions. We work in a non-redundant operator basis which captures the most generic
leading-order couplings of a light pseudoscalar a to SM fermions, namely

L = LSM +
1

2
(@µa) (@

µ
a) −

a

f
�Q̄ỸuH̃u + Q̄ỸdHd + L̄ỸeHe + h.c.� +O �

1

f2
� . (1.1)

where f is the axion decay constant (we henceforth take f � v, the electroweak scale),
Ỹu,d,e are generic complex matrices in flavor space, H̃ ≡ i�2

H
∗ and LSM contains the SM
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discuss illustrative examples and properties in Section 3: we compute the invariants as-
sociated to specific UV models (Section 3.1), we study the CP-parities of the invariants
(Section 3.2), and we repeat their derivation in the low-energy below the electroweak scale
(Section 3.3), emphasizing the connection to UV completions which realize non-linearly the
electroweak symmetry. In Section 4, we study the renormalization group (RG) running of
the invariants. First, we show in Section 4.1 that the linear space which they generate is
RG-closed, as it should for any complete set of order parameters. We perform a similar
analysis below the electroweak scale in Section 4.2, and show that matching conditions to
a UV theory which realizes the electroweak symmetry linearly are conserved by the RG
flow at leading order. Therefore, they can be used when analyzing low-energy observables,
such as electric dipole moments (EDM). We end in Section 4.3 by exhibiting sum-rules on
the axion-induced RG running in the Standard Model Effective Field Theory (SMEFT),
which can shed light on the axion properties from observing the SMEFT RG runing. Last,
Section 5 discusses the invariant associated to the non-perturbative shift-breaking induced
by the axion-gluon coupling, which receives a contribution from flavored couplings when
navigating between the bases of Eqs. (1.1)-(1.3), as well as its RG running. Finally, we
conclude in Section 6. Some appendices complete the paper. Appendix A presents matrix
relations which we used to construct the invariants. Appendix B discusses the fate of the
axion shift-symmetry at remarkable points of the parameter space of the SM, e.g. where
fermion masses are degenerate or the CKM matrix possesses texture zeros, which require
the use of flavor-invariants non-linear in the axion couplings, discussed in Appendix C.
Eventually, Appendix D gives more details on the RGEs used in Section 5.

2 Flavor-invariant order parameters for the breaking of an axion shift
symmetry

In this section, we ask the following questions: given a set of couplings Ỹu,d,e in the operator
basis of Eq. (1.1), under which conditions do they describe the couplings of a shift-symmetric
axion? And if they do not, which are the order parameters of shift-symmetry breaking?

A partial answer has been long known: when the shift symmetry of the axion is exact,
it is possible to express the axion-fermion interactions using the Lagrangian of Eq. (1.3).
Integrating by parts and using the fermionic equations of motion of the SM, one finds that
the Lagrangian in Eq. (1.1) can arise from a Lagrangian of the form given in Eq. (1.3) when1

∃cQ,u,d,L,e hermitian, such that: Ỹu,d = i(Yu,dcu,d − cQYu,d) , Ỹe = i(Yece − cLYe) . (2.1)

1
Strictly speaking, one should consider that there could exist a flavor transformation which sends Ỹu,d,e

to that in Eq. (2.1) without changing the Yukawa couplings (that happens when those are invariant under

a subset flavor transformations, such as the usual baryon and three lepton numbers). However, explicitly

taking this into account is unnecessary, since it amounts to redefining cL,e,Q,u,d. In addition, although we

do not write the bosonic couplings of the axion to the Higgs or the gauge fields explicitly, we assume that

the basis of Eqs. (1.1)-(1.3) do not contain redundant operators such as @µa �iH
†
D

µ
H + h.c.�, which merely

amounts to shifting the value of the fermionic Wilson coefficients. Finally, shift symmetry correlates the

O(1�f2
) couplings involving two axion fields and those at O(1�f), and similarly for higher-point couplings.

In this paper, we only focus on the constraints at O(1�f).
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13 conditions on Y to recover a shift symmetry (1 CP-even and 12 CP-odd)~

Ỹe,ii, arg(Ỹe,ij Ỹe,ji) (i < j), �Ỹe,ij � and arg(Ỹe,12Ỹe,23Ỹe,31). They amount to 16 independent
quantities, 7 CP-odd and 9 CP-even. In the quark sector, all parameters are physical and
one finds 2 × 9 = 18 CP-even and 2 × 9 = 18 CP-odd couplings in the quark sector. When
the shift-symmetry is exact, we can start in the explicitly shift-invariant basis of Eq. (1.3),
where there are 2 hermitian matrices cL,e in the lepton sector and 3 hermitian matrices
cQ,u,d in the quark sector parametrizing all couplings to fermions. The lepton number
rephasings can be again used to remove two phases3. Furthermore, there exists a freedom
in the derivative basis, associated to the addition of the operator @µaJµ, for any conserved
fermionic current of the SM J

µ [54]. This operator does not induce any physical effect, as
it can be removed (at O(1�f)) thanks to an axion-dependent flavor transformation. Given
that there is an exact baryon number U(1)B symmetry in the quark sector and the U(1)Li

symmetries in the lepton sector, one can remove one diagonal entry of either cQ, cu and
three out of cL,e. This leads us to count 9 CP-even and 4 CP-odd couplings in the lepton
sector, as well as 17 CP-even and 9 CP-odd couplings in the quark sector. Hence, we expect
3 CP-odd relations in the lepton sector together with 9 CP-odd and 1 CP-even relation in
the quark sector that characterize the presence of a shift symmetry in the basis of Eq. (1.1).
We summarize the different countings in Table 1.

Shift-symmetric Wilson coefficients cQ,u,d,L,e Generic Wilson coefficients Ỹu,d,e Number of constraints
CP-even CP-odd CP-even CP-odd CP-even CP-odd

Quark sector 17 9 18 18 1 9
Lepton sector 9 4 9 7 0 3

Table 1: Number of physical coefficients at dimension-five in the EFTs of Eq. (1.3) and Eq. (1.1) (see the

text for details), and numbers of constraints that Ỹu,d,e need to verify to respect an exact shift invariance.

2.2 Flavor invariants in the lepton sector

Let us now derive those relations. We start with the lepton case, where the constraints
are simpler. As already mentioned, there exists a field redefinition which maps Eq. (1.3) to
Eq. (1.1), with [53, 55]

Ỹe = i(Yece − cLYe) (2.3)

in particular. For non-vanishing lepton masses, Ye is invertible and one can solve for ce,

ce = −iY
−1
e
�Ỹe + icLYe� . (2.4)

Imposing that ce should be hermitian leads to constraints, here expressed in a flavor basis
where Ye is diagonal and real,

∃cL hermitian s.t.
Ỹe,ij

ye,i

+
Ỹ
∗
e,ji

ye,j

+ icL,ij �
ye,j

ye,i

−
ye,i

ye,j

� = 0 ∀i, j . (2.5)

When i = j, cL disappears from the expression and one finds constraints on Ỹe, namely that
Ỹe,ii is purely imaginary. The constraints where i < j and i > j are complex conjugates of

3
The rephasing-invariants now read cL�e,ii, �cL�e,ij � (i < j), arg(ce,ijcL,ji) (i < j) and arg(cL,12cL,23cL,31).
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one another, therefore one can focus e.g. on those where i < j, and they can all be solved
by a suitable choice of cL,

cL,ii = 0 , cL,ij,i<j = i
ye,j Ỹe,ij + ye,iỸ

∗
e,ji

y
2
e,j
− y2

e,i

. (2.6)

This defines a hermitian cL, bringing no further constraints. Therefore, there are only 3

conditions on Ỹe in order that it describes a shift-symmetric axion, consistently with our
counting at the beginning of this section. Although derived in a specific flavor basis, the
constraints can be expressed in a flavor-invariant way. Flavor-invariant means that they are
left unchanged by the flavor symmetry, whose spurious action on the Lagrangian parameters
of Eq. (1.2) and Eq. (1.1) are given in Table 2.

SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e
Yu, Ỹu 3 3̄ 1 1 1

Yd, Ỹd 3 1 3̄ 1 1

Ye, Ỹe 1 1 1 3 3̄

Table 2: Flavor transformation properties of the Yukawa matrices treated as spurions

In a flavor-invariant language, the constraints on Ỹe read

ReTr�X0,1,2
e ỸeY

†
e � = 0 , (2.7)

where we define Xe ≡ YeY
†
e . Later on, we also repeatedly use X

u,d
≡ Y

u,d
Y

†
u,d

. This flavor-
invariant expression is important for our purpose, as it identifies the flavor-invariant, hence
physical, order parameters of shift-symmetry breaking in the lepton sector.

2.3 Flavor invariants in the quark sector

In the quark sector, the presence of the doublet Q imposes that we treat up- and down-
quarks simultaneously. The pair of couplings Ỹu,d describes a shift-symmetric axion when

∃cQ,u,d hermitian s.t. Ỹu,d = i(Yu,dcu,d − cQYu,d) . (2.8)

Similarly to what we did above for the leptons, we can solve for cu,d when no mass vanishes,
and the fact that cu,d are hermitian brings the following constraints, expressed in the flavor
basis of Eq. (2.2),

∃cQ hermitian s.t.
�

�
�

�

Ỹu,ij

yu,i
+

Ỹ
∗
u,ji

yu,j
+ icQ,ij �

yu,j

yu,i
−

yu,i

yu,j
�

V
∗
CKM,ki

Ỹ
d,kj

yd,i
+

Ỹ
∗
d,ki

VCKM,kj

yd,j
+ icQ,klV

∗
CKM,ki

VCKM,lj
�
yd,j

yd,i
−

yd,i

yd,j
�

�

�
�

�

= 0 ∀i, j ,

(2.9)
where the sum over k, l is implicit. The i = j equations imply constraints identical to those
found for the leptons,

ReTr�X0,1,2
u,d

Ỹ
u,d

Y
†
u,d
� = 0 . (2.10)
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which implies
− iTr (Xn

x [cQ,Xx]) = Tr �X
n

x �ỸxY
†
x + YxỸ

†
x �� = 0 (2.17)

For x = u, d, e and n = 0,1,2, these equations correspond to the diagonal constraints we
have found above. Additional commutator identities displayed in Appendix A.1 allow us
to derive extra conditions.

2.4 Complete set of linear invariants

Eventually, we consider the following set of flavor-invariants, linear in Ỹu,d,e,

I
(1)
u = ReTr �ỸuY

†
u � , I

(2)
u = ReTr �XuỸuY

†
u � , I

(3)
u = ReTr �X2

uỸuY
†
u � ,

I
(1)
d
= ReTr �Ỹ

d
Y

†
d
� , I

(2)
d
= ReTr �X

d
Ỹ
d
Y

†
d
� , I

(3)
d
= ReTr �X2

d
Ỹ
d
Y

†
d
� ,

I
(1)
ud
= ReTr �X

d
Ỹ
u
Y

†
u
+X

u
Ỹ
d
Y

†
d
� ,

I
(2)
ud,u
= ReTr �X2

u
Ỹ
d
Y

†
d
+ {X

u
,X

d
}Ỹ

u
Y

†
u
� ,

I
(2)
ud,d
= ReTr �X2

d
Ỹ
u
Y

†
u
+ {X

u
,X

d
}Ỹ

d
Y

†
d
� ,

I
(3)
ud
=ReTr �X

d
X

u
X

d
Ỹ
u
Y

†
u
+X

u
X

d
X

u
Ỹ
d
Y

†
d
�

I
(4)
ud
=ImTr��X

u
,X

d
�
2
��X

d
, Ỹ

u
Y

†
u
� − �X

u
, Ỹ

d
Y

†
d
���

(2.18)

for the quarks and

I
(1)
e = ReTr �ỸeY

†
e � , I

(2)
e = ReTr �XeỸeY

†
e � , I

(3)
e = ReTr �X2

e ỸeY
†
e � (2.19)

for the leptons. Those invariants have to vanish for the EFT, in the Yukawa basis of
Eq. (1.1), to be shift-invariant. Their vanishing also provides a sufficient condition. This is
shown by taking advantage of their linearity in Ỹu,d,e, which allows us to use simple linear
algebra: we compute the rank of the transfer matrix TAa which relates the set of invariants
{IA} to the entries {ca} of Ỹu,d,e in a given flavor basis, arranged in a vector:

IA = TAaca , (2.20)

where T only depends on the four-dimensional Yukawas Yu,d,e,, due to the linearity of the
invariants in ca. Therefore, its rank, i.e. the number of conditions associated to the set
of equalities IA = 0 ∀A, can be directly computed. It is found to be 13, namely 10 in the
quark sector and 3 in the lepton sector, which agrees with the number of conditions from
shift-invariance. Therefore, the invariants in Eq. (2.18)-Eq. (2.19) vanish if and only if Ỹu,d,e
describe the couplings of a shift-symmetric axion. We stress that they are algebraic and
explicit: given values for Ỹu,d,e, evaluating those invariants suffices to discriminate between
shift-invariant or shift-breaking couplings.

The set for the quark sector is not minimal as it contains 11 invariants but only captures
10 conditions. This comes from the fact that our invariants can be arranged into a vanish-
ing linear combination5, hence one invariant can be eliminated in favor of the 10 others.

5
The coefficients of an appropriate combination are themselves combinations of products of traces

formed by Xu,d. See Section 4.1 for more details.
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• Lepton sector

• Quark sector

Ii=0

one algebraic relation ⇒ only 10 independent invariants 

4 entangled conditions 

between up and down sectors


⇒ collective nature

However, the presence of cQ in both equations implies further conditions. They can be seen
from first solving for the off-diagonal entries of cQ using the equations involving Ỹu,

cQ,ij,i<j = i
yu,j Ỹu,ij + yu,iỸ

∗
u,ji

y
2
u,j
− y2

u,i

, (2.11)

which can be inserted in the equations for Ỹd to obtain

V
∗
CKM,ki

Ỹ
d,kj

yd,i

+

Ỹ
∗
d,ki

VCKM,kj

yd,j

+ i�

k

�
�
�
�
�
�

cQ,kkV
∗
CKM,ki

VCKM,kj
+ i�

l≠k
yu,lỸu,kl

+ yu,kỸ
∗
u,lk

y
2
u,l
− y2

u,k

V
∗
CKM,ki

VCKM,lj

�
�
�
�
�
�

�
yd,j

yd,i

−
yd,i

yd,j

� = 0

(2.12)
for i < j. For a generic CKM matrix, these three complex equations depend on two free real
parameters, given by the differences4 cQ,kk − cQ,ll, and they yield four independent genuine
constraints on Ỹu,d. We would like to emphasize that these four conditions are collective
effects, namely they only make sense when both the up- and down-type Yukawa couplings
are present. Together with the conditions in Eq. (2.10), we therefore find 10 conditions on
the entries of Ỹu,d (consistently with our earlier counting), 4 of which entangle up- and
down-sectors.

To express the four last quark relations in terms of flavor-invariants, it is helpful to
write the previous relations in a matrix (i.e. flavor-covariant) form. Starting again with
the implicit relation for the shift-symmetric axion Yukawa couplings

Ỹu,d = i(Yu,dcu,d − cQYu,d) , (2.13)

one can solve this equation for cu,d assuming non-vanishing quark masses

cu,d = −iY
−1
u,d
�Ỹu,d + icQYu,d� . (2.14)

When the quark Yukawas Yu,d are full rank matrices, the vanishing of the anti-hermitian
part (c(ah)

u,d
∼ c

u,d
− c

†
u,d
) of cu,d implies the following commutator relation

[cQ,Xx] = i �ỸxY
†
x + YxỸ

†
x � , (2.15)

with Xx = YxY
†
x and x = u, d. We can then find flavor-invariant constraints by exploit-

ing well-known commutator relations. For instance, we can reproduce the constraints in
Eq. (2.10) by using the fact that for any two matrices A,B

Tr (An
[A,B]) = 0 ∀n ∈ Z, (2.16)

4
The r.h.s. of Eq. (2.8) is invariant under cQ,u,d → cQ,u,d + ↵1, so that only differences between the

diagonal entries of cQ can contribute. In Eq. (2.12), the invariance under cQ → cQ +↵1 is ensured by CKM

unitarity. Here 1 corresponds to the only matrix which commutes with both Yu and Yd in the case where

the quark masses and the CKM entries are non-degenerate. Instead, the r.h.s. of Eq. (2.3) is invariant

under cL,e → cL,e + ↵Me, where Me is any matrix which commutes which Ye. When the lepton masses are

non-degenerate, we have Me = diag (me,i ∈ R) in the flavor basis where Ye is diagonal, which explains why

we could choose cL,kk = 0 in Eq. (2.6).
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For the quark sector we find the following set of RGEs

İ
(1)
u = 2�uI

(1)
u + 6I(2)u − 3I(1)

ud
− 2Tr(Xu)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
u = 4�uI

(2)
u + 9I(3)u − 3I(2)

ud,u
− 2Tr�X2

u
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
u = 6�uI

(3)
u + 12I(4)u − 3I

′
u − 2Tr�X

3
u
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(1)
d
= 2�

d
I
(1)
d
+ 6I(2)

d
− 3(1)

ud
+ 2Tr(Xd)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
d
= 4�

d
I
(2)
d
+ 9I(3)

d
− 3I(2)

ud,d
+ 2Tr�X2

d
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
d
= 6�

d
I
(3)
d
+ 12I(4)

d
− 3I

′
d
+ 2Tr�X3

d
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(1)
ud
= 2(�

u
+ �

d
)I
(1)
ud

,

İ
(2)
ud,u
= (4�

u
+ 2�

d
)I
(2)
ud,u
+ 3I

′
u − 6I

(3)
ud
− 2Tr(XuXdXu)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
ud,d
= (4�

d
+ 2�

u
)I
(2)
ud,d
+ 3I

′
d
− 6I(3)

ud
+ 2Tr(XdXuXd)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
ud
= 4(�

u
+ �

d
)I
(3)
ud

,

İ
(4)
ud
= 6��

u
+ �

d
+
1

2
Tr(Xu +Xd)� I

(4)
ud
− ImTr�[Xu,Xd]

3
�(I
(1)
u + I

(1)
d
).

(4.4)

where we have defined �u ≡ −
17
12g

2
1 −

9
4g

2
2 −8g

2
3 +Tr(Xe + 3(Xu +Xd)) and �d ≡ −

5
12g

2
1 −

9
4g

2
2 −

8g23 +Tr(Xe + 3(Xu +Xd)).
Apart from I

(4)
u

, I
(4)
d

which are defined and can be decomposed in the same way as
I
(4)
e we find two more invariants, I ′u = ReTr �(XuXdXu + {Xd

,X
2
u
})ỸuY

†
u +X

3
u
Ỹ
d
Y

†
d
� and

I
′
d

(= I
′
u(u ↔ d)), which can be decomposed into invariants which are already in the set

and therefore vanish iff the couplings come from a shift invariant axion. For details on the
decomposition and the form of I ′

u,d
in terms of invariants in the set, see App. A.2.

We also want to highlight the form of the RGE of the CP even invariant I
(4)
ud

which is
strongly constrained since I

(4)
ud

is the only CP conserving invariant in the set. The invariant
can only flow into itself and a set of CP odd invariants multiplied by the Jarlskog invariant
J4 = ImTr�[Xu,Xd]

3
� where the set of CP odd invariants is further constrained by the

mass dimension of I(4)
ud

. This is exactly what we find in Eq. (4.4).
The minimal set in Eq. (2.21), which gives a full rank transfer matrix even for degenerate

fermion masses, contains the sum of I(3)
u

and I
(3)
d

which evolve by themselves under RG flow
as can be seen in Eq. (4.4). Therefore, the RG evolution will not only generate I

(3)
u
+ I
(3)
d

,
which is contained in the minimal set in Eq. (2.21), but also I

(3)
u
−I
(3)
d

and the set only closes
under RG flow if the difference can be decomposed in terms of invariants in the minimal
set. We indeed find a CP-odd relation including all 11 invariants in the redundant set at
dimension 1210 of a similar form as Eq. (4.3) that allows us to decompose the difference of
I
(3)
u

and I
(3)
d

in terms of the remaining invariants. However, since at dimension 12 many
combinations of the parameters are possible the relation is very complicated and we will
not present it here. With this relation we can always find a minimal set of invariants that

10
Where the dimension is defined such that dim(Xu,d) = 1 as well as dim(Ỹu,dY

†
u,d
) = 1.
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4.1 Renormalization group running above the electroweak scale

To verify the completeness of our set of invariants, we can calculate their RG evolution
under which the set should be closed. Using the RGEs of the components9 [53, 55] of the
invariants yields for the lepton invariants

İ
(1)
e = 2�eI

(1)
e + 6I(2)e + 2Tr(Xe)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
e = 4�eI

(2)
e + 9I(3)e + 2Tr�X2

e
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
e = 6�eI

(3)
e + 12I(4)e + 2Tr�X3

e
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )�

(4.1)

where İ = 16⇡2
µ

dI

dµ
and �e = −

15
4 g

2
1 −

9
4g

2
2 + Tr (Xe + 3(Xu +Xd)). Furthermore, I

(4)
e =

ReTr �X3
e ỸeY

†
e
� is not independent from the invariants in Eq. (2.19), since due to the

Cayley-Hamilton theorem any n × n matrix has to satisfy its characteristic equation and
the nth power of the matrix can be can be expressed in terms of lower powers and traces
of lower powers of the matrix. For a 3 × 3 matrix A, the Cayley-Hamilton theorem has the
form [69]

A
3
= A

2TrA −
1

2
A �(TrA)2 −TrA2

� +
1

6
1 �(TrA)3 − 3TrA2TrA + 2TrA3

� (4.2)

which allows us to reexpress I
(4)
e as follows

I
(4)
e = Tr(Xe)I

(3)
e −

1

2
�(TrXe)

2
−TrX2

e
� I
(2)
e +

1

6
�(TrXe)

3
− 3 TrX2

e TrXe + 2TrX
3
e
� I
(1)
e .

(4.3)
Therefore, the set in Eq. (4.1) does indeed form a closed set of differential equations and
hence the set of lepton invariants in Eq.(2.19) is complete.

9
Ref. [53] restricts to CP-even ALP couplings, which translates into a real condition on Ỹu,d,e. However,

the RGEs presented in Ref. [53] can be directly upgraded to account for generic Ỹ (upon performing the

replacement a
T

s � → (as � − ia�s �)† for any fermion  , in the notation of this reference). This is due to

the fact that a given diagram only depends on either Ỹ or Ỹ
†
, according to whether the axion couples

to a L̄R or R̄L vertex, where L�R refers to left- and right-handed fermions respectively. Therefore, the

presence of a transpose on Ỹ
T
, which comes from the assumption that Ỹ is real, is sufficient to pinpoint the

diagrams which couple to Ỹ
†

and to extract their coefficient. As a consistency check of this replacement,

the resulting RGEs display the appropriate flavor covariance and are consistent with the results of Ref. [55].

In the present paper, we use this upgraded version of the RGEs.
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For the quark sector we find the following set of RGEs
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İ
(4)
ud
= 6��

u
+ �

d
+
1

2
Tr(Xu +Xd)� I

(4)
ud
− ImTr�[Xu,Xd]

3
�(I
(1)
u + I

(1)
d
).

(4.4)

where we have defined �u ≡ −
17
12g

2
1 −

9
4g

2
2 −8g

2
3 +Tr(Xe + 3(Xu +Xd)) and �d ≡ −

5
12g

2
1 −

9
4g

2
2 −

8g23 +Tr(Xe + 3(Xu +Xd)).
Apart from I

(4)
u

, I
(4)
d

which are defined and can be decomposed in the same way as
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u(u ↔ d)), which can be decomposed into invariants which are already in the set

and therefore vanish iff the couplings come from a shift invariant axion. For details on the
decomposition and the form of I ′

u,d
in terms of invariants in the set, see App. A.2.

We also want to highlight the form of the RGE of the CP even invariant I
(4)
ud

which is
strongly constrained since I

(4)
ud

is the only CP conserving invariant in the set. The invariant
can only flow into itself and a set of CP odd invariants multiplied by the Jarlskog invariant
J4 = ImTr�[Xu,Xd]

3
� where the set of CP odd invariants is further constrained by the

mass dimension of I(4)
ud

. This is exactly what we find in Eq. (4.4).
The minimal set in Eq. (2.21), which gives a full rank transfer matrix even for degenerate

fermion masses, contains the sum of I(3)
u

and I
(3)
d

which evolve by themselves under RG flow
as can be seen in Eq. (4.4). Therefore, the RG evolution will not only generate I

(3)
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+ I
(3)
d

,
which is contained in the minimal set in Eq. (2.21), but also I

(3)
u
−I
(3)
d

and the set only closes
under RG flow if the difference can be decomposed in terms of invariants in the minimal
set. We indeed find a CP-odd relation including all 11 invariants in the redundant set at
dimension 1210 of a similar form as Eq. (4.3) that allows us to decompose the difference of
I
(3)
u

and I
(3)
d

in terms of the remaining invariants. However, since at dimension 12 many
combinations of the parameters are possible the relation is very complicated and we will
not present it here. With this relation we can always find a minimal set of invariants that

10
Where the dimension is defined such that dim(Xu,d) = 1 as well as dim(Ỹu,dY

†
u,d
) = 1.
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İ
(2)
ud,u
= (4�

u
+ 2�

d
)I
(2)
ud,u
+ 3I

′
u − 6I

(3)
ud
− 2Tr(XuXdXu)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
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İ
(4)
ud
= 6��

u
+ �

d
+
1

2
Tr(Xu +Xd)� I

(4)
ud
− ImTr�[Xu,Xd]

3
�(I
(1)
u + I

(1)
d
).

(4.4)

where we have defined �u ≡ −
17
12g

2
1 −

9
4g

2
2 −8g

2
3 +Tr(Xe + 3(Xu +Xd)) and �d ≡ −

5
12g

2
1 −

9
4g

2
2 −

8g23 +Tr(Xe + 3(Xu +Xd)).
Apart from I

(4)
u

, I
(4)
d

which are defined and can be decomposed in the same way as
I
(4)
e we find two more invariants, I ′u = ReTr �(XuXdXu + {Xd

,X
2
u
})ỸuY
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4.1 Renormalization group running above the electroweak scale

To verify the completeness of our set of invariants, we can calculate their RG evolution
under which the set should be closed. Using the RGEs of the components9 [53, 55] of the
invariants yields for the lepton invariants
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� is not independent from the invariants in Eq. (2.19), since due to the

Cayley-Hamilton theorem any n × n matrix has to satisfy its characteristic equation and
the nth power of the matrix can be can be expressed in terms of lower powers and traces
of lower powers of the matrix. For a 3 × 3 matrix A, the Cayley-Hamilton theorem has the
form [69]
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Therefore, the set in Eq. (4.1) does indeed form a closed set of differential equations and
hence the set of lepton invariants in Eq.(2.19) is complete.

9
Ref. [53] restricts to CP-even ALP couplings, which translates into a real condition on Ỹu,d,e. However,

the RGEs presented in Ref. [53] can be directly upgraded to account for generic Ỹ (upon performing the

replacement a
T

s � → (as � − ia�s �)† for any fermion  , in the notation of this reference). This is due to

the fact that a given diagram only depends on either Ỹ or Ỹ
†
, according to whether the axion couples

to a L̄R or R̄L vertex, where L�R refers to left- and right-handed fermions respectively. Therefore, the

presence of a transpose on Ỹ
T
, which comes from the assumption that Ỹ is real, is sufficient to pinpoint the

diagrams which couple to Ỹ
†

and to extract their coefficient. As a consistency check of this replacement,

the resulting RGEs display the appropriate flavor covariance and are consistent with the results of Ref. [55].

In the present paper, we use this upgraded version of the RGEs.
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İ
(2)
d
= 4�

d
I
(2)
d
+ 9I(3)

d
− 3I(2)

ud,d
+ 2Tr�X2

d
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
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İ
(4)
ud
= 6��

u
+ �

d
+
1

2
Tr(Xu +Xd)� I

(4)
ud
− ImTr�[Xu,Xd]

3
�(I
(1)
u + I

(1)
d
).

(4.4)

where we have defined �u ≡ −
17
12g

2
1 −

9
4g

2
2 −8g

2
3 +Tr(Xe + 3(Xu +Xd)) and �d ≡ −

5
12g

2
1 −

9
4g

2
2 −

8g23 +Tr(Xe + 3(Xu +Xd)).
Apart from I

(4)
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(4)
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which are defined and can be decomposed in the same way as
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e we find two more invariants, I ′u = ReTr �(XuXdXu + {Xd
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u(u ↔ d)), which can be decomposed into invariants which are already in the set

and therefore vanish iff the couplings come from a shift invariant axion. For details on the
decomposition and the form of I ′

u,d
in terms of invariants in the set, see App. A.2.

We also want to highlight the form of the RGE of the CP even invariant I
(4)
ud

which is
strongly constrained since I

(4)
ud

is the only CP conserving invariant in the set. The invariant
can only flow into itself and a set of CP odd invariants multiplied by the Jarlskog invariant
J4 = ImTr�[Xu,Xd]

3
� where the set of CP odd invariants is further constrained by the

mass dimension of I(4)
ud

. This is exactly what we find in Eq. (4.4).
The minimal set in Eq. (2.21), which gives a full rank transfer matrix even for degenerate

fermion masses, contains the sum of I(3)
u

and I
(3)
d

which evolve by themselves under RG flow
as can be seen in Eq. (4.4). Therefore, the RG evolution will not only generate I

(3)
u
+ I
(3)
d

,
which is contained in the minimal set in Eq. (2.21), but also I

(3)
u
−I
(3)
d

and the set only closes
under RG flow if the difference can be decomposed in terms of invariants in the minimal
set. We indeed find a CP-odd relation including all 11 invariants in the redundant set at
dimension 1210 of a similar form as Eq. (4.3) that allows us to decompose the difference of
I
(3)
u

and I
(3)
d

in terms of the remaining invariants. However, since at dimension 12 many
combinations of the parameters are possible the relation is very complicated and we will
not present it here. With this relation we can always find a minimal set of invariants that

10
Where the dimension is defined such that dim(Xu,d) = 1 as well as dim(Ỹu,dY

†
u,d
) = 1.
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†
u,d
) = 1.

– 18 –

For the quark sector we find the following set of RGEs

İ
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4.1 Renormalization group running above the electroweak scale

To verify the completeness of our set of invariants, we can calculate their RG evolution
under which the set should be closed. Using the RGEs of the components9 [53, 55] of the
invariants yields for the lepton invariants
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� is not independent from the invariants in Eq. (2.19), since due to the

Cayley-Hamilton theorem any n × n matrix has to satisfy its characteristic equation and
the nth power of the matrix can be can be expressed in terms of lower powers and traces
of lower powers of the matrix. For a 3 × 3 matrix A, the Cayley-Hamilton theorem has the
form [69]
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Therefore, the set in Eq. (4.1) does indeed form a closed set of differential equations and
hence the set of lepton invariants in Eq.(2.19) is complete.
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s � → (as � − ia�s �)† for any fermion  , in the notation of this reference). This is due to

the fact that a given diagram only depends on either Ỹ or Ỹ
†
, according to whether the axion couples

to a L̄R or R̄L vertex, where L�R refers to left- and right-handed fermions respectively. Therefore, the

presence of a transpose on Ỹ
T
, which comes from the assumption that Ỹ is real, is sufficient to pinpoint the

diagrams which couple to Ỹ
†

and to extract their coefficient. As a consistency check of this replacement,

the resulting RGEs display the appropriate flavor covariance and are consistent with the results of Ref. [55].

In the present paper, we use this upgraded version of the RGEs.
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İ
(1)
u = 2�uI

(1)
u + 6I(2)u − 3I(1)

ud
− 2Tr(Xu)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
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where we have defined �u ≡ −
17
12g

2
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2 −8g
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3 +Tr(Xe + 3(Xu +Xd)) and �d ≡ −
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1 −
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8g23 +Tr(Xe + 3(Xu +Xd)).
Apart from I

(4)
u

, I
(4)
d

which are defined and can be decomposed in the same way as
I
(4)
e we find two more invariants, I ′u = ReTr �(XuXdXu + {Xd

,X
2
u
})ỸuY

†
u +X

3
u
Ỹ
d
Y

†
d
� and

I
′
d

(= I
′
u(u ↔ d)), which can be decomposed into invariants which are already in the set

and therefore vanish iff the couplings come from a shift invariant axion. For details on the
decomposition and the form of I ′

u,d
in terms of invariants in the set, see App. A.2.

We also want to highlight the form of the RGE of the CP even invariant I
(4)
ud

which is
strongly constrained since I

(4)
ud

is the only CP conserving invariant in the set. The invariant
can only flow into itself and a set of CP odd invariants multiplied by the Jarlskog invariant
J4 = ImTr�[Xu,Xd]

3
� where the set of CP odd invariants is further constrained by the

mass dimension of I(4)
ud

. This is exactly what we find in Eq. (4.4).
The minimal set in Eq. (2.21), which gives a full rank transfer matrix even for degenerate

fermion masses, contains the sum of I(3)
u

and I
(3)
d

which evolve by themselves under RG flow
as can be seen in Eq. (4.4). Therefore, the RG evolution will not only generate I

(3)
u
+ I
(3)
d

,
which is contained in the minimal set in Eq. (2.21), but also I

(3)
u
−I
(3)
d

and the set only closes
under RG flow if the difference can be decomposed in terms of invariants in the minimal
set. We indeed find a CP-odd relation including all 11 invariants in the redundant set at
dimension 1210 of a similar form as Eq. (4.3) that allows us to decompose the difference of
I
(3)
u

and I
(3)
d

in terms of the remaining invariants. However, since at dimension 12 many
combinations of the parameters are possible the relation is very complicated and we will
not present it here. With this relation we can always find a minimal set of invariants that

10
Where the dimension is defined such that dim(Xu,d) = 1 as well as dim(Ỹu,dY

†
u,d
) = 1.
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Ỹ
d
Y

†
d
� and

I
′
d

(= I
′
u(u ↔ d)), which can be decomposed into invariants which are already in the set

and therefore vanish iff the couplings come from a shift invariant axion. For details on the
decomposition and the form of I ′

u,d
in terms of invariants in the set, see App. A.2.

We also want to highlight the form of the RGE of the CP even invariant I
(4)
ud

which is
strongly constrained since I

(4)
ud

is the only CP conserving invariant in the set. The invariant
can only flow into itself and a set of CP odd invariants multiplied by the Jarlskog invariant
J4 = ImTr�[Xu,Xd]

3
� where the set of CP odd invariants is further constrained by the

mass dimension of I(4)
ud

. This is exactly what we find in Eq. (4.4).
The minimal set in Eq. (2.21), which gives a full rank transfer matrix even for degenerate

fermion masses, contains the sum of I(3)
u

and I
(3)
d

which evolve by themselves under RG flow
as can be seen in Eq. (4.4). Therefore, the RG evolution will not only generate I

(3)
u
+ I
(3)
d

,
which is contained in the minimal set in Eq. (2.21), but also I

(3)
u
−I
(3)
d

and the set only closes
under RG flow if the difference can be decomposed in terms of invariants in the minimal
set. We indeed find a CP-odd relation including all 11 invariants in the redundant set at
dimension 1210 of a similar form as Eq. (4.3) that allows us to decompose the difference of
I
(3)
u

and I
(3)
d

in terms of the remaining invariants. However, since at dimension 12 many
combinations of the parameters are possible the relation is very complicated and we will
not present it here. With this relation we can always find a minimal set of invariants that

10
Where the dimension is defined such that dim(Xu,d) = 1 as well as dim(Ỹu,dY
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4.1 Renormalization group running above the electroweak scale

To verify the completeness of our set of invariants, we can calculate their RG evolution
under which the set should be closed. Using the RGEs of the components9 [53, 55] of the
invariants yields for the lepton invariants
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İ
(3)
e = 6�eI

(3)
e + 12I(4)e + 2Tr�X3

e
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )�

(4.1)

where İ = 16⇡2
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Therefore, the set in Eq. (4.1) does indeed form a closed set of differential equations and
hence the set of lepton invariants in Eq.(2.19) is complete.
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İ
(2)
u = 4�uI

(2)
u + 9I(3)u − 3I(2)

ud,u
− 2Tr�X2

u
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
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İ
(3)
ud
= 4(�

u
+ �

d
)I
(3)
ud

,

İ
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İ
(1)
u = 2�uI

(1)
u + 6I(2)u − 3I(1)

ud
− 2Tr(Xu)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
u = 4�uI

(2)
u + 9I(3)u − 3I(2)

ud,u
− 2Tr�X2

u
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
u = 6�uI

(3)
u + 12I(4)u − 3I

′
u − 2Tr�X

3
u
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(1)
d
= 2�

d
I
(1)
d
+ 6I(2)

d
− 3(1)

ud
+ 2Tr(Xd)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
d
= 4�

d
I
(2)
d
+ 9I(3)

d
− 3I(2)

ud,d
+ 2Tr�X2

d
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
d
= 6�

d
I
(3)
d
+ 12I(4)

d
− 3I

′
d
+ 2Tr�X3

d
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(1)
ud
= 2(�

u
+ �

d
)I
(1)
ud

,

İ
(2)
ud,u
= (4�

u
+ 2�

d
)I
(2)
ud,u
+ 3I

′
u − 6I

(3)
ud
− 2Tr(XuXdXu)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
ud,d
= (4�

d
+ 2�

u
)I
(2)
ud,d
+ 3I

′
d
− 6I(3)

ud
+ 2Tr(XdXuXd)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
ud
= 4(�

u
+ �

d
)I
(3)
ud

,

İ
(4)
ud
= 6��

u
+ �

d
+
1

2
Tr(Xu +Xd)� I

(4)
ud
− ImTr�[Xu,Xd]

3
�(I
(1)
u + I

(1)
d
).

(4.4)

where we have defined �u ≡ −
17
12g

2
1 −

9
4g

2
2 −8g

2
3 +Tr(Xe + 3(Xu +Xd)) and �d ≡ −

5
12g

2
1 −

9
4g

2
2 −

8g23 +Tr(Xe + 3(Xu +Xd)).
Apart from I

(4)
u

, I
(4)
d

which are defined and can be decomposed in the same way as
I
(4)
e we find two more invariants, I ′u = ReTr �(XuXdXu + {Xd

,X
2
u
})ỸuY

†
u +X

3
u
Ỹ
d
Y

†
d
� and

I
′
d

(= I
′
u(u ↔ d)), which can be decomposed into invariants which are already in the set

and therefore vanish iff the couplings come from a shift invariant axion. For details on the
decomposition and the form of I ′

u,d
in terms of invariants in the set, see App. A.2.

We also want to highlight the form of the RGE of the CP even invariant I
(4)
ud

which is
strongly constrained since I

(4)
ud

is the only CP conserving invariant in the set. The invariant
can only flow into itself and a set of CP odd invariants multiplied by the Jarlskog invariant
J4 = ImTr�[Xu,Xd]

3
� where the set of CP odd invariants is further constrained by the

mass dimension of I(4)
ud

. This is exactly what we find in Eq. (4.4).
The minimal set in Eq. (2.21), which gives a full rank transfer matrix even for degenerate

fermion masses, contains the sum of I(3)
u

and I
(3)
d

which evolve by themselves under RG flow
as can be seen in Eq. (4.4). Therefore, the RG evolution will not only generate I

(3)
u
+ I
(3)
d

,
which is contained in the minimal set in Eq. (2.21), but also I

(3)
u
−I
(3)
d

and the set only closes
under RG flow if the difference can be decomposed in terms of invariants in the minimal
set. We indeed find a CP-odd relation including all 11 invariants in the redundant set at
dimension 1210 of a similar form as Eq. (4.3) that allows us to decompose the difference of
I
(3)
u

and I
(3)
d

in terms of the remaining invariants. However, since at dimension 12 many
combinations of the parameters are possible the relation is very complicated and we will
not present it here. With this relation we can always find a minimal set of invariants that

10
Where the dimension is defined such that dim(Xu,d) = 1 as well as dim(Ỹu,dY

†
u,d
) = 1.
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4.1 Renormalization group running above the electroweak scale

To verify the completeness of our set of invariants, we can calculate their RG evolution
under which the set should be closed. Using the RGEs of the components9 [53, 55] of the
invariants yields for the lepton invariants

İ
(1)
e = 2�eI

(1)
e + 6I(2)e + 2Tr(Xe)�I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(2)
e = 4�eI

(2)
e + 9I(3)e + 2Tr�X2

e
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )� ,

İ
(3)
e = 6�eI

(3)
e + 12I(4)e + 2Tr�X3

e
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )�

(4.1)

where İ = 16⇡2
µ

dI

dµ
and �e = −

15
4 g

2
1 −

9
4g

2
2 + Tr (Xe + 3(Xu +Xd)). Furthermore, I

(4)
e =

ReTr �X3
e ỸeY

†
e
� is not independent from the invariants in Eq. (2.19), since due to the

Cayley-Hamilton theorem any n × n matrix has to satisfy its characteristic equation and
the nth power of the matrix can be can be expressed in terms of lower powers and traces
of lower powers of the matrix. For a 3 × 3 matrix A, the Cayley-Hamilton theorem has the
form [69]

A
3
= A

2TrA −
1

2
A �(TrA)2 −TrA2

� +
1

6
1 �(TrA)3 − 3TrA2TrA + 2TrA3

� (4.2)

which allows us to reexpress I
(4)
e as follows

I
(4)
e = Tr(Xe)I

(3)
e −

1

2
�(TrXe)

2
−TrX2

e
� I
(2)
e +

1

6
�(TrXe)

3
− 3 TrX2

e TrXe + 2TrX
3
e
� I
(1)
e .

(4.3)
Therefore, the set in Eq. (4.1) does indeed form a closed set of differential equations and
hence the set of lepton invariants in Eq.(2.19) is complete.

9
Ref. [53] restricts to CP-even ALP couplings, which translates into a real condition on Ỹu,d,e. However,

the RGEs presented in Ref. [53] can be directly upgraded to account for generic Ỹ (upon performing the

replacement a
T

s � → (as � − ia�s �)† for any fermion  , in the notation of this reference). This is due to

the fact that a given diagram only depends on either Ỹ or Ỹ
†
, according to whether the axion couples

to a L̄R or R̄L vertex, where L�R refers to left- and right-handed fermions respectively. Therefore, the

presence of a transpose on Ỹ
T
, which comes from the assumption that Ỹ is real, is sufficient to pinpoint the

diagrams which couple to Ỹ
†

and to extract their coefficient. As a consistency check of this replacement,

the resulting RGEs display the appropriate flavor covariance and are consistent with the results of Ref. [55].

In the present paper, we use this upgraded version of the RGEs.
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İ
(3)
e = 6�eI

(3)
e + 12I(4)e + 2Tr�X3

e
� �I

(1)
e + 3(I(1)

d
− I
(1)
u )�

(4.1)

where İ = 16⇡2
µ

dI

dµ
and �e = −

15
4 g

2
1 −

9
4g

2
2 + Tr (Xe + 3(Xu +Xd)). Furthermore, I

(4)
e =

ReTr �X3
e ỸeY
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For the quark sector we find the following set of RGEs
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9
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2 −
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Ỹ
d
Y

†
d
� and

I
′
d

(= I
′
u(u ↔ d)), which can be decomposed into invariants which are already in the set

and therefore vanish iff the couplings come from a shift invariant axion. For details on the
decomposition and the form of I ′

u,d
in terms of invariants in the set, see App. A.2.

We also want to highlight the form of the RGE of the CP even invariant I
(4)
ud

which is
strongly constrained since I

(4)
ud

is the only CP conserving invariant in the set. The invariant
can only flow into itself and a set of CP odd invariants multiplied by the Jarlskog invariant
J4 = ImTr�[Xu,Xd]

3
� where the set of CP odd invariants is further constrained by the

mass dimension of I(4)
ud

. This is exactly what we find in Eq. (4.4).
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Where the dimension is defined such that dim(Xu,d) = 1 as well as dim(Ỹu,dY

†
u,d
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I 0d = I 0u(u $ d)

closed set except for:

but Cayley-Hamilton eq. tells us that these 3 invariants

are actually linear combinations of our original set

 shift-invariance conditions are closed under RG 



Conclusions
EDM constraints don’t exclude all BSM sources of CPV!

• CPV is a collective effect.


• CP is not an accidental symmetry but CPV is accidentally small in SM4.


• Many new possible (large) sources of CPV at dim-6 level. 


• Shift-symmetry of an ALP reduces to Jarlskog-like invariant conditions


• ALP shift-symmetry is surprisingly closely connected to CP-symmetry

23
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BONUS



SM6
Basis of dim-6 operators, aka Warsaw basis

25

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABC
˜GAν
µ GBρ

ν GCµ
ρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

εIJK˜W Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(

H†DµH
)∗ (

H†DµH
)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
˜H)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H ˜GA
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H˜W I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H ˜BµνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH˜W I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur) ˜HGA
µν

QuW (q̄pσµνur)τI ˜H W I
µν

QuB (q̄pσµνur) ˜H Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i( ˜H†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)εjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)εjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [9]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices.
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59 types of operators.

2499 independent Wilson coefficients


(1350 real and 1149 imaginary).
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The Standard Model E!ective Field Theory

Deviations from the dimension-4 SM are parametrized via higher dimensional, gauge invariant 
operators, built with SM field

<latexit sha1_base64="cyQ1ieRTC5RYiHXhlE16s1b3mOY="></latexit>

LSMEFT = L
(4)
SM +

X

n�5

cn
⇤n�4

O
(n)

We will focus on operators of dimension 6 in the Warsaw basis (B. Grzadkowski et al. arXiv:1008.4884)

The Standard Model is generally intended as the renormalizable part of a larger description, that 
includes the e!ects from heavy resonances that cannot be produced on-shell (assuming no new light 
degrees of freedom). 



SM6
Basis of dim-6 operators, aka Warsaw basis

25

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABC
˜GAν
µ GBρ

ν GCµ
ρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

εIJK˜W Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(

H†DµH
)∗ (

H†DµH
)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄pur
˜H)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H ˜GA
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H˜W I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H ˜BµνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH˜W I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur) ˜HGA
µν

QuW (q̄pσµνur)τI ˜H W I
µν

QuB (q̄pσµνur) ˜H Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i( ˜H†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)εjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)εjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [9]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices.
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59 types of operators.

2499 independent Wilson coefficients


(1350 real and 1149 imaginary).

1. How many new sources of CPV?

2. Which ones can appear at BSM leading order (1/Λ2)?


— Not because a parameter is O(1/Λ2) that it can contribute

at leading order in any physical observable!


We’ll see indeed that there are general non-interference theorems —

3. What are the collective breaking patterns 

associated to these new sources of CPV?


4. Where should we look for CPV?
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The Standard Model E!ective Field Theory

Deviations from the dimension-4 SM are parametrized via higher dimensional, gauge invariant 
operators, built with SM field
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LSMEFT = L
(4)
SM +

X

n�5

cn
⇤n�4

O
(n)

We will focus on operators of dimension 6 in the Warsaw basis (B. Grzadkowski et al. arXiv:1008.4884)

The Standard Model is generally intended as the renormalizable part of a larger description, that 
includes the e!ects from heavy resonances that cannot be produced on-shell (assuming no new light 
degrees of freedom). 



Beyond Jarlskog: Building SM6 invariants
Playing with new fermion bilinear interactions first
• In the Warsaw basis, Manohar et al. counted 7 Hermitian (6R+3I) and 12 generic bilinear 

(9R+9I) operators for a total of 129 phases (and 150 real parameters)

26

7 :  2
H

2
D

Q
(1)
Hl

, Q(3)
Hl

(H†
i
 !
D µH)(l̄p�µlr), (H†

i
 !
D

I

µ
H)(l̄p⌧ I�µlr)

QHe (H†
i
 !
D µH)(ēp�µer)

Q
(1)
Hq

, Q(3)
Hq

(H†
i
 !
D µH)(q̄p�µqr), (H†

i
 !
D

I

µ
H)(q̄p⌧ I�µqr)

QHu (H†
i
 !
D µH)(ūp�

µ
ur)

QHd (H†
i
 !
D µH)(d̄p�µdr)

QHud i( eH†
DµH)(ūp�

µ
dr)

6 :  2
XH + h.c.

QeW , QeB

QuG , QuW , QuB

QdG, QdW , QdB

5 :  2
H

3 + h.c.

QeH (H†
H)(l̄perH)

QuH (H†
H)(q̄pur

eH)

QdH (H†
H)(q̄pdrH)

SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e
1 1 1 3 3̄

3 3̄ 1 1 1
3 1 3̄ 1 1
1 1 1 8 + 1 1
1 1 1 1 8 + 1

8 + 1 1 1 1 1
1 8 + 1 1 1 1
1 1 8 + 1 1 1
1 3 3̄ 1 1

SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e
1 1 1 3 3̄

3 3̄ 1 1 1
3 1 3̄ 1 1
1 1 1 8 + 1 1
1 1 1 1 8 + 1

8 + 1 1 1 1 1
1 8 + 1 1 1 1
1 1 8 + 1 1 1
1 3 3̄ 1 1

• In the limit mν=0, lepton numbers in each family are conserved. The WC not invariant 
under these U(1)’s can never show up at linear order in any amplitude: 129 → 102 phases 
(and 150 → 123 real parameters) — see later for more details
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Beyond Jarlskog: Minimal Basis
Transfer matrix of maximal rank

27

0

BB@

I1
I2
. . .
In

1

CCA =
�
TR T I

�

0

BBBBBBBB@

ReC1

ReC2

. . .
ReCp

ImC1

. . .
ImCq

1

CCCCCCCCA

transfer matrix that depends 

only on Yu and Yd



Beyond Jarlskog: Minimal Basis
Transfer matrix of maximal rank

27

0

BB@

I1
I2
. . .
In

1

CCA =
�
TR T I

�

0

BBBBBBBB@

ReC1

ReC2

. . .
ReCp

ImC1

. . .
ImCq

1

CCCCCCCCA

transfer matrix that depends 

only on Yu and Yd

The problem boils down to find what is the maximal rank of the transfer matrix

in general and also when J4=0



Beyond Jarlskog: Minimal Basis
Transfer matrix of maximal rank

28

Seems a simple exercise to compute the rank!

But the invariants are real monsters when computed explicitly in a particular flavour basis


(up to 97≈5x106 of terms for some of the invariants)

Hopeless to analytically compute ranks.


Numerically tricky too → compute ranks for rational matrices
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Beyond Jarlskog: Minimal Basis
Transfer matrix of maximal rank

28
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CP-odd invariants
How many conditions?

Seems a simple exercise to compute the rank!

But the invariants are real monsters when computed explicitly in a particular flavour basis


(up to 97≈5x106 of terms for some of the invariants)

Hopeless to analytically compute ranks.


Numerically tricky too → compute ranks for rational matrices



Beyond Jarlskog: Minimal Basis
Transfer matrix of maximal rank

28
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CP-odd invariants
How many conditions?

Note that there are fewer CP-odd invariants than phases


Not all the phases can appear in observables — not interference theorems

Seems a simple exercise to compute the rank!

But the invariants are real monsters when computed explicitly in a particular flavour basis


(up to 97≈5x106 of terms for some of the invariants)

Hopeless to analytically compute ranks.


Numerically tricky too → compute ranks for rational matrices
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Why don’t some phase contribute?

CP-odd observables at !(1/Λ2)

<latexit sha1_base64="950Fih5YXWg+/aRoTPS1d0uUT7E=">AAACbHicbVFdSxtBFJ1dP5tWjbZvUhgaGhQk7IqoL4FQXwqlYMFEJRuW2dm7cXD2g5k74rLsz/Shf6CP/gFfOhvzoNELFw7nnHvvcCYqpNDoeX8dd2l5ZXVt/UPr46eNza329s5I50ZxGPJc5uoqYhqkyGCIAiVcFQpYGkm4jG7PGv3yDpQWeXaBZQGTlE0zkQjO0FJhO78OTbcfINxjFQs2rffK0ByUIbeN+116Hcbd/iisnh1nv37X9WtzbI3adjQzw+IusFKQNhsDZGafhu2O1/NmRd8Cfw46ZF7nYftfEOfcpJAhl0zrse8VOKmYQsEl1K3AaCgYv2VTGFuYsRT0pJoFU9PvlolpkivbGdIZ+3KiYqnWZRpZZ8rwRi9qDfmeNjaYnE4qkRUGIeN1cycxkmJOm5BpLBRwlKUFjCthn0r5DVOMo/2KVhBDEtgoX4bassH4izG8BaPDnn/cO/xz1Bn8mEe0TnbJN7JHfHJCBuQnOSdDwskDeXKWnRXn0f3i7rpfn62uM5/5TF6V2/0P4dK7ZQ==</latexit>

Yu = diag(yu, yc, yt) Yd = VCKMdiag(yd, ys, yb) Ye = diag(ye, yµ, y⌧ )

Let us see it in a fixed basis, e.g.

In the lepton sector, this choice breaks the  of the free Lagrangian down to the  
described by the transformation 

U(3)L × U(3)e U(1)3

<latexit sha1_base64="9u1LYVzDVa8d+Sa2aSSIr0zopYk="></latexit>

(L, e) ! diag(ei�1 , ei�2 , ei�3)(L, e)

Non-Interference
Conservation of individual family lepton numbers

29
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CP-odd observables at !(1/Λ2)
At dimension 6, operators containing leptons are charged under this symmetry, e.g. 

<latexit sha1_base64="KhwxmarDPVZUgskOX4fRBOU7OO4="></latexit>

OHe =
1

⇤2
CHe,mn (H

†
i
 !
D µH) ēm�

µ
en

<latexit sha1_base64="w/rEt4vxhF4HJYhtdSqYk5iK5CE="></latexit>

CHe,mn =

0

@
c11 c12 c13
c⇤12 c22 c23
c⇤13 c⇤23 c33

1

A U(1)3����!

0

@
c11 c12ei(�2��1) c13ei(�3��1)

c⇤12e
�i(�2��1) c22 c23ei(�3��2)

c⇤13e
�i(�3��1) c⇤23e

�i(�3��2) c33

1

A

• O!-diagonal coe"cients are charged under such U(1)3
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At dimension 6, operators containing leptons are charged under this symmetry, e.g. 
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c11 c12 c13
c⇤12 c22 c23
c⇤13 c⇤23 c33

1
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c11 c12ei(�2��1) c13ei(�3��1)

c⇤12e
�i(�2��1) c22 c23ei(�3��2)

c⇤13e
�i(�3��1) c⇤23e

�i(�3��2) c33

1

A

• O!-diagonal coe"cients are charged under such U(1)3The off-diagonal elements cannot enter into observables at linear order!



Non-Interference
Conservation of individual family lepton numbers

30
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The number of linear CP-odd invariants matches the number of phases uncharged under this 
symmetry…

CP-odd observables at !(1/Λ2)

Minimal sets can be built explicitly 

— not a unique choice —



Minimal Sets for Fermion Bilinear Operators

31

md,i =md,j , for any pair i, j. In addition, setting J4 = 0 through to one of these choices still
leaves a large freedom for the remaining parameters. For instance, one may have ✓ij = 0

and mu,k = mu,l for some i, j, k, l = 1, ...,3. A set of flavor invariants is called a minimal
set if the rank of its transfer matrix corresponds to the number of new sources of CPV in
all possible kinematic situations where J4 = 0 (up to the restriction of non-vanishing quark
masses which we adopt in the main text of this paper and relax in appendix A). We will
come back to this point in section 4.

The transfer matrix T acts on the flavor-space vector made out of real and imaginary
entries of C(6) (the precise order in the labeling as well as the order between real and
imaginary part is unimportant). Note that the rank does not change under the action of
flavor transformations (which reshuffle real and imaginary parts, as well as the entries of
TR�I).

4 Minimal set of CP-odd invariants

In this section, we present the minimal set of leading order CP-odd invariants in SMEFT
at dimension-six, under the aforementioned assumption that all fermion masses are strictly
positive, which has an impact on how many sources of CPV are expected and which invari-
ants correctly capture them. We treat the cases of vanishing masses in appendix A.

4.1 Examples

Let us present some parts of our minimal set of invariants for SMEFT at dimension-six.
As we explained previously, the linearity with respect to the Wilson coefficients of the
dimension-six CP-odd observables allows to treat the different SMEFT operators indepen-
dently. The study of all SMEFT operators proceeds along identical lines, and the full set
of invariants is presented in appendices D and E.

Consider to begin with one of the SMEFT operators which are bilinear in fermion fields
and hermitian, therefore the simplest non-trivial flavor structure. Invariants under unitary
groups with bi-fundamental representations must feature the invariant tensor �a

b
, therefore

they correspond to linear combinations of traces of products of matrices, arranged so that
indices of a given fundamental representation and its conjugate are contracted in the trace,
as seen for instance in Eqs. (1.7-1.8). In addition, there are relations between powers of
3 × 3 matrices, and/or between their traces, derived from the Cayley-Hamilton theorem,
which reduce the candidate invariants to a finite set. We explicitly present such properties
in appendix B. Defining Xu ≡ YuY

†
u , and similarly for Xd, the outcome is that relevant

single-trace invariants linear in a bilinear SMEFT coefficient C all read13

Labcd(C̃) ≡ ImTr�Xa

uX
b

d
Xc

uX
d

d
C̃� , with a, b, c, d = 1,2 and a ≠ c, b ≠ d , (4.1)

where C̃ = C,CY †
q=u,d,e or Yq CY †

q , depending on the chiral structure of the operator under
study (see below for explicit formulae). We first choose C = CHu for definiteness, and we
find that the following property holds:

13As we will see, those structures are also the only ones needed for 4-Fermi operators.
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Wilson coefficient Number of phases Minimal set

Ce ≡

�����������������

CeH

CeW

CeB

3 � L0 �CeY
†
e � L1 �CeY

†
e � L2 �CeY

†
e � �

Cu ≡

�������������������������

CuH

CuG

CuW

CuB

9

�����������������

L0000 �CuY
†
u � L1000 �CuY

†
u � L0100 �CuY

†
u �

L1100 �CuY
†
u � L0110 �CuY

†
u � L2200 �CuY

†
u �

L0220 �CuY
†
u � L1220 �CuY

†
u � L0122 �CuY

†
u �

�����������������

Cd ≡

�������������������������

CdH

CdG

CdW

CdB

Same with CuY
†
u → C

d
Y

†
d

CHud Same with CuY
†
u → YuCHud

Y
†
d

C
(1,3)
HL

, C
He

0 �

C
(1,3)
HQ

3

� L1100 �C(1,3)HQ
� L2200 �C(1,3)HQ

� L1122 �C(1,3)HQ
� �

CHu Same with C
(1,3)
HQ

→ YuCHu
Y

†
u

CHd Same with C
(1,3)
HQ

→ Y
d
C
Hd

Y
†
d

Table 10: Minimal sets of CP-odd flavor invariants for all SMEFT dimension-six Wilson coefficients
associated to operators bilinear in fermion fields. We recall that Xu ≡ YuY

†
u , and similarly for down quarks

or electrons. We also recall the definition in Eq. (4.1). We also defined for the leptons
La(C̃) ≡ ImTr�Xa

e C̃� , with a = 1,2 .

which may yield a more natural description of some non-perturbative contributions of the
strong interactions to CP-odd observables.23 Those invariants would not have the single
trace structure which we used to build our sets of invariants, since �

n

m is U(3)5-invariant,
while ✓QCD is charged under some abelian parts of the flavor group. Therefore, it will
rather offset the abelian charges of determinant-like SU(3)5-invariants. For instance, for

23In the perturbative phase of QCD, the magnitude of such invariants is expected to be suppressed by an
additional non-perturbative factor e

−8⇡2�g2s . For low-energy observables, such as the EDMs of the neutron
[75] and of the electron [76, 77], no further suppression would be needed.
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 One explicit basis of invariants 



4-Fermi Operators
4F invariants from bilinear invariants

32

• In the Warsaw basis, Manohar et al. also counted the free-parameters in 4F operators: 
1014 phases. As before, not all these phases can show up at leading order when the 
neutrino masses are taken to vanish: only 597 survive (adding to the 102 bilinear ones and 
J4 for a total of 700 phases)

CQuQd Q̄uQ̄d
SU(3)Q SU(3)u SU(3)d
1 + 3 + 6 3̄ 3̄

• One can build two types of 4F-invariants out of the bilinear invariants:
B-type

Im
⇣
MdH

il
MuH

†

jk
CQuQd

ijkl

⌘
A-type

Im
⇣
MuH

ij
MdH

kl
CQuQd

ijkl

⌘

Im Tr
�
MuHCuH

�
matrices built out of Yu and Yd that to form bilinear invariants, e.g., 

e.g.

An explicit basis of 597 invariants for the 4F operators can be built (see bonus slides)



4-Fermi Operators
# independent invariants at O(λn) for some 4F operators

33

Taylor rank at each order in � for all 4-Fermi operators
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Figure 3: Number of independent invariants from the maximal (blue step-wise line) and the minimal
(dark yellow step-wise line) sets, denoted as Taylor rank rn in the text, at each order n in the � expansion
for all bilinear operators. At a fixed order in �, the top x-axis shows the value of ⇤ for which an invariant
appearing at such order would be comparable to J4, assuming it scales as v2�⇤2, with v ∼ 246 GeV the vev

of the Higgs field. The vertical dashed line marks the order �36 (corresponding to ⇤ = v, as indicated)
where the SM4 J4 shows up, while the horizontal lines mark the values for the maximal and minimal rank,
also labeled on the right y-axis. Each plot corresponds to a group of operators in Table 3 (excluding those

with 0 maximal and minimal sets), of which only one is chosen as a representative.
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Taylor rank at each order in � for all operators

(a) Bilinears

747

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400
1010 105 100 10-5 10-10 10-15

597

1344

λ order n

Ta
yl
or

-r
an
k
r λ
(n
)

Λ [GeV]

J4

min rank

max rank

(b) 4-Fermi

(c) Total

Figure 4: Number of independent invariants from the maximal (blue step-wise line) and the minimal
(dark yellow step-wise line) sets, denoted as Taylor rank rn in the text, at each order n in the � expansion
for the sum of all bilinear operators (a), 4-Fermi operators (b), and all operators (c). At a fixed order in

�, the top x-axis shows the value of ⇤ for which an invariant appearing at such order would be
comparable to J4, assuming it scales as v2�⇤2. The vertical dashed line marks the order �36

(corresponding to ⇤ = v, as indicated) where the SM4 J4 shows up, while the horizontal lines mark the
values for the maximal and minimal rank, also labeled on the right y-axis. Finally, in each plot we

highlighted the sources of opportunistic CPV as the difference between maximal and minimal ranks.

5 Flavor scenarios

In the previous section, we explained how to compute the Taylor ranks of a set of CP-odd
invariants associated to a dimension-six operator. In order to do this, an understanding of
the �-scaling of the building blocks of each invariant was needed. For the Yukawa matrices,
this is done by means of the parametrization in Eqs. (2.5)-(2.11). On the other hand, the
flavor structure of the Wilson coefficients is obviously unknown, as it can only be specified
when measured or when a specific UV model is selected. To get the results displayed in
Figures 2, 3, and 4, we adopted an anarchic assumption, where all coefficient entries are
assumed to be O(1). However, different ansatzes, appropriately justified, can be made on
such coefficients. In the next sections, we consider four of these scenarios, starting from
the anarchic one used in the results above. We first summarize their characteristics, and,
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inv. under U(1)Li
−U(1)Lj

Type of op. # of ops # real # im. # real # im.

bi
lin

ea
rs Yukawa 3 27 27 21 21

Dipoles 8 72 72 60 60

current-current 8 51 30 42 21

all bilinears 19 150 129 123 102

4-
Fe

rm
i

LLLL 5 171 126 99 54

RRRR 7 255 195 186 126

LLRR 8 360 288 246 174

LRRL 1 81 81 27 27

LRLR 4 324 324 216 216

all 4-Fermi 25 1191 1014 774 597

all 1341 1143 897 699

Table 2: Number of flavorful real and imaginary parameters in SMEFT at dimension-six (see Tables 7
and 8 for the explicit forms of the operators). The first double column counts the number of physical
parameters, the second one (highlighted in gray) counts those which are also primary (see the text).

Which flavor invariants vanish iff CP is conserved at leading order in SMEFT? We
call such a set of CP-odd invariants of minimal cardinality a minimal set.

The notion of minimal cardinality implies that there are no redundancy: the vanishing
of each invariant in a minimal set provides an independent condition. The number of
invariants in a minimal set must be larger or equal than the number of new primary sources
of CPV14. In the case of the SMEFT at O(1�⇤2), we find the non-trivial result that the
two numbers agree for all operators (see below).

Before going further, let us discuss one subtlety associated to our definition of a minimal
set of CP-odd flavor-invariants, which has to do with the parameter space considered. In
the way our definition is stated, it suggests that one aims at characterizing CP-conserving
points for all possible choices of parameters, i.e. quark masses as well as mixing angles and
the CKM phase �CKM. However, one could also try to characterize CP-conserving points
within a given parameter subspace, for instance for values of the quark masses which are
non-vanishing. This is the choice we make in the main body of this paper: we build flavor
invariants which vanish iff CP is conserved at leading order in SMEFT under the assumption

14It may need to be larger: as we detail below, we count an invariant as independent if there exists
at least one point in parameter space (in terms of fermion masses or CKM entries) where it cannot be
expressed in terms of other invariants of the set.
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# parameters for the different types of operators

where ⇠q1 = ⇠q3 and arbitrary ⇠q2 for the texture of Eq. (4.13), and similarly for other
textures. Therefore, for the texture of Eq. (4.13), only CHu,13 is primary and CHu only
provides one primary source of CPV, ImCHu,13.17 Thus, in this case, a single invariant in
the minimal set for CHu is sufficient.

This exercise can be performed for all non-generic cases for the CKM matrix and for
all Wilson coefficients. This results in a set of conditions for CP conservation at leading
order, whose number is in one-to-one correspondence to the number of independent CP-odd
invariants in a minimal set. As we just saw, those numbers depend on the flavor symmetry
of the SM4 Lagrangian, and are given for all SMEFT operators in Table 4.

Bilinears 4-Fermi

Flavour symmetries

of the quark sector of the SM

CeH

CeW

CeB

CuH

CuG

CuW

CuB

CdH

CdG

CdW

CdB

CHud

C
1,3
HL

CHe

C
1,3
HQ

CHu

CHd

CLL

Cee

CLe

C
1,3
QQ

Cuu

Cdd

C
1,3
LQ

CQe

CLu

Ceu

CLd

Ced

C
1,8
ud

C
1,8
Qu

C
1,8
Qd

CLedQ

C
1,3
LeQu

C
1,8
QuQd

U(1)B 3 9 0 3 0 3 18 9 36 27 81

U(1)2 3 5 0 1 0 3 5 3 12 15 33

U(1)3 3 3 0 0 0 3 0 0 3 9 15

U(2) ×U(1) 3 2 0 0 0 3 0 0 1 6 7

U(3) 3 1 0 0 0 3 0 0 0 3 2

Two degenerate electron-type leptons ×2
3 ×1 ×1 ×2

3 ×1 ×2
3 ×1 ×2

3 ×1
All electron-type leptons degenerate ×1

3 ×1 ×1 ×1
3 ×1 ×1

3 ×1 ×1
3 ×1

Table 4: Numbers of new primary sources of CPV contained in each dimension-six SMEFT coefficient, for
each of the possible flavor groups of the quark sector of the SM4 at dimension-4 (restricting to situations

where fermion masses are non-vanishing). The last two rows indicate which multiplicative coefficient
should be applied to all numbers of the same column for special values of the electron-type lepton masses.

We can now come back to the statement that the set of invariants in Eq. (4.4) is not
a satisfying one for CHu. As seen in Table 4, all its off-diagonal entries are primary when
mt =mc, and all their imaginary parts violate CP (in an appropriate basis), hence we need
three independent invariants to capture the conditions for CP conservation.

Let us stress again at this point that the fact that we found a set of invariants of
minimal size (i.e. three invariants for the case of CHu) which captures the necessary and
sufficient conditions for CP conservation in all non-generic cases listed in Table 3 is a non-
trivial result. Nevertheless, it turns out that it can be done for all SMEFT coefficients at
dimension-six, as we explicitly showed.

17One can construct non-linear invariant quantities from CHu,12�23, an example being CHu,12C
∗
Hu,23. At

leading order, however, CHu,12�23 cannot contribute linearly to observables.
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• As noticed already in SM4, degenerate spectra (equal mass, zero or maximal mixing angle) 
have different CPV counting than generic case

maximal rank of transfer matrix

for different flavour symmetries of the Yukawa matrices

Parameter values
Flavor symmetries of
the SM4 Lagrangian

mu ≠mc ≠mt

md ≠ms ≠mb

Generic VCKM U(1)B
�VCKM,i0j0 � = 1 , VCKM,ij0 = VCKM,i0j = 0

i ≠ i0, j ≠ j0
U(1)2

�VCKM,i1j1 � = �VCKM,i2j2 � = �VCKM,i3j3 � = 1 for
i1 ≠ i2 ≠ i3
j1 ≠ j2 ≠ j3

VCKM,ij = 0 elsewhere

U(1)3

mu ≠mc =mt

md ≠ms ≠mb

Generic VCKM (see Eq. (4.16)) U(1)B
�VCKM,i0j0 � = 1 , VCKM,ij0 = VCKM,i0j = 0

i ≠ i0, j ≠ j0
U(1)2

�VCKM,i1j1 � = �VCKM,i2j2 � = �VCKM,i3j3 � = 1 for
i1 ≠ i2 ≠ i3
j1 ≠ j2 ≠ j3

VCKM,ij = 0 elsewhere

U(1)3

mu ≠mc ≠mt

md =ms ≠mb

Same as the previous case with VCKM ↔ V
†
CKM

mu ≠mc =mt

md =ms ≠mb

Generic VCKM U(1)2

�VCKM,11� = �VCKM,22� = �VCKM,33� = 1

VCKM,ij = 0 elsewhere
U(1)3

�VCKM,13� = �VCKM,22� = �VCKM,31� = 1

VCKM,ij = 0 elsewhere
U(2) ×U(1)

mu =mc =mt

md ≠ms ≠mb
U(1)3

md =ms ≠mb
U(2) ×U(1)

md =ms =mb
U(3)

md =ms =mb

mu ≠mc ≠mt
U(1)3

mu ≠mc =mt
U(2) ×U(1)

mu =mc =mt
U(3)

Table 3: Flavor symmetry of the SM4 Lagrangian as a function of special values for quark masses
(assumed to be non-vanishing, see appendix A for the general case) and entries of the CKM matrix.

Conditions on the right are understood to be imposed on top of those on their left. Here only some of the
possible combinations of mass degeneracies are treated. The other mass degeneracies lead to the same
flavor symmetries provided the corresponding non-generic VCKM are multiplied by appropriate matrices

exchanging flavor labels (see footnote 18).

When the baryon or lepton numbers are the only flavor symmetries at dimension-four
(in the up or down basis), all imaginary parts of the Wilson coefficients at dimension-six
in the quark sector (and in the lepton sector, all imaginary parts which are not charged
under the lepton numbers) can interfere with the SM4. Instead, when the flavor symme-
try increases to U(1)2, several SMEFT coefficients become secondary. For instance, CHu

transforms as (in the up or down bases)

CHu,ij → e
i�⇠qj−⇠qi�CHu,ij , (4.17)
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where ⇠q1 = ⇠q3 and arbitrary ⇠q2 for the texture of Eq. (4.13), and similarly for other
textures. Therefore, for the texture of Eq. (4.13), only CHu,13 is primary and CHu only
provides one primary source of CPV, ImCHu,13.17 Thus, in this case, a single invariant in
the minimal set for CHu is sufficient.

This exercise can be performed for all non-generic cases for the CKM matrix and for
all Wilson coefficients. This results in a set of conditions for CP conservation at leading
order, whose number is in one-to-one correspondence to the number of independent CP-odd
invariants in a minimal set. As we just saw, those numbers depend on the flavor symmetry
of the SM4 Lagrangian, and are given for all SMEFT operators in Table 4.

Bilinears 4-Fermi

Flavour symmetries

of the quark sector of the SM

CeH

CeW

CeB

CuH

CuG

CuW

CuB

CdH

CdG

CdW

CdB

CHud

C
1,3
HL

CHe

C
1,3
HQ

CHu

CHd

CLL

Cee

CLe

C
1,3
QQ

Cuu

Cdd

C
1,3
LQ

CQe

CLu

Ceu

CLd

Ced

C
1,8
ud

C
1,8
Qu

C
1,8
Qd

CLedQ

C
1,3
LeQu

C
1,8
QuQd

U(1)B 3 9 0 3 0 3 18 9 36 27 81

U(1)2 3 5 0 1 0 3 5 3 12 15 33

U(1)3 3 3 0 0 0 3 0 0 3 9 15

U(2) ×U(1) 3 2 0 0 0 3 0 0 1 6 7

U(3) 3 1 0 0 0 3 0 0 0 3 2

Two degenerate electron-type leptons ×2
3 ×1 ×1 ×2

3 ×1 ×2
3 ×1 ×2

3 ×1
All electron-type leptons degenerate ×1

3 ×1 ×1 ×1
3 ×1 ×1

3 ×1 ×1
3 ×1

Table 4: Numbers of new primary sources of CPV contained in each dimension-six SMEFT coefficient, for
each of the possible flavor groups of the quark sector of the SM4 at dimension-4 (restricting to situations

where fermion masses are non-vanishing). The last two rows indicate which multiplicative coefficient
should be applied to all numbers of the same column for special values of the electron-type lepton masses.

We can now come back to the statement that the set of invariants in Eq. (4.4) is not
a satisfying one for CHu. As seen in Table 4, all its off-diagonal entries are primary when
mt =mc, and all their imaginary parts violate CP (in an appropriate basis), hence we need
three independent invariants to capture the conditions for CP conservation.

Let us stress again at this point that the fact that we found a set of invariants of
minimal size (i.e. three invariants for the case of CHu) which captures the necessary and
sufficient conditions for CP conservation in all non-generic cases listed in Table 3 is a non-
trivial result. Nevertheless, it turns out that it can be done for all SMEFT coefficients at
dimension-six, as we explicitly showed.

17One can construct non-linear invariant quantities from CHu,12�23, an example being CHu,12C
∗
Hu,23. At

leading order, however, CHu,12�23 cannot contribute linearly to observables.
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Wilson coefficient Number of phases Minimal set

CLL, Cee 0 �

CLe 3 � B
0
0 (CLLẽẽ) B1

0 (CLLẽẽ) B2
0 (CLLẽẽ) �

CQe

9

�����������������

A
1100
0 (CQQee) A

1100
1 (CQQee) A

1100
2 (CQQee)

A
2200
0 (CQQee) A

2200
1 (CQQee) A

2200
2 (CQQee)

A
1122
0 (CQQee) A

1122
1 (CQQee) A

1122
2 (CQQee)

�����������������

Ced

Same with CQQee → Ceed̃d̃ (exchanging upper
with lower indices and with Ye ↔ Y

†
e )

Ceu

Same with CQQee → Ceeũũ (exchanging upper
with lower indices and with Ye ↔ Y

†
e )

C
(1,3)
LQ

�����������������

A
0
1100 �C

(1,3)
LQ
� A

1
1100 �C

(1,3)
LQ
� A

2
1100 �C

(1,3)
LQ
�

A
0
2200 �C

(1,3)
LQ
� A

1
2200 �C

(1,3)
LQ
� A

2
2200 �C

(1,3)
LQ
�

A
0
1122 �C

(1,3)
LQ
� A

1
1122 �C

(1,3)
LQ
� A

2
1122 �C

(1,3)
LQ
�

�����������������
CLd Same with C

(1,3)
LQ

→ C
LLd̃d̃

CLu Same with C
(1,3)
LQ

→ CLLũũ

C
(1,3)
LeQu

27

���������������������������������������������������������������

A
0
0000 (CLẽQũ) A

1
0000 (CLẽQũ) A

2
0000 (CLẽQũ)

A
0
1000 (CLẽQũ) A

1
1000 (CLẽQũ) A

2
1000 (CLẽQũ)

A
0
0100 (CLẽQũ) A

1
0100 (CLẽQũ) A

2
0100 (CLẽQũ)

A
0
1100 (CLẽQũ) A

1
1100 (CLẽQũ) A

2
1100 (CLẽQũ)

A
0
0110 (CLẽQũ) A

1
0110 (CLẽQũ) A

2
0110 (CLẽQũ)

A
0
2200 (CLẽQũ) A

1
2200 (CLẽQũ) A

2
2200 (CLẽQũ)

A
0
0220 (CLẽQũ) A

1
0220 (CLẽQũ) A

2
0220 (CLẽQũ)

A
0
1220 (CLẽQũ) A

1
1220 (CLẽQũ) A

2
1220 (CLẽQũ)

A
0
0122 (CLẽQũ) A

1
0122 (CLẽQũ) A

2
0122 (CLẽQũ)

���������������������������������������������������������������
CLedQ Same with CLẽQũ → C

Lẽd̃Q
and A

a

bcde
→ A

a

edcb

Table 11: Minimal sets of CP-odd flavor invariants for all the SMEFT dimension-six Wilson coefficients
associated to operators quartic in fermion fields (continued in Tables 12, 13). We recall that Xu ≡ YuY

†
u ,

and similarly for down quarks or electrons. We use the generalized traces introduced in Eq. (4.8), as well
as the compact notations in Eqs. (4.9)-(4.10). We also defined for the leptons A

a

b (C) ≡ TrA �X
a

e ,X
b

e ,C�,
B

a

b (C) ≡ TrB �X
a

e ,X
b

e ,C� with a, b = 1,2 , Af

bcde
(C) ≡ TrA �X

f

e ,X
b

uX
c

dX
d

uX
e

d ,C�,
A

abcd

f (C) ≡ TrA �X
a

uX
b

dX
c

uX
d

d , �Y
†
e Ye�

f
,C� and B

f

bcde
(C) ≡ TrB �X

f

e ,X
b

uX
c

dX
d

uX
e

d ,C�

the operator CQuQd, we can form

Im �e−i✓QCD✏
ABC

✏
abc

✏
DEF

✏
def

Yu,AaYu,BbCQuQd,CcDdYd,EeYd,Ff� =
= �up basis4ybysytycImCQuQd,1111 + ... .
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Wilson coefficient Number of phases Minimal set

C
(1,3)
QQ

18

���������������������������

A
0000
1100 (CQQQQ) A1000

1100 (CQQQQ) A0100
1100 (CQQQQ)

A
0000
2200 (CQQQQ) A1100

1100 (CQQQQ) A1000
2200 (CQQQQ)

A
0100
2200 (CQQQQ) A0000

1122 (CQQQQ) A1100
2200 (CQQQQ)

A
1200
2100 (CQQQQ) A1000

1122 (CQQQQ) A0100
1122 (CQQQQ)

A
1100
1122 (CQQQQ) A2200

2200 (CQQQQ) B0000
1100 (CQQQQ)

B
0000
2200 (CQQQQ) B0000

1122 (CQQQQ) A2200
1122 (CQQQQ)

���������������������������

Cuu 18

���������������������������

A
0000
1100 (Cuuũũ) A1000

1100 (Cũũũũ) A0100
1100 (Cũũũũ)

A
0000
2200 (Cuuũũ) A1100

1100 (Cũũũũ) A0200
1100 (Cũũũũ)

A
0100
2200 (Cũũũũ) A0000

1122 (Cuuũũ) A1100
2200 (Cũũũũ)

A
1000
1122 (Cũũũũ) A0100

1122 (Cũũũũ) A1100
0122 (Cũũũũ)

A
1200
2200 (Cũũũũ) B0000

1100 (Cuũũu) B0100
1100 (Cũũũũ)

B
0200
2100 (Cũũũũ) A1200

1122 (Cũũũũ) B1000
1200 (Cũũũũ)

���������������������������

Cdd 18

���������������������������

A
0000
1100 �Cddd̃d̃

� A
1000
1100 �Cd̃d̃d̃d̃

� A
0000
2200 �Cddd̃d̃

�
A

1100
2000 �Cd̃d̃d̃d̃

� A
0100
1100 �Cd̃d̃d̃d̃

� A
1100
1100 �Cd̃d̃d̃d̃

�
A

1000
2200 �Cd̃d̃d̃d̃

� A
0000
1122 �Cddd̃d̃

� A
1100
2200 �Cd̃d̃d̃d̃

�
A

1000
1122 �Cd̃d̃d̃d̃

� A
1100
1220 �Cd̃d̃d̃d̃

� A
1200
2110 �Cd̃d̃d̃d̃

�
A

2100
0122 �Cd̃d̃d̃d̃

� A
2200
1220 �Cd̃d̃d̃d̃

� B0000
1100 �Cdd̃d̃d

�
B

0100
2100 �Cd̃d̃d̃d̃

� B1000
1100 �Cd̃d̃d̃d̃

� B1200
2000 �Cd̃d̃d̃d̃

�

���������������������������

C
(1,8)
Qu

36

�������������������������������������������������������������

A
1100
0000 (CQQuu) A0000

1100 (CQQũũ) A1000
1100 (CQQũũ)

A
1100
0100 (CQQũũ) A1100

1100 (CQQũũ) A1100
0110 (CQQũũ)

A
1200
1000 (CQQũũ) A2200

0000 (CQQuu) A1100
2200 (CQQũũ)

A
1100
0220 (CQQũũ) A2200

0110 (CQQũũ) A1100
1122 (CQQũũ)

A
1200
1220 (CQQũũ) A2200

1122 (CQQũũ) B0000
0100 (CQQũũ)

B
0000
1000 (CQQũũ) B0000

0110 (CQQũũ) B0000
0220 (CQQũũ)

B
0000
1100 (CQQũũ) B0000

0221 (CQQũũ) B0100
1000 (CQQũũ)

B
0100
1100 (CQQũũ) B0100

2200 (CQQũũ) B0100
2110 (CQQũũ)

B
0200
2000 (CQQũũ) B0200

2100 (CQQũũ) B0200
2110 (CQQũũ)

B
1000
0110 (CQQũũ) B1000

0220 (CQQũũ) B1000
0221 (CQQũũ)

B
1100
1100 (CQQũũ) B1100

2200 (CQQũũ) B1200
2100 (CQQũũ)

B
1200
2210 (CQQũũ) B2100

1200 (CQQũũ) B0110
0221 (CQQũũ)

�������������������������������������������������������������

C
(1,8)
Qd

36

�������������������������������������������������������������

A
1100
0000 �CQQdd� A0000

1100 (CQQd̃d̃) A1000
1100 (CQQd̃d̃)

A
1100
1000 (CQQd̃d̃) A2200

0000 �CQQdd� A0100
1100 (CQQd̃d̃)

A
0000
2200 (CQQd̃d̃) A1100

1100 (CQQd̃d̃) A1100
2100 (CQQd̃d̃)

A
1122
0000 �CQQdd� A0000

1122 (CQQd̃d̃) A1100
2200 (CQQd̃d̃)

A
1100
0220 (CQQd̃d̃) A1000

1122 (CQQd̃d̃) A1100
1122 (CQQd̃d̃)

A
2100
0122 (CQQd̃d̃) B0000

0100 (CQQd̃d̃) B0000
1000 (CQQd̃d̃)

B
0000
0110 (CQQd̃d̃) B0000

0220 (CQQd̃d̃) B0000
1100 (CQQd̃d̃)

B
0000
0221 (CQQd̃d̃) B0000

2200 (CQQd̃d̃) B0000
2210 (CQQd̃d̃)

B
0100
1000 (CQQd̃d̃) B0100

0120 (CQQd̃d̃) B0100
1100 (CQQd̃d̃)

B
0100
2210 (CQQd̃d̃) B1000

0110 (CQQd̃d̃) B1000
0220 (CQQd̃d̃)

B
1000
0221 (CQQd̃d̃) B1000

1200 (CQQd̃d̃) B1100
2200 (CQQd̃d̃)

B
1100
2210 (CQQd̃d̃) B1200

2100 (CQQd̃d̃) B2100
2211 (CQQd̃d̃)

�������������������������������������������������������������

Table 12: Continuation of Table 11
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Wilson coefficient Number of phases Minimal set

C
(1,8)
ud

36

���������������������������������������������������������������������

A
1100
0000 (Cũũdd) A

0000
1100 �Cuud̃d̃

� A
1000
1100 �Cũũd̃d̃

�
A

1100
1000 �Cũũd̃d̃

� A
2200
0000 (Cũũdd) A

0100
1100 �Cũũd̃d̃

�
A

0000
2200 �Cuud̃d̃

� A
1100
1100 �Cũũd̃d̃

� A
1100
0110 �Cũũd̃d̃

�
A

1000
2200 �Cũũd̃d̃

� A
1100
2100 �Cũũd̃d̃

� A
1122
0000 (Cũũdd)

A
0100
2200 �Cũũd̃d̃

� A
0000
1122 �Cuud̃d̃

� A
1100
2200 �Cũũd̃d̃

�
A

1000
1122 �Cũũd̃d̃

� A
0100
1122 �Cũũd̃d̃

� A
1100
1122 �Cũũd̃d̃

�
B

0000
0100 �Cũũd̃d̃

� B0000
1000 �Cũũd̃d̃

� B0000
0110 �Cũũd̃d̃

�
B

0000
1100 �Cũũd̃d̃

� B0000
0221 �Cũũd̃d̃

� B0000
2200 �Cũũd̃d̃

�
B

0100
1000 �Cũũd̃d̃

� B0100
0110 �Cũũd̃d̃

� B0100
2110 �Cũũd̃d̃

�
B

0200
2000 �Cũũd̃d̃

� B0200
2110 �Cũũd̃d̃

� B1000
0110 �Cũũd̃d̃

�
B

1000
0221 �Cũũd̃d̃

� B1000
1200 �Cũũd̃d̃

� B1100
2200 �Cũũd̃d̃

�
B

1100
2211 �Cũũd̃d̃

� B1200
2100 �Cũũd̃d̃

� B2100
1200 �Cũũd̃d̃

�

���������������������������������������������������������������������

C
(1,8)
QuQd

81

�����������������������������������������������������������������������������������������������������������������������������������������������������������������

A
0000
0000 (CQũQd̃) A0000

1000 (CQũQd̃) A1000
0000 (CQũQd̃)

A
1000
1000 (CQũQd̃) A0000

0100 (CQũQd̃) A0100
0000 (CQũQd̃)

A
0000
1100 (CQũQd̃) A0000

0110 (CQũQd̃) A0100
1000 (CQũQd̃)

A
1000
0100 (CQũQd̃) A1100

0000 (CQũQd̃) A0110
0000 (CQũQd̃)

A
1000
1100 (CQũQd̃) A1000

0110 (CQũQd̃) A1100
1000 (CQũQd̃)

A
0100
0100 (CQũQd̃) A0100

1100 (CQũQd̃) A0100
0110 (CQũQd̃)

A
0110
0100 (CQũQd̃) A0000

2200 (CQũQd̃) A0000
0220 (CQũQd̃)

A
0200
2000 (CQũQd̃) A1100

1100 (CQũQd̃) A1100
0110 (CQũQd̃)

A
2000
0200 (CQũQd̃) A2100

0100 (CQũQd̃) A0110
1100 (CQũQd̃)

A
0110
0110 (CQũQd̃) A0210

1000 (CQũQd̃) A0000
1220 (CQũQd̃)

A
1200
2000 (CQũQd̃) A0000

0122 (CQũQd̃) A0100
1220 (CQũQd̃)

A
1000
0122 (CQũQd̃) A1100

2200 (CQũQd̃) A1100
0220 (CQũQd̃)

A
1200
2100 (CQũQd̃) A2100

1200 (CQũQd̃) A2100
0210 (CQũQd̃)

A
2200
0110 (CQũQd̃) A0110

2200 (CQũQd̃) A0110
0220 (CQũQd̃)

A
0112
2000 (CQũQd̃) A1100

1220 (CQũQd̃) A2100
0112 (CQũQd̃)

A
1200
1220 (CQũQd̃) A2200

2200 (CQũQd̃) A0110
1122 (CQũQd̃)

A
0122
2100 (CQũQd̃) A0220

0220 (CQũQd̃) B0000
0000 (CQũQd̃)

B
0000
0100 (CQũQd̃) B0000

1000 (CQũQd̃) B0000
1100 (CQũQd̃)

B
0000
2200 (CQũQd̃) B0000

0110 (CQũQd̃) B0000
0122 (CQũQd̃)

B
0000
0220 (CQũQd̃) B0100

0000 (CQũQd̃) B0100
1000 (CQũQd̃)

B
0100
1100 (CQũQd̃) B0100

2100 (CQũQd̃) B0100
0120 (CQũQd̃)

B
0100
1220 (CQũQd̃) B0200

1120 (CQũQd̃) B1000
0000 (CQũQd̃)

B
1000
0100 (CQũQd̃) B1000

1200 (CQũQd̃) B1000
0110 (CQũQd̃)

B
1000
0122 (CQũQd̃) B1000

0210 (CQũQd̃) B1100
0000 (CQũQd̃)

B
1100
1100 (CQũQd̃) B1100

2200 (CQũQd̃) B1100
0110 (CQũQd̃)

B
1100
0220 (CQũQd̃) B1100

1122 (CQũQd̃) B1200
2100 (CQũQd̃)

B
2100
0122 (CQũQd̃) B2200

0000 (CQũQd̃) A2200
1122 (CQũQd̃)

�����������������������������������������������������������������������������������������������������������������������������������������������������������������

Table 13: Continuation of Tables 11 and 12
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4-Fermi Operators
Minimal and maximal bases
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• As for the bilinears, one can construct a minimal basis of invariants:

“CP is conserved iff J4 and the invariants of a minimal basis are all vanishing”


• The dimension of the minimal basis is always equal to the number of physical phases 
associated to an operator: QQQQ → 18, QuQd → 81, LLuu → 36/9 (w/wo neutrino masses) 
…


• But the real coefficients also contribute to CPV: the dimension of the maximal basis is 
equal to the total number of parameters associated to an operator: QQQQ → 45, QuQd → 
162, LLuu → 81/27 (w/wo neutrino masses) …



SMEFT CPV Invariants with Theta QCD
Can we build new invariants using ϴQCD?

38

Invariants with ✓QCD

Consider the ✓-term in QCD:

LQCD ⊃ −✓QCD

g2
s

16⇡2
Tr�GG̃� (0.1)

✓QCD has the following flavour charges:

SU(3)QL U(1)QL SU(3)uR U(1)uR SU(3)dR U(1)dR
QL 3 1 1 0 1 0
uR 1 0 3 1 1 0
dR 1 0 1 0 3 1
Yu 3 1 3̄ -1 1 0
Yd 3 1 1 0 3̄ -1

ei✓QCD 1 6 1 -3 1 -3

New phases? ✓QCD can only be used to cancel the U(1) flavour transformations of quark-type
phases, therefore it cannot help to get more lepton-like phases at dim-61.

New single-trace invariants? Single-trace SU(3)-invariant objects are also necessarily U(1)-
invariant since they are built using �n

m
which is U(3)-invariant. Consequently, there should not exist

single-trace invariants with ✓QCD, and it’s unclear whether we should compare invariants with ✓QCD

with those in our usual sets (from which we excluded all non-single-trace objects).

Comparing invariants? At dim-4, we can build the usual invariant related to the physical ✓̄ ≡
✓QCD − arg det (YuYd):

e−i✓QCD detYu detYd = �det (YuYd)�e−i�✓QCD−arg det(YuYd)� = �det (YuYd)�e−i✓̄ (0.2)

Therefore, all invariants built out of ei✓QCD can be traded for invariants where it is replaced by
detY †

u detY †
d
, or by detY †

d
if ei✓QCD detYu appears, etc. This confirms that no new phase/structure

can be obtained using ✓QCD. However one can ask: which option leads to the smallest �-suppression?

If used in the perturbative regime of QCD, invariants which display e−i✓QCD should probably

multiply a non-perturbative factor e
− 8⇡2

g2s ≈ �37−38 at µ = mh (where gs = 1.1855), while detYu ∼
�12,detYd ∼ �15, so ei✓QCD -invariants never yield the dominant contribution.

1Note that the SU(2)W angle ✓W cannot be used for that either, since it can be rotated away via a baryon
number transformation. Said differently, ✓W is charged under U(1)B while we focus on the U(1)B-preserving SMEFT
couplings at dim-6, so the U(1)B transformation of ✓W cannot be cancelled by that of other coefficients.

• Given that                                  is a flavour invariant, no new SM4 invariant can be constructed ✓̄ = ✓ � arg det (YuYd)

• In SM6, in principle, new structure can emerge

In the IR, for instance in �PT, the non-perturbative QCD contributions are not expected to be
suppressed and we should compare the different options without further suppression. Using a dim-6
up Yukawa, we have the invariant

Im �e−i✓QCD✏ABC✏abcYu,AaYu,BbCuH,Cc detYd� (0.3)

which, due to the existence of ✓̄, can be replaced by

Im �✏ABC✏abcYu,AaYu,BbCuH,Cc detY
†
u
� (0.4)

The latter is less suppressed. On the other hand, for the 4-Fermi operator CQuQd, we have

Im �e−i✓QCD✏ABC✏abc✏DEF ✏defYu,AaYu,BbCQuQd,CcDdYd,EeYd,Ff� = �up basis4abasatac�
12ImCQuQd,1111 + ...

(0.5)
where we used that ✓QCD = ✓̄ < 10−10 ∼ �15 in the up-basis (Is this �-scaling (�12ImCQuQd,1111)
better than the one obtained from the single-trace basis?). This is less suppressed than the
equivalent

Im �✏ABC✏abc✏DEF ✏defYu,AaYu,BbCQuQd,CcDdYd,EeYd,Ff detY
†
u
detY †

d
� (0.6)

Applications? It would be nice to find which ✓QCD-invariants enter the EDMs of the neutron [1]
and of the electron [2, 3] (or of the muon, etc). The neutron not being a flavour singlet, its EDM is
not expected to map to simple invariants, but the electron one must (as it does when computed from
UV logs in SMEFT or even in Barr-Zee diagrams -although in a more complicated way). However,
in the refs cited, the computations are done in �PT, there are pions, kaons, baryons in loops, so
that the construction breaks by construction the flavour invariance (since heavy quarks have been
integrated out, heavier mesons are not considered, etc). Therefore, it’s unclear whether a precise
invariant reconstruction from the refs cited can be performed.
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• Probably highly suppressed in the perturbative regime of QCD (                          )e�8⇡2/g2
s ⇠ �37

• Relevant at low scale?



Shift-invariant axion: non-pertubative condition
ϴQCD again
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this appendix conditions for the axion couplings to remain shift-symmetric when one also
considers gluons.

Let us thus add to the Lagrangian of Eq. (1.1) a term

−
Cgg

2
3

16⇡2
a

f
Tr�Gµ⌫G̃

µ⌫
� , (5.1)

and to that of (1.3) the same term with Cg → C
(s)
g . We use explicitly different notations

for clarity, since both couplings will appear in the same relations when we match between
the two operator bases. G is the gluon field strength, G̃µ⌫

≡
✏
µ⌫⇢�

2 G⇢� is its dual, g3 is the
SU(3)C coupling constant and we chose the overall normalization consistently with naive
dimensional analysis, and with the origin of Cg, C

(s)
g in UV theories with heavy anomalous

fermions, which are such that Cg, C
(s)
g = O(1).

The gluon coupling breaks the shift symmetry non-perturbatively, unless at least one
quark is massless. In that case, a shift of the axion field a→ 2⇡↵PQf is equivalent to a shift
of ✓QCD → 2⇡↵PQ, which can be absorbed with an appropriate chiral transformation of the
massless quark. Therefore, we assume here that all quarks are massive, so that there are
no chiral symmetries of the spectrum, and ✓QCD is physical. I.e. the theory differentiates
between different values of the axion vev �a� and the shift symmetry is broken, generating
an axion potential.

We now follow the same logic as in the perturbative case: we look for quantities which
must vanish for the shift invariance to hold non-perturbatively, which are therefore order
parameters for the non-perturbative breaking.

5.1 Non-perturbative order parameter

We thus assume that the axion shift symmetry is exact. It is therefore unbroken at the
perturbative level and one can work in the basis of Eq. (1.3) for axion-fermion couplings,
where all fermion couplings are unchanged by a shift of a. At the non-perturbative level,
one needs to require C

(s)
g = 0 to cancel the gluon-induced shift-breaking contributions, for

instance to the axion potential.
However, as in previous sections, we want to identify order parameters in the most

general operator basis, where they could be non-zero in realistic models. This means that
we want to derive the equivalent of the condition C

(s)
g = 0 in terms of the couplings of

Eq. (1.1). For that, we need to account for anomalies when matching from Eq. (1.3) to
Eq. (1.1), which is achieved by the following field redefinition,

 
′
≡ e
−i a

f
c 
 , (5.2)

for each chiral fermion field  . This transformation is anomalous and generates the following
matching relation between the coupling to gluons,

Cg = C
(s)
g +Tr(2cQ − cu − cd) . (5.3)

– 24 –

breaks shift-invariance non-perturbatively (instanton effects) 

(in the operator basis where fermion couplings are derivative)
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g = 0 in terms of the couplings of
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breaks shift-invariance non-perturbatively (instanton effects) 

(in the operator basis where fermion couplings are derivative)

When the gluon couplings do not break the PQ symmetry, C(s)g = 0 and one finds15

Cg = Tr(2cQ − cu − cd) . (5.4)

Using the matching conditions of Eq. (2.1), we can substitute the coefficients c for the Ỹ

and obtain
Cg − iTr �Y

−1
u

Ỹ
u
+ Y

−1
d

Ỹ
d
� = 0 . (5.5)

Note that our assumption of massive quarks make the Yukawa matrices invertible and the
expression meaningful. This expression yields an extra condition for a perturbative shift
symmetry to remain valid even non-perturbatively in g3, in the basis of Eq. (1.1). It can be
rewritten in terms of positive powers of the Yukawa matrices, upon using a relation valid
for 3 × 3 matrices, used for instance in Ref. [77],

X
−1
=
X

2
− (TrX)X + 1

2 �(TrX)
2
−TrX2

�1

detX
. (5.6)

Taking X = Y Y
†, we can use it in order to keep the flavor-invariant nature of the constraint

explicit,

Tr �Y −1Ỹ � = Tr �X−1Ỹ Y
†
� =

Tr �X2
Ỹ Y

†
� −TrX Tr �XỸ Y

†
� +

1
2 �(TrX)

2
−TrX2

�Tr �Ỹ Y
†
�

detX
.

(5.7)
The right-handside of the above expression is constrained to be imaginary due to our con-
ditions for perturbative shift-invariance of Eq. (2.18), so we find that the new condition is
CP-even and reads Ig = 0 for

Ig ≡ Cg + ImTr �Y −1
u

Ỹ
u
+ Y

−1
d

Ỹ
d
� . (5.8)

When all the perturbative invariants of Eqs. (2.18)-(2.19) vanish, i.e. when there exists a
PQ symmetry at the perturbative level, Ig captures the mixed anomaly polynomial of that
symmetry with SU(3)C . This can easily be seen in the axiflavon/flaxion model of Eq. (3.1),
where

Ig =�

i

(2qQi
− qui

− qdi) . (5.9)

The invariant Ig, which features couplings from the up and down sectors, highlights a new
kind of collective breaking at the non-perturbative level, which is consistent with the fact
that mixed PQ anomalies can be cancelled by balancing non-vanishing contributions in
different quark sectors.

In addition, the derivation never referred to the invariants which correlate the up and
down sectors in Eq. (2.18) and are absent in Eq. (3.26), therefore it is valid below the
electroweak scale, up to the replacements Y, Ỹ →m,m̃ to match the notations of Section 3.3.

15
Notice that the slight redundancy of the basis Eq. (1.3) is irrelevant here: the freedom to add at will

↵B(@µa�f)J
µ

B
, where JB is the baryon number current, discussed in Section 2.1, shifts cQ,u,d → cQ,u,d +

(↵B�3)1 and leaves Tr(2cQ − cu − cd) unchanged. This is nothing else but the statement that the baryon
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this appendix conditions for the axion couplings to remain shift-symmetric when one also
considers gluons.

Let us thus add to the Lagrangian of Eq. (1.1) a term

−
Cgg

2
3

16⇡2
a

f
Tr�Gµ⌫G̃

µ⌫
� , (5.1)

and to that of (1.3) the same term with Cg → C
(s)
g . We use explicitly different notations

for clarity, since both couplings will appear in the same relations when we match between
the two operator bases. G is the gluon field strength, G̃µ⌫

≡
✏
µ⌫⇢�

2 G⇢� is its dual, g3 is the
SU(3)C coupling constant and we chose the overall normalization consistently with naive
dimensional analysis, and with the origin of Cg, C

(s)
g in UV theories with heavy anomalous

fermions, which are such that Cg, C
(s)
g = O(1).

The gluon coupling breaks the shift symmetry non-perturbatively, unless at least one
quark is massless. In that case, a shift of the axion field a→ 2⇡↵PQf is equivalent to a shift
of ✓QCD → 2⇡↵PQ, which can be absorbed with an appropriate chiral transformation of the
massless quark. Therefore, we assume here that all quarks are massive, so that there are
no chiral symmetries of the spectrum, and ✓QCD is physical. I.e. the theory differentiates
between different values of the axion vev �a� and the shift symmetry is broken, generating
an axion potential.

We now follow the same logic as in the perturbative case: we look for quantities which
must vanish for the shift invariance to hold non-perturbatively, which are therefore order
parameters for the non-perturbative breaking.

5.1 Non-perturbative order parameter

We thus assume that the axion shift symmetry is exact. It is therefore unbroken at the
perturbative level and one can work in the basis of Eq. (1.3) for axion-fermion couplings,
where all fermion couplings are unchanged by a shift of a. At the non-perturbative level,
one needs to require C

(s)
g = 0 to cancel the gluon-induced shift-breaking contributions, for

instance to the axion potential.
However, as in previous sections, we want to identify order parameters in the most

general operator basis, where they could be non-zero in realistic models. This means that
we want to derive the equivalent of the condition C

(s)
g = 0 in terms of the couplings of

Eq. (1.1). For that, we need to account for anomalies when matching from Eq. (1.3) to
Eq. (1.1), which is achieved by the following field redefinition,

 
′
≡ e
−i a

f
c 
 , (5.2)

for each chiral fermion field  . This transformation is anomalous and generates the following
matching relation between the coupling to gluons,

Cg = C
(s)
g +Tr(2cQ − cu − cd) . (5.3)
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breaks shift-invariance non-perturbatively (instanton effects) 

(in the operator basis where fermion couplings are derivative)

When the gluon couplings do not break the PQ symmetry, C(s)g = 0 and one finds15

Cg = Tr(2cQ − cu − cd) . (5.4)

Using the matching conditions of Eq. (2.1), we can substitute the coefficients c for the Ỹ

and obtain
Cg − iTr �Y

−1
u

Ỹ
u
+ Y

−1
d

Ỹ
d
� = 0 . (5.5)

Note that our assumption of massive quarks make the Yukawa matrices invertible and the
expression meaningful. This expression yields an extra condition for a perturbative shift
symmetry to remain valid even non-perturbatively in g3, in the basis of Eq. (1.1). It can be
rewritten in terms of positive powers of the Yukawa matrices, upon using a relation valid
for 3 × 3 matrices, used for instance in Ref. [77],

X
−1
=
X

2
− (TrX)X + 1

2 �(TrX)
2
−TrX2

�1

detX
. (5.6)

Taking X = Y Y
†, we can use it in order to keep the flavor-invariant nature of the constraint

explicit,

Tr �Y −1Ỹ � = Tr �X−1Ỹ Y
†
� =

Tr �X2
Ỹ Y

†
� −TrX Tr �XỸ Y

†
� +

1
2 �(TrX)

2
−TrX2

�Tr �Ỹ Y
†
�

detX
.

(5.7)
The right-handside of the above expression is constrained to be imaginary due to our con-
ditions for perturbative shift-invariance of Eq. (2.18), so we find that the new condition is
CP-even and reads Ig = 0 for

Ig ≡ Cg + ImTr �Y −1
u

Ỹ
u
+ Y

−1
d

Ỹ
d
� . (5.8)

When all the perturbative invariants of Eqs. (2.18)-(2.19) vanish, i.e. when there exists a
PQ symmetry at the perturbative level, Ig captures the mixed anomaly polynomial of that
symmetry with SU(3)C . This can easily be seen in the axiflavon/flaxion model of Eq. (3.1),
where

Ig =�

i

(2qQi
− qui

− qdi) . (5.9)

The invariant Ig, which features couplings from the up and down sectors, highlights a new
kind of collective breaking at the non-perturbative level, which is consistent with the fact
that mixed PQ anomalies can be cancelled by balancing non-vanishing contributions in
different quark sectors.

In addition, the derivation never referred to the invariants which correlate the up and
down sectors in Eq. (2.18) and are absent in Eq. (3.26), therefore it is valid below the
electroweak scale, up to the replacements Y, Ỹ →m,m̃ to match the notations of Section 3.3.
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is the basis independent condition for the shift-invariance to be maintained at the non-perturbative level

It can be shown again that this condition is RG invariant 

5.2 RG running

By, once more, using the RGEs of the Standard Model and axion Yukawa couplings above
the electroweak scale [53, 55], we can show that all contributions to the running of this
invariant cancel at the one-loop level

µ
dIg

dµ
= 0 . (5.10)

Let us stress that we chose a scaling in Eq. (5.1) similar to that of Ref. [55], where Cg already
comes with a one-loop factor g23�(16⇡2

). This allowed us to account for the anomalous shift
without loop-factor hierarchies in Eq. (5.4). However, when working out the RGEs as in
Ref. [53], that implies that we also need to account for anomalies and their contribution to
the running of Cg. They yield an extra running of Cg,

µ
dCg

dµ
=

1

16⇡2
�−4 ImTr �Ỹ

u
Y

†
u
+ Ỹ

d
Y

†
d
� +

22g41
16⇡2

CB +
27g42
16⇡2

CW +
128g43
16⇡2

Cg� , (5.11)

where CW,B are the equivalent of Cg for gauge fields of SU(2)W and U(1)Y , respectively16.
The running of Cg is then cancelled by the additional Yukawa contribution to Ig. We give
more details on this running as well as other possible contributions of similar magnitude,
i.e. at O �Ỹ Y

†
, g

4
C�, in Appendix D. If one instead absorbs a factor g

2
3�(16⇡

2
) in Cg ≡

16⇡2

g
2
3
C̃g, and works like in Ref. [53] with RGEs at O(g23�(16⇡2

)) under the assumption that

C̃g = O(1), one is led to define the invariant

Ĩg ≡
g
2
3

16⇡2
Ig = C̃g +

g
2
3

16⇡2
ImTr �Y −1

u
Ỹ
u
+ Y

−1
d

Ỹ
d
� , (5.12)

which runs into itself at the one-loop order [53],

µ
dĨg

dµ
= µ

dC̃g

dµ
= −

14g23
16⇡2

Ĩg , (5.13)

where the running is fully induced by the running of the strong coupling.
The situation below the electroweak scale is very similar, with the exception that there

are no more Higgs loops to consider in the running, which results in the absence of Yukawa
contributions above.

6 Conclusions

In this paper, we have investigated the implications of an axion shift-symmetry on the
dimension-5 axion couplings to the Standard Model fermions. In particular, we have found
explicit and algebraic conditions implied by the shift symmetry on these couplings, instead
of the implicit relations that are well-known in the literature. The set of constraints is
formulated in a flavor-invariant way and gives necessary and sufficient conditions for shift-
symmetry to hold, hence yielding a set of 13 order parameters for shift symmetry in the

16
This result reproduces that of Appendix A of Ref. [55].
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whenever shift-symmetry holds (Ig=Ii=0 for i=1…13)


