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� A bit of history:

I QCD sum rules in heavy-quark effective theory (HQET)

I further discussed in the review:
M.Neubert, Heavy quark symmerty, Phys. Rept. 245 (1994) 259-396



� Operator-Product Expansion

I originally formulated in K. G. Wilson, Phys. Rev. 179, 1499-1512 (1969).

I local OPE: i
∫

d4x eiqxT{jA(x)jB(0)} =
∑

d CAB
d (q2)Ôd (0)

proved order by order in perturbative QCD at q2 → −∞

I practical version of OPE including nonperturbative effects
M.Shifman, A.Vainshtein and V.I.Zakharov, (1979)

I allowing one to calculate vacuum correlation functions
ΠA(q) = i

∫
d4x eiqx〈0|T{jA(x)jA(0)}|0〉

I OPE generates vacuum averages of local operators
⇒ condensate expansion of the correlation function:

ΠA(q)OPE =
∑

d CAB
d (q2)〈0|Ôd |0〉 valid at |q2| � Λ2

QCD

I the heavy quark mass provides a large scale mQ >> ΛQCD
effectively replacing

√
|q2|



� QCD sum rule for the B-meson decay constant

I the sum rule for fB = 〈0|j5|B〉/m2
B, studied by Neubert in HQET limit

I correlation function

Π5(q2) = i
∫

d4x eiqx〈0|T{j 5(x)j 5(0)}|0〉, j 5 = mbb̄iγ5u

I OPE diagrams for Wilson coefficients (known to O(α2
s))

Π5(q2)OPE =
∑

d C5d (q2,m2
b)〈0|Ôd |0〉 valid at q2 � m2

b



� QCD sum rule for the B-meson decay constant

I use of unitarity ⊕ hadronic dispersion relation

Π5(q2) =
f 2
Bm4

B

m2
B − q2

+

∞∫
sh

ds
ρh

5(s)

s − q2 , sh = (m∗B + mπ)2

subtractions implied

I schematic view: there is a gap between B and B∗π

q^2

B

B* π

. . .

OPE region
−−−−−−−−−− s0

I quark-hadron duality: approximating the integral
(a more general assumption than the local duality)

∞∫
sh

ds
ρh

5(s)

s − q2 =
1
π

∞∫
s0

ds
ImΠOPE

5 (s)

s − q2



� fB sum rule and others based on local OPE

I the (incomplete) list of papers on the fB sum rule before 2013:

I our analysis of the fB sum rule

fB = 201+17
−7 MeV P.Gelhausen, AK, A.Pivoarov, D.Rosenthal (2013)

I comparison with the lattice QCD average:

fB = 190.0± 1.3 MeV [ FLAG 2021 (Nf = 4)]



� Advantages of the local-OPE QCD sum rules

I the number of universal inputs is minimal

I the spectral density is positive definite, with a gap,
model-independent bounds possible

I if the hadronic spectral density is well measured
⇒ extract QCD parameters,
e.g. mb,c determination from a correlator of Q̄γµQ currents (Q=b,c)
K. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm, (2012)

I the choice of quark-hadron duality threshold s0 is controlled by
the B meson mass calculation



� Heavy-light form factors from the sum rules based on local OPE

I in the past the local OPE was used to obtain B → h form factors
I need a three-point correlation function (cf lattice QCD)

I use of double dispersion relation
I quark-hadron duality in the two channels
I diagrams for the case of b → u exclusive transition

I however, there is a conceptual problem with local OPE:
infinite towers of local operators contribute with the same power

discussed e.g., in the review by V. Braun, hep-ph/9801222.



� OPE near the light-cone

I the best studied case: the B → π form factor

I a different type of correlation function

Fµ(q,p) = i
∫

d4x eiqx〈π+(p)|T{ū(x)γµb(x)mbb̄(0)iγ5d(0)}|0〉

|q2| ∼ |(p + q)2|�Λ2
QCD

ww� x2 → 0∑
t

Ct (x2,m2
b)〈π+(p)|Ot (x ,0)|0〉 twist expansion

I OPE diagrams π(p)

b

ud

p + q q

+

π(p)

b

+

π(p)

b

+...

I light-cone distribution amplitudes (DAs) of the pion emerge
〈π(p)|Ot (x ,0)|0〉, Ot=2 = ū(x)γµγ5d(0), ...



� Light-cone sum rules (LCSR)
I.Balitsky,V.Braun, A.Kolesnichenko (1989); V.Chernyak, I.Zhitnisky (1989)

I hadronic dispersion relation in the B-meson channel

F OPE
µ (p,q) =

〈π+(p)|ūγµb|B(p + q)〉〈B(p + q)|mbb̄iγ5d |0〉
m2

B − (p + q)2
+ ...

π

b

u

q

B

B

p + q

b

+
∑

h

F(q2, (p + q)2) =

π

b

u

q

p + q

b

Bh

Bh

fBf
+
Bπ(q

2)
∑

Bh

→ duality (sB
0 )

I use of quark-hadron duality
I main input: the light-meson DAs (expansion, parameters)
I for each B → h transition we need a set of LCDAs of the hadron

h (π,K , ρ,K ∗...)



� A different version of LCSRs for B → π form factors
I π is interpolated with a current ⊕ duality

F (B)
µν (p, q) = i

∫
d4x eip·x 〈0|T

{
d̄(x)γµγ5u(x), ū(0)γνb(0)

}
|B̄0(p + q)〉 .

I q2 ∼ 0, p2 < 0, |p2| � Λ2
QCD, AK, Th.Mannel, N. Offen (2005)

I the diagrams: (q1 = u, q2 = d) , u-quark propagates near LC
.

(a)

q̃

p

hv

q1

q2

B̄v

(b)

B̄v

I the nonlocal matrix element, defined in HQET leads to
B-meson distribution amplitudes A.G.Grozin. M.Neubert (1997)

〈0|T
{

d̄α(x)[x , 0]bβ(0)
}
|B̄0(v)〉|x2=0

= −
ifBmB

4

(1 + /v)γ5

∞∫
0

dωe−iωv·x

{
φB

+(ω) +
φB

+(ω)− φB
−(ω)

2v · x
/x

}
γ5


βα

,



� B-meson distribution amplitudes in HQET

I the two key papers:
• introducing the B-meson distribution amplitudes in HQET

• understanding their renormalization



� New sum rule for Bc → J/ψ form factors

M.Bordone, AK, Th.Mannel, 2209.08851

I The Bc → J/ψ`ν` decay has created a lot of interest:
• the measured ratio

R(J/ψ) =
B(Bc → J/ψτν̄τ )

B(Bc → J/ψµν̄µ)
= 0.71± 0.17± 0.18

R. Aaij et al. (LHCb Collab.), Phys. Rev. Lett. 120, 121801 (2018).

• reveals a tension with the lattice QCD result:

R(J/ψ) = 0.2582± 0.0038

J.Harrison, C.T.H. Davies, A.Lytle (HPQCD Collab.), Phys. Rev. Lett. 125, 222003 (2020)

I Lattice QCD provides the Bc → J/ψ form factors at all momentum transfers
0 < q2 < (mBc −mJ/ψ)2

I can we calculate these form factors with non-lattice methods at least at large
recoil q2 ∼ 0?



� Bc → J/ψ- form factors

I definition:

〈J/ψ(p, ε)|
(

c̄γνb − c̄γνγ5b
)
|B̄c(p + q)〉 = ενραβε

∗ρqαpβ
2V (q2)

MBc + MJ/ψ
+ axial FFs

will concentrate on the vector-current form factor V (q2)

I existing continuum QCD methods
• NRQCD: direct calculation
of the Bc → J/ψ matrix elements

• three-point QCD sum rules:
double dispersion relation
only LO triangle loop +gluon condensate

I the task: an alternative sum rule approach,
something similar to LCSR



� Correlation function with on-shell Bc state
I correlator

Fµν(p, q) = i
∫

d4x eipx 〈0|T{c̄(x)γµc(x)c̄(0)(γν − γνγ5)b(0)}|B̄c(p + q)〉

= εµναβqαpβF V (p2, q2) + F A
µν(p, q)

p

b

c

c

q

Bc
I dispersion relation in p2, e.g. for the V form factor

F V (p2, q2) =
2fJ/ψV (q2)

(mBc + mJ/ψ)(m2
J/ψ − p2)

+

∞∫
m2
ψ(2S)

ds
ρV (s, q2)

s − p2
,

I calculate F V (p2, q2) at p2, q2 � 4m2
c from OPE in a dispersion form:

F V (OPE)(p2, q2) =
1
π

∞∫
smin

ds
ImF V (OPE)(s, q2)

s − p2

I J/ψ duality interval expected from smin = 4m2
c to s0 = (2mc + ω0)2

I sum rule for the form factor in the Borel form (or power moments):

2fJ/ψV (q2)

(mBc + mJ/ψ)
e−m2

J/ψ/M
2

=
1
π

s0∫
4m2

c

ds e−s/M2
ImF V (OPE)(s, q2) .



� Validity of local OPE
I heavy-quark limit, hierarchy of scales:

mb � mc � Λ̄ ∼ ΛQCD ,

mBc ' mb + mc ≡ M, pBc ' mbv + mcv = p + q

I external momenta such that q2 � M2, p2 � 4m2
c :

the virtual c-quark in the correlation function is far off shell.
I LO diagram calculation

F (LO)
µν (p, q) = i2

∫
d4f

(2π)4

[
γµ

/f + mc

f 2 −m2
c

Γν
]
αβ

∫
d4x ei(px−fx)〈0|c̄α(x)bβ(0)|B̄c(p+q)〉 ,

I expanding the nonlocal matrix element in a series of local ones and integrating:

F (LO)
µν (p, q) = −

εµνλρvλpρ
√

M
(p −mcv)2 −m2

c
f̂Bc

{
1 +

∞∑
k=1

(i)k

k!
Λ̄k

[
2(p −mcv) · v

m2
c − (p −mcv)2

]k

.

}
I all terms with k ≥ 1 are suppressed by powers of Λ̄/mc

2(p −mcv) · v
m2

c − (p −mcv)2
=

1
mc

(
1− q2/M2 + p2/M2 − 2mc/M

1− q2/M2 − p2mb/(mcM2)

)
I replacing mc → mu,d,s we return to the situation with B meson DA



� the LO spectral density
I The correlator in the local limit and at leading power:

F (V )(p2, q2) =
fBc M

mb
(
mcM2/mb − q2mc/mb − p2

) + O(αs) ,

I the pole in p2 is shifted from
(naively expected) 4m2

c to

p2 ∼ mc
mb

(
(mc + mb)2 + |q2|

)
• parametrically larger than 4m2

c !

• at q2
max = (mb −mc)2

(zero recoil) the pole at p2 = 4m2
c

I the LO spectral density is beyond
the duality interval of J/ψ

LO 

,,--- - - - - - NLO 
I 

0 

A/LO 



� Filling the gap with NLO spectral density

I In the sum rule ImF (OPE) starts at NLO, O(αS)

I Bc → J/ψ form factors at large recoil are dominated by hard
gluon exchanges (no soft overlap mechanism)

I three-point QCD sum rules for Bc → J/ψ in LO – essentially
incomplete

V.Kiselev, A.Likhoded, A.Onischenko (2000)



� NLO diagrams

I O(αs) diagrams
p

b

c

c

q

Bc

(a)

Bc

(b)

Bc

(c)

Bc

(d)

Tex
t

x
xx

x

• standard loop calculation is hard (too many scales)
• only two cut (x ) diagrams with ImF (p2) ∼ θ(p2 − 4m2

c ).
• approximating the spectral density by NLO expression.



� Results for the Bc → J/ψ form factors

I numerical results at q2 ≤ 0 and comparison with lattice QCD

I z-expansion to q2 > 0 not available, no R((J/ψ) prediction



� Summary

I QCD sum rules for heavy hadrons and HQET,
for both local and light-cone OPE.

I New sum rule for Bc → J/ψ form factors

• the correlation function approximated with local OPE

• fBc is the only nonperturbative parameter at leading power

• at q2 . 0 the duality region for J/ψ filled by NLO diags

• no soft overlap for the large recoil Bc → J/ψ transition

I future perspectives: power corrections, Bc → ηc , ψ(2S), ...

recollection of our MITP program in January 2020


