OPE-based sum rules for heavy hadrons

Alexander Khodjamirian

Pushing the Limits of Theoretical Physics, MITP, Mainz, May 9 , 2023

- QCD sum rules in heavy-quark effective theory (HQET)

Heavy-meson form factors from QCD sum rules

Matthias Neubert
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (Received 16 December 1991)

A consistent framework is developed for studying hadronic form factors of heavy mesons using QCD sum rules in the heavy-quark effective theory, including the next-to-leading-order renormalization-group improvement. Sum rules are derived for the asymptotic value of the meson decay constant f_{P} and for the universal Isgur-Wise form factor. It is shown that renormalization-group effects considerably enhance the prediction for f_{P} and bring its asymptotic value in accordance with recent lattice results. Including finite-mass corrections, the dependence of the physical decay constant on the meson mass is investigated. We obtain $f_{D} \simeq 170 \pm 30 \mathrm{MeV}$ and $f_{B} \simeq 190 \pm 50 \mathrm{MeV}$. The origin of the breakdown of the heavy-quark expansion for f_{D} is analyzed. In the case of heavy-meson transition form factors, both the QCD and $1 / m_{Q}$ corrections are moderate and under control. A sum rule for the renormalized IsgurWise function is derived and evaluated. The theoretical result is compared to experimental data.

- further discussed in the review:
- originally formulated in
- local OPE: $i \int d^{4} x e^{i q x} T\left\{j_{A}(x) j_{B}(0)\right\}=\sum_{d} C_{d}^{A B}\left(q^{2}\right) \hat{O}_{d}(0)$ proved order by order in perturbative QCD at $q^{2} \rightarrow-\infty$
- practical version of OPE including nonperturbative effects
M.Shifman, A.Vainshtein and V.I.Zakharov, (1979)
- allowing one to calculate vacuum correlation functions

$$
\Pi_{A}(q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{j_{A}(x) j_{A}(0)\right\}|0\rangle
$$

- OPE generates vacuum averages of local operators \Rightarrow condensate expansion of the correlation function:

$$
\Pi_{A}(q)^{O P E}=\sum_{d} C_{d}^{A B}\left(q^{2}\right)\langle 0| \hat{O}_{d}|0\rangle \text { valid at }\left|q^{2}\right| \gg \Lambda_{Q C D}^{2}
$$

- the heavy quark mass provides a large scale $m_{Q} \gg \Lambda_{Q C D}$ effectively replacing $\sqrt{\left|q^{2}\right|}$

\square QCD sum rule for the B-meson decay constant

- the sum rule for $f_{B}=\langle 0| j_{5}|B\rangle / m_{B}^{2}$, studied by Neubert in HQET limit
- correlation function

$$
\Pi_{5}\left(q^{2}\right)=i \int d^{4} x e^{i q x}\langle 0| T\left\{j_{5}(x) j_{5}(0)\right\}|0\rangle, \quad j_{5}=m_{b} \bar{b} i_{\gamma_{5}} u
$$

- OPE diagrams for Wilson coefficients (known to $O\left(\alpha_{s}^{2}\right)$)

gluon condens.

quark-gluon condens.

$$
\Pi_{5}\left(q^{2}\right)^{O P E}=\sum_{d} C_{5 d}\left(q^{2}, m_{b}^{2}\right)\langle 0| \hat{O}_{d}|0\rangle \quad \text { valid at } q^{2} \ll m_{b}^{2}
$$

\square QCD sum rule for the B-meson decay constant

- use of unitarity \oplus hadronic dispersion relation

$$
\Pi_{5}\left(q^{2}\right)=\frac{f_{B}^{2} m_{B}^{4}}{m_{B}^{2}-q^{2}}+\int_{s_{h}}^{\infty} d s \frac{\rho_{5}^{h}(s)}{s-q^{2}}, \quad s_{h}=\left(m_{B}^{*}+m_{\pi}\right)^{2}
$$

subtractions implied

- schematic view: there is a gap between B and $B^{*} \pi$

- quark-hadron duality: approximating the integral (a more general assumption than the local duality)

$$
\int_{s_{h}}^{\infty} d s \frac{\rho_{5}^{h}(s)}{s-q^{2}}=\frac{1}{\pi} \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi_{5}^{O P E}(s)}{s-q^{2}}
$$

f_{B} sum rule and others based on local OPE

- the (incomplete) list of papers on the f_{B} sum rule before 2013:

111 V. M147, 385 (1979)
11) Vovikov, M. A. Shifman, A. I. Vainshtein, M. B. Voloshin, and V. I. Zakharov, in Proceedings of Neutrinos 1978 (Purdue University, West Lafayette, 1978), pp. 278-288.
12] T.M. Aliev and V.L. Eletsky, Yad. Fiz. 38, 1537 (1983) [Sov. J. Nucl. Phys. 38, 936 (1983)].
13] C. A. Dominguez and N. Paver, Phys. Lett. B 197, 423
(1987); 199, 596(E) (1987)
[14] S. Narison, Z. Phys. C 14, 263 (1982); Phys. Lett. B 198, 104 (1987).
[15] E. V. Shuryak, Nucl. Phys. B198, 83 (1982).
[16] M. Neubert, Phys. Rev. D 45, 2451 (1992).
[17] E. Bagan, P. Ball, V.M. Braun, and H. G. Dosch, Phys. Lett. B 278, 457 (1992).
[18] D. J. Broadhurst and A. G. Grozin, Phys. Lett. B 274, 421 (1992).
[19] M. Neubert, Phys. Rep. 245, 259 (1994).
[20] D. J. Broadhurst, Phys. Lett. B101, 423 (1981).
[21] S.C. Generalis, J. Phys, G 16, 785 (1990).
[22] C.A. Dominguez and N. Paver, Phys. Lett. B 246, 493 (1990).
[23] K. G. Chetyrkin and M. Steinhauser, Eur. Phys. J. C 21, 319 (2001).
[24] M. Jamin and B. O. Lange, Phys. Rev. D 65, 056005
(2002)
[25] A. A. Penin and M. Steinhauser, Phys. Rev. D 65, 054006 (2002).

- our analysis of the f_{B} sum rule

$$
f_{B}=201_{-7}^{+17} \mathrm{MeV}
$$

- comparison with the lattice QCD average:

$$
f_{B}=190.0 \pm 1.3 \mathrm{MeV}\left[\text { FLAG } 2021\left(N_{f}=4\right)\right]
$$

Advantages of the local-OPE QCD sum rules

- the number of universal inputs is minimal
- the spectral density is positive definite, with a gap, model-independent bounds possible
- if the hadronic spectral density is well measured \Rightarrow extract QCD parameters,
e.g. $m_{b, c}$ determination from a correlator of $\bar{Q} \gamma_{\mu} Q$ currents ($\mathrm{Q}=\mathrm{b}, \mathrm{c}$)
K. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm, (2012)
- the choice of quark-hadron duality threshold s_{0} is controlled by the B meson mass calculation
\square Heavy-light form factors from the sum rules based on local OPE
- in the past the local OPE was used to obtain $B \rightarrow h$ form factors
- need a three-point correlation function (cf lattice QCD)
- use of double dispersion relation
- quark-hadron duality in the two channels
- diagrams for the case of $b \rightarrow u$ exclusive transition

- however, there is a conceptual problem with local OPE: infinite towers of local operators contribute with the same power
- the best studied case: the $B \rightarrow \pi$ form factor
- a different type of correlation function

$$
\begin{gathered}
F_{\mu}(q, p)=i \int d^{4} x e^{i q x}\left\langle\pi^{+}(p)\right| T\left\{\bar{u}(x) \gamma_{\mu} b(x) m_{b} \bar{b}(0) i \gamma_{5} d(0)\right\}|0\rangle \\
\left|q^{2}\right| \sim\left|(p+q)^{2}\right| \gg \Lambda_{Q C D}^{2} \quad \Downarrow \quad x^{2} \rightarrow 0
\end{gathered}
$$

$$
\sum_{t} C_{t}\left(x^{2}, m_{b}^{2}\right)\left\langle\pi^{+}(p)\right| O_{t}(x, 0)|0\rangle \quad \text { twist expansion }
$$

- OPE diagrams

- light-cone distribution amplitudes (DAs) of the pion emerge $\langle\pi(p)| O_{t}(x, 0)|0\rangle, \quad O_{t=2}=\bar{u}(x) \gamma_{\mu} \gamma_{5} d(0), \ldots$
- hadronic dispersion relation in the B-meson channel

$$
F_{\mu}^{O P E}(p, q)=\frac{\left\langle\pi^{+}(p)\right| \bar{u} \gamma_{\mu} b|B(p+q)\rangle\langle B(p+q)| m_{b} \bar{b} i \gamma_{5} d|0\rangle}{m_{B}^{2}-(p+q)^{2}}+\ldots
$$

- use of quark-hadron duality
- main input: the light-meson DAs (expansion, parameters)
- for each $B \rightarrow h$ transition we need a set of LCDAs of the hadron $h\left(\pi, K, \rho, K^{*} \ldots\right)$

A different version of LCSRs for $B \rightarrow \pi$ form factors

- π is interpolated with a current \oplus duality

$$
F_{\mu \nu}^{(B)}(p, q)=i \int d^{4} x e^{i p \cdot x}\langle 0| T\left\{\bar{d}(x) \gamma_{\mu} \gamma_{5} u(x), \bar{u}(0) \gamma_{\nu} b(0)\right\}\left|\bar{B}^{0}(p+q)\right\rangle
$$

- $q^{2} \sim 0, p^{2}<0,\left|p^{2}\right| \gg \Lambda_{Q C D}^{2}$,
- the diagrams: $\left(q_{1}=u, q_{2}=d\right), \quad u$-quark propagates near LC

- the nonlocal matrix element, defined in HQET leads to B -meson distribution amplitudes

$$
\begin{aligned}
& \left.\langle 0| T\left\{\bar{d}_{\alpha}(x)[x, 0] b_{\beta}(0)\right\}\left|\bar{B}^{0}(v)\right\rangle\right|_{x^{2}=0} \\
& =-\frac{i f_{B} m_{B}}{4}\left[(1+\psi) \gamma_{5} \int_{0}^{\infty} d \omega e^{-i \omega v \cdot x}\left\{\phi_{+}^{B}(\omega)+\frac{\phi_{+}^{B}(\omega)-\phi_{-}^{B}(\omega)}{2 v \cdot x} \not x\right\} \gamma_{5}\right]_{\beta \alpha},
\end{aligned}
$$

B-meson distribution amplitudes in HQET

- the two key papers:
- introducing the B-meson distribution amplitudes in HQET

Asymptotics of heavy-meson form factors
A. G. Grozin

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
M. Neubert

Theory Division, CERN, CH-1211 Geneva 23, Switzerland
(Received 16 July 1996)

- understanding their renormalization

Renormalization-Group Evolution of the \boldsymbol{B}-Meson Light-Cone Distribution Amplitude
Björn O. Lange and Matthias Neubert
\square New sum rule for $B_{c} \rightarrow J / \psi$ form factors
M.Bordone, AK, Th.Mannel, 2209.08851

- The $B_{c} \rightarrow J / \psi \ell \nu_{\ell}$ decay has created a lot of interest:
- the measured ratio

$$
\begin{aligned}
R(J / \psi)= & \frac{\mathcal{B}\left(B_{C} \rightarrow J / \psi \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B_{C} \rightarrow J / \psi \mu \bar{\nu}_{\mu}\right)}=0.71 \pm 0.17 \pm 0.18 \\
& \text { R. Aaij et al. (LHCb Collab.), Phys. Rev. Lett. 120, 121801 (2018). }
\end{aligned}
$$

- reveals a tension with the lattice QCD result:

$$
R(J / \psi)=0.2582 \pm 0.0038
$$

```
J.Harrison, C.T.H. Davies, A.Lytle (HPQCD Collab.), Phys. Rev. Lett. 125, 222003 (2020)
```

- Lattice QCD provides the $B_{C} \rightarrow J / \psi$ form factors at all momentum transfers $0<q^{2}<\left(m_{B_{C}}-m_{J / \psi}\right)^{2}$
- can we calculate these form factors with non-lattice methods at least at large recoil $q^{2} \sim 0$?
$\square B_{C} \rightarrow J / \psi$ - form factors
- definition:

$$
\langle J / \psi(p, \varepsilon)|\left(\bar{c} \gamma_{\nu} b-\bar{c} \gamma_{\nu} \gamma_{5} b\right)\left|\bar{B}_{c}(p+q)\right\rangle=\epsilon_{\nu \rho \alpha \beta} \varepsilon^{* \rho} q^{\alpha} p^{\beta} \frac{2 V\left(q^{2}\right)}{M_{B_{c}}+M_{J / \psi}}+\text { axial FFs }
$$

will concentrate on the vector-current form factor $V\left(q^{2}\right)$

- existing continuum QCD methods
- NRQCD: direct calculation
of the $B_{c} \rightarrow J / \psi$ matrix elements
- three-point QCD sum rules:
double dispersion relation
only LO triangle loop + gluon condensate
- the task: an alternative sum rule approach,
something similar to LCSR
\square Correlation function with on-shell B_{c} state
- correlator

$$
\begin{aligned}
F_{\mu \nu}(p, q) & =i \int d^{4} x e^{i p x}\langle 0| T\left\{\bar{c}(x) \gamma_{\mu} c(x) \bar{c}(0)\left(\gamma_{\nu}-\gamma_{\nu} \gamma_{5}\right) b(0)\right\}\left|\bar{B}_{c}(p+q)\right\rangle \\
& =\epsilon_{\mu \nu \alpha \beta} q^{\alpha} p^{\beta} F^{V}\left(p^{2}, q^{2}\right)+F_{\mu \nu}^{A}(p, q)
\end{aligned}
$$

- dispersion relation in p^{2}, e.g. for the V form factor

$$
F^{V}\left(p^{2}, q^{2}\right)=\frac{2 f_{J / \psi} V\left(q^{2}\right)}{\left(m_{B_{c}}+m_{J / \psi}\right)\left(m_{J / \psi}^{2}-p^{2}\right)}+\int_{m_{\psi(2 S)}^{2}}^{\infty} d s \frac{\rho^{\vee}\left(s, q^{2}\right)}{s-p^{2}},
$$

- calculate $F^{V}\left(p^{2}, q^{2}\right)$ at $p^{2}, q^{2} \ll 4 m_{c}^{2}$ from OPE in a dispersion form:

$$
F^{V(O P E)}\left(p^{2}, q^{2}\right)=\frac{1}{\pi} \int_{s_{\text {min }}}^{\infty} d s \frac{\operatorname{lm} F^{V(O P E)}\left(s, q^{2}\right)}{s-p^{2}}
$$

- J / ψ duality interval expected from $s_{\text {min }}=4 m_{c}^{2}$ to $s_{0}=\left(2 m_{c}+\omega_{0}\right)^{2}$
- sum rule for the form factor in the Borel form (or power moments):

$$
\frac{2 f_{J / \psi} V\left(q^{2}\right)}{\left(m_{B_{c}}+m_{J / \psi}\right)} e^{-m_{J / \psi}^{2} / \mathcal{M}^{2}}=\frac{1}{\pi} \int_{4 m_{c}^{2}}^{s_{0}} d s e^{-s / \mathcal{M}^{2}} \operatorname{Im} F^{V(O P E)}\left(s, q^{2}\right)
$$

Validity of local OPE

- heavy-quark limit, hierarchy of scales:

$$
\begin{aligned}
& m_{b} \gg m_{c} \gg \bar{\Lambda} \sim \Lambda_{Q C D}, \\
& m_{B_{c}} \simeq m_{b}+m_{c} \equiv M, \quad p_{B_{c}} \simeq m_{b} v+m_{c} v=p+q
\end{aligned}
$$

- external momenta such that $q^{2} \ll M^{2}, p^{2} \ll 4 m_{c}^{2}$: the virtual c-quark in the correlation function is far off shell.
- LO diagram calculation

$$
F_{\mu \nu}^{(L O)}(p, q)=i^{2} \int \frac{d^{4} f}{(2 \pi)^{4}}\left[\gamma_{\mu} \frac{f /+m_{c}}{f^{2}-m_{c}^{2}} \Gamma_{\nu}\right]_{\alpha \beta} \int d^{4} x e^{i(p x-f x)}\langle 0| \bar{c}_{\alpha}(x) b_{\beta}(0)\left|\bar{B}_{c}(p+q)\right\rangle,
$$

- expanding the nonlocal matrix element in a series of local ones and integrating:

$$
F_{\mu \nu}^{(L O)}(p, q)=-\frac{\epsilon_{\mu \nu \lambda \rho} v^{\lambda} p^{\rho} \sqrt{M}}{\left(p-m_{c} v\right)^{2}-m_{c}^{2}} \hat{f}_{B_{c}}\left\{1+\sum_{k=1}^{\infty} \frac{(i)^{k}}{k!} \bar{\Lambda}^{k}\left[\frac{2\left(p-m_{c} v\right) \cdot v}{m_{c}^{2}-\left(p-m_{c} v\right)^{2}}\right]^{k} .\right\}
$$

- all terms with $k \geq 1$ are suppressed by powers of $\bar{\Lambda} / m_{C}$

$$
\frac{2\left(p-m_{c} v\right) \cdot v}{m_{c}^{2}-\left(p-m_{c} v\right)^{2}}=\frac{1}{m_{c}}\left(\frac{1-q^{2} / M^{2}+p^{2} / M^{2}-2 m_{c} / M}{1-q^{2} / M^{2}-p^{2} m_{b} /\left(m_{c} M^{2}\right)}\right)
$$

- replacing $m_{c} \rightarrow m_{u, d, s}$ we return to the situation with B meson DA
\square the LO spectral density
- The correlator in the local limit and at leading power:

$$
F^{(V)}\left(p^{2}, q^{2}\right)=\frac{f_{B_{c}} M}{m_{b}\left(m_{c} M^{2} / m_{b}-q^{2} m_{c} / m_{b}-p^{2}\right)}+O\left(\alpha_{s}\right)
$$

- the pole in p^{2} is shifted from (naively expected) $4 m_{c}^{2}$ to
$p^{2} \sim \frac{m_{c}}{m_{b}}\left(\left(m_{c}+m_{b}\right)^{2}+\left|q^{2}\right|\right)$
- parametrically larger than $4 m_{c}^{2}$
- at $q_{\text {max }}^{2}=\left(m_{b}-m_{c}\right)^{2}$ (zero recoil) the pole at $p^{2}=4 m_{c}^{2}$
- the LO spectral density is beyond the duality interval of J / ψ

Filling the gap with NLO spectral density

- In the sum rule $\operatorname{lm} F^{(O P E)}$ starts at NLO, $O\left(\alpha_{S}\right)$
- $B_{c} \rightarrow J / \psi$ form factors at large recoil are dominated by hard gluon exchanges (no soft overlap mechanism)
- three-point QCD sum rules for $B_{c} \rightarrow J / \psi$ in LO - essentially incomplete
- $O\left(\alpha_{s}\right)$ diagrams

- standard loop calculation is hard (too many scales)
- only two cut (x) diagrams with $\operatorname{ImF}\left(p^{2}\right) \sim \theta\left(p^{2}-4 m_{c}^{2}\right)$.
- approximating the spectral density by NLO expression.

Results for the $B_{c} \rightarrow J / \psi$ form factors

- numerical results at $q^{2} \leq 0$ and comparison with lattice QCD

Form factor	$q^{2}=-20 \mathrm{GeV}^{2}$	$q^{2}=-10 \mathrm{GeV}^{2}$	$q^{2}=0$	HPQCD at $q^{2}=0[4]$
V	$0.044_{-0.013}^{+0.016}$	$0.112_{-0.035}^{+0.043}$	$0.705_{-0.253}^{+0.364}$	0.725 ± 0.055
A_{1}	$0.042_{-0.012}^{+0.015}$	$0.090_{-0.027}^{+0.034}$	$0.451_{-0.158}^{+0.222}$	0.457 ± 0.027
A_{0}	$0.028_{-0.008}^{+0.010}$	$0.071_{-0.021}^{+0.026}$	$0.443_{-0.156}^{+0.219}$	0.4770 ± 0.026
A_{2}	$0.033_{-0.010}^{+0.012}$	$0.081_{-0.025}^{+0.031}$	$0.466_{-0.162}^{+0.228}$	0.418 ± 0.086
A_{12}	$0.009_{-0.002}^{+0.003}$	$0.017_{-0.005}^{+0.006}$	$0.085_{-0.030}^{+0.042}$	0.091 ± 0.008

Table 3. Numerical results for the $B_{c} \rightarrow J / \psi$ form factors. The central values (asymmetric uncertainties) correspond to the medians of the distributions (the 68% confidence intervals).

- z-expansion to $q^{2}>0$ not available, no $R((J / \psi)$ prediction
- QCD sum rules for heavy hadrons and HQET, for both local and light-cone OPE.
- New sum rule for $B_{C} \rightarrow J / \psi$ form factors
- the correlation function approximated with local OPE
- $f_{B_{c}}$ is the only nonperturbative parameter at leading power
- at $q^{2} \lesssim 0$ the duality region for J / ψ filled by NLO diags
- no soft overlap for the large recoil $B_{C} \rightarrow J / \psi$ transition
- future perspectives: power corrections, $B_{c} \rightarrow \eta_{c}, \psi(2 S), \ldots$
recollection of our MITP program in January 2020

