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Motivation

‣ MC event generators are essential tools for particle physics 

phenomenology


‣ They provide realistic simulations: first principles QFT calculations are 

combined with parton showers and hadronization modelling


‣ They start from a perturbative description of the hard-interaction and 

predict the evolution of the event down to very small 

(nonperturbative) scales  GeV


‣ State-of-the-art is the inclusion of partonic                                          

NNLO corrections. Several methods are                                                 

available for colour-singlet processes                                                                    

(UNNLOPS, MiNNLOPS, GENEVA)

𝒪(1)
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N-Jettiness and Factorization

‣ N-jettiness resolution variables: given an M-particle phase space point with 


‣ The limit                describes a N-jet event where the unresolved emissions                                                        
can be either soft or collinear to the final state jets or initial state beams


‣ Color singlet final state, relevant variable is 0-jettiness aka “beam thrust”                                                      
[Stewart, Tackmann,Waalewijn `09,`10]


‣ When an extra jet is present the relevant jet resolution variable is 1-jettiness


‣ Class of geometric measures  (  dimensionless parameter), remove the dependence on the 
energies  and only depends on the directions . Introduce frame dependence.


‣ Choice of the  determines the frame in which the 1-jettiness is evaluated. We focus on 3 choices: 
Laboratory frame, Underlying Born (UB) frame ( ), Color Singlet (CS) frame ( ).

M ≥ N

Qi = ρi 2 Ei ρi
Ei ̂qi

ρi
YVj = 0 YV = 0

way of overcoming the problem is to adjust the free parameters of the smooth cone isolation

algorithm to reproduce the e↵ects of the fixed cone procedure so that a comparison is at

least feasible. A second viable possibility, which has been recently investigated in [10, 44],

is the introduction of a hybrid cone isolation procedure which is very similar in spirit to

the smooth cone isolation. In this case the theoretical calculation is initially carried out

using the smooth cone isolation with a small radius parameter Riso such that only a tiny

slice of phase space around the photon direction is removed. As second step, the fixed cone

isolation procedure with a larger radius R � Riso is applied to the events which passed

the smooth cone criterion. In other words one initially applies very loose smooth cone

isolation cuts which are then tightened by the fixed cone procedure. In this paper we use

both the smooth cone and the hybrid isolation procedures. The first method is used for the

comparison to the results obtained with the MATRIX code [26] in subsection 4.3, while the

second isolation requirement is instead used for the comparison to the LHC data in section

5. The precise values of the isolation parameters, the selection cuts and the set of parton

distribution functions (PDF) which are employed in our calculations will be specified in

the sections below.

3 Resummation in Soft-Collinear E↵ective Theory

The N -jettiness [25] resolution variable is used within the Geneva framework to discrimi-

nate between resolved emissions with di↵erent jet multiplicities. Given anM -particle phase

space point �M with M � N , it is defined as

TN (�M ) =
X

k

min
�
q̂a · pk, q̂b · pk, q̂1 · pk, . . . , q̂N · pk

 
, (3.1)

where the sum over k runs over all QCD partons and where q̂i = ni = (1,~ni) are light-like

reference vectors parallel to the beam and jet directions. The limit TN ! 0 describes a

N -jet event, where the unresolved emissions can either be soft or collinear to the final state

jets or to the beams. This observation translates into a factorization formula [23] for the

TN spectrum in this limit. In the case of color singlet final state processes (such as Drell-

Yan, HV , diphoton production,. . . ) the relevant resolution variable which is resummed to

NNLL0 accuracy is the 0-jettiness (beam thrust). Starting from the general definition in

(3.1), the expression for 0-jettiness is considerably simplified [25]

T0 =
X

k

|~pkT | e
�|⌘k�Y | , (3.2)

where |~pkT | and ⌘k are the transverse momentum and the rapidity of the emission pk. The

0-jettiness cross section for small T0 obeys a factorization formula which has been derived

in [23, 24] originally for Drell-Yan, but it holds for any final state color singlet production

process

d�SCET

d�0dT0
=
X

ij

H��

ij
(Q2, t, µ)

Z
dta dtbBi(ta, xa, µ)Bj(tb, xb, µ)S

✓
T0 �

ta + tb
Q

,µ

◆
, (3.3)
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N-jettiness as jet-resolution variable

I N-jettiness is a good resolution parameter. Global physical observable
with straightforward definitions for hadronic colliders, in terms of beams qa,b

and jet-directions qj

TN =
2

Q

X

k

min
�

q1 · pk, . . . , qN · pk

 
) TN =

2

Q

X

k

min
�

qa · pk, qb · pk, q1 · pk, . . . , qN · pk

 

Jet 2

Soft

Soft Jet 1

e+ e�

1

2 Jet 2

Jet b Jet a

Soft

Jet 3

Jet 1b

a

1

32

p p

`�

`+

I N-jettiness has good factorization properties, IR safe and resummable at
all orders. Resummation known at NNLL for any N in SCET [Stewart et al. 1004.2489,

1102.4344]I TN ! 0 for N pencil-like jets, TN � 0 spherical limit.
I TN < T cut

N limits the activity outside the jets
Simone Alioli | GENEVA | DESY 3/6/2021 | page 6

In the LAB frame we choose Qa,b = 2⇢a,bEa,b = ⇢a,b xa,bEcm = ⇢a,b QV j e
±YV j and QJ =

2⇢J EJ . (Note: for a massless jet EJ = (Q2

V j
�M

2

``
)/(2QV j) in terms of Mandelstam variables

QV j,M`` at the Born level). This means that the T1 definition reads

T1 =
X

k

min
�2qa · pk

Qa

,
2qb · pk
Qb

,
2qJ · pk

QJ

 
. (5)

with qa,b = xa,bEcmna,b/2 = QV j e
±YV jna,b/2. In order to minimize the power corrections

we set ⇢a,b = e
⌥YV j and ⇢J = 1 in the LAB frame. In the frame where the V j system has

YV j = 0 this results into the definition of T1

T̂1 =
X

k

min{n̂a · p̂k, n̂b · p̂k, n̂J · p̂k} . (6)

where the hat notation denotes the YV j = 0 frame.
It is possible to choose appropriate values for the ⇢i, where i = a, b, J such that we can

express the T1 definition in the laboratory frame in terms of the momenta defined in the
YV j = 0 frame. Starting from the following definition

T
LAB

1
=
X

k

min{
n̂a · p̂k

⇢a
,
n̂b · p̂k

⇢b
,
n̂J · p̂k

⇢J
} , (7)

where the n̂i and p̂k are evaluated in the YV j = 0 frame, we find the following values for the
⇢i’s:

⇢a = e
ŶLAB ,

⇢b = e
�ŶLAB ,

⇢J =
e
�ŶLAB(p̂J)+ + e

ŶLAB(p̂J)�

2ÊJ

, (8)

where all the hatted quantities are evaluated in the YV j = 0 frame. In particular ŶLAB is the
rapidity of the laboratory frame as seen in the YV j = 0 frame and (p̂J)⌥ are the projections
of the constructed massless jet 4-momentum in the YV j = 0 frame. For configurations with
up to 1 extra parton the YV j = 0 frame corresponds to the CM frame. It is then possible to
express the ŶLAB in terms of the partonic center of mass rapidity seen in the laborary frame
as ŶLAB = �Y

LAB frame

CM
.

The same reasoning can be used to obtain the ⇢i to express the T1 definition in the color
singlet frame YV = 0 in terms of the momenta defined in the YV j = 0 frame. We have

⇢a = e
ŶV ,

⇢b = e
�ŶV ,

⇢J =
e
�ŶV (p̂J)+ + e

ŶV (p̂J)�

2ÊJ

, (9)

where now ŶV is the rapidity of the color singlet as seen in the YV j = 0 frame. For config-
urations with up to 1 extra parton the YV j = 0 frame corresponds to the CM frame so this
can be expressed in terms of rapidities in the laboratory frame as ŶV = YV � YCM.

2
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Monte Carlo implementation
‣ GENEVA [Alioli,Bauer,Berggren,Tackmann, Walsh `15], [Alioli,Bauer,Tackmann,Guns `16], [Alioli,Broggio,Lim, 

Kallweit,Rottoli `19],[Alioli,Broggio,Gavardi,Lim,Nagar,Napoletano,Kallweit,Rottoli `20-`21] combines 3 
theoretical tools that are important for QCD predictions into a single framework


‣ fully differential fixed-order calculations, up to NNLO via 0-jettiness or  subtraction


‣ up to NNLL` resummation for 0-jettiness in SCET or N LL for  via RadISH for colour singlet 
processes


‣ shower and hadronize events (PYTHIA8)


‣ IR-finite definition of events based on resolution parameters            and 

qT

3 qT

IR-safe definitions of events beyond leading-order

Fisrt step of any NNLO+PS: an IR safe definition of events with up to two extra
emissions. Using 0-jet and 1-jet resolution parameters for color singlets

I Emissions below T
cut

N
are unresolved ( i.e. integrated over) and the kinematic

considered is the one of the event before the extra emission(s).
I Emissions above T

cut

N
are retained and the kinematics is fully specified.

An M-parton event is considered a N-jet event, N  M , fully differential in �N

• power corrections in T
cut

N
due to phase-space projection.

• vanish for IR-safe observables as T
cut

N
! 0

Iterating the procedure, the phase space is sliced into jet-bins

Different choices are possible for the resolution parameters. Assume zero- and
one-jettiness if not explicitly stated. Simone Alioli | GENEVA | CERN TH WS 1/7/2020 | page 4

T cut
0

where the convolution between the di↵erent functions is written in schematic form. The

scale setting procedure will be explained in the next section where we will introduce the

profile functions which are employed to switch-o↵ resummation outside its kinematical

range of validity. At NNLL0 accuracy, we need to know the boundary conditions of the

evolutions, namely the hard, beam and soft functions up to NNLO accuracy, and the

cusp(non-cusp) anomalous dimensions up to three(two)-loop order. The expressions for the

anomalous dimensions to the required order can be found in [21, 48–51]. The gluon fusion

channel contribution is included in the present calculation only at fixed-order accuracy.

We leave for future work the resummation of this channel.

4 Implementation within the Geneva framework

In this section we briefly review the Geneva framework and present the implementation

of the diphoton production process within this Monte Carlo code by highlighting the main

di↵erences compared to the previous processes such as Drell-Yan [40] and HV production

[42]. We refer to [39, 40, 42] for more details on the general features of the Geneva method.

An event generator produces N -jet physical events where all of the IR divergences are

canceled on an event-by-event basis. TN is used as the N -jet resolution variable which

defines the Geneva Monte Carlo (MC) cross sections by including the contributions of all

the unresolved emissions below a certain resolution cuto↵ TN < T
cut

N
. In the present case,

exclusive cross sections for events with 0, 1 and 2 jets are defined by employing cuts on the

T0 and T1 resolution variables as

�0 events:
d�mc

0

d�0

(T cut

0 ) ,

�1 events:
d�mc

1

d�1

(T0 > T
cut

0 ; T cut

1 ) ,

�2 events:
d�mc

�2

d�2

(T0 > T
cut

0 , T1 > T
cut

1 ) . (4.1)

The jet definition used here, contrary to an ordinary jet algorithm, depends on a phase

space map �N (�M ) (with N  M) which projects the M -body phase space unresolved

emissions onto �N points. Using (4.1) the cross section for a generic observable X is

written as

�(X) =

Z
d�0

d�mc

0

d�0

(T cut

0 )MX(�0)

+

Z
d�1

d�mc

1

d�1

(T0 > T
cut

0 ; T cut

1 )MX(�1)

+

Z
d�2

d�mc

�2

d�2

(T0 > T
cut

0 , T1 > T
cut

1 )MX(�2) , (4.2)

where MX(�N ) is the measurement function that computes the observable X for the N -

parton final state point �N . The above defined cross section is not equivalent to a fixed

order calculation. Indeed for any unresolved emission the observable is computed on the

projected point �N (�M ) rather than the exact �M point. However the di↵erence vanishes

– 7 –

T cut
1

‣ When we take                   , large logarithms of          ,        appear and need to be resummed


‣ Including the higher-order resummation will improve the accuracy of the predictions across 
the whole spectrum

TNT cut
NT cut

N ! 0
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Zero-jettiness resummation for top-quark pair 
production at the LHC

Based on arXiv:2111.03632, S. Alioli, AB, M.A. Lim
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0-jettiness resummation for  productiontt̄

‣ Top-quark properties are very interesting, interplay with the Higgs sector


‣ It is desirable to have a NNLO+PS calculation. Extrapolation from fiducial to 
inclusive phase space is done using NLO event generators [Behring, Czakon, Mitov, 

Papanastasiou, Poncelet `19]


‣ NNLO+PS for  production available in MINNLOPS framework [Mazzitelli, Monni, Nason, 

Re, Wiesemann, Zanderighi `20, `21]


‣ Including higher-order resummation can improve the description of observables 
(this is the case of the GENEVA generator)

tt̄
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0-jettiness resummation for  productiontt̄

‣ To reach NNLO+PS accuracy in GENEVA


‣ NLO calculations for  and +jet


‣ Resummed calculation at NNLL` in the resolution variable     


‣  resummation via SCET (NNLL in [1307.2464]) or direct QCD [1408.4564], [1806.01601] 
NNLL’ ingredients (soft functions) in [S. Catani, S. Devoto, M. Grazzini, J. Mazzitelli 2301.11786], 
[Angeles-Martinez, Czakon, Sapeta 1809.01459]


‣ 0-jettines resummation is used for colour-singlet in GENEVA, has to be 
extended for  production


‣ Definition of 0-jettiness has to be adapted with top-quarks in the final state, 
we choose to treat them like EW particles and exclude them from the sum 
over radiation


‣ We first need to develop the resummation framework

tt̄ tt̄

qT

tt̄

T0
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Factorization

dσ
dΦ0dτB

= M ∑
ij={qq̄,q̄q,gg}

∫ dta dtb Bi(ta, za, μ) Bj(tb, zb, μ) Tr[Hij(Φ0, μ) Sij(MτB −
ta + tb

M
, Φ0, μ)]

We derived a factorization formula (see 2111.03632 Appendix A) using SCET+HQET in the region 

  when  are all hard scales (in case of boosted regime  situation 
similar to [Fleming, Hoang,Mantry,Stewart `07][Bachu,Hoang,Mateu,Pathak,Stewart `21])

T0 ! 0 Mtt̄ ∼ mt ∼ ̂s Mtt̄ ≫ mt

Hard functions (color matrices)

known to NLO

Soft functions (color matrices)

known to NLO

Beam functions [Stewart, 
Tackmann, Waalewijn, [1002.2213], 

known up to N LO3

It is convenient to transform the soft and beam functions in Laplace space to solve the RG equations, 
the factorization formula is turn into a product of functions

ℒ[ dσ
dΦ0dτB ] = M ∑

ij={qq̄,q̄q,gg}

B̃i(ln
Mκ
μ2

, za) B̃j(ln
Mκ
μ2

, zb) Tr[Hij(ln
M2

μ2
, Φ0) S̃ij(ln

μ2

κ2
, Φ0)]

Three different scales arise μH = Mtt̄, μB = 𝒯0Mtt̄, μS = 𝒯0
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Hard functions

The hard functions arise from matching the full theory onto the EFT, they can be extracted from colour 
decomposed loop amplitudes. At NLO it was first computed in [Ahrens, Ferroglia, Neubert, Pecjak, Yang, 
1003.5827]. They satisfy the RG equations

We have thus been able to express the di↵erential cross section as a product of functions

in Laplace space. Moreover, the Laplace-transformed soft function in eq. (2.8) can be

written as a polynomial in the logarithm of the Laplace variable , with function-valued

coe�cients.

We are now in a position to solve the evolution equations to all orders and hence

perform the resummation. We consider the various ingredients of the factorisation theorem

in turn.

2.4 The hard function and its evolution

The colour-decomposed hard functions Hij(�0, µ) for tt̄ production were first computed at

one-loop order in Ref. [32]. The two-loop amplitudes which are necessary for the construc-

tion of the NNLO hard functions can instead be found in Ref. [69]. From hereon we express

the �0 dependence in terms of the variables �t, ✓ defined in eq. (2.4) and the top-quark

pair invariant mass M . Dropping the channel subscripts for ease of notation, each hard

function satisfies the following RG equation [32]

d

d lnµ
H(M,�t, ✓, µ) = �H(M,�t, ✓, µ)H(M,�t, ✓, µ) +H(M,�t, ✓, µ)�

†

H
(M,�t, ✓, µ) ,

(2.9)

where we conveniently wrote the anomalous dimension

�H(M,�t, ✓, µ) = �cusp(↵s)

✓
ln

M2

µ2
� i⇡

◆
+ �

h(M,�t, ✓,↵s) . (2.10)

The non-cusp anomalous dimension matrices �
h were computed up to two-loop order in

Refs. [30, 31]. The all-order solution can be written as [32]

H(M,�t, ✓, µ) = U(M,�t, ✓, µh, µ)H(M,�t, ✓, µh)U
†(M,�t, ✓, µh, µ) , (2.11)

where µh is a hard scale of the process, e.g. the tt̄ invariant mass M , such that the hard

function is free from large logarithms. When evaluated at a generic scale µ instead of at

the hard scale µh, the matrix U performs the resummation of these hard logarithms.

For later convenience, we use the fact that U can be rewritten by separating out a

part which comes from the cusp evolution and is diagonal in colour space and a leftover

piece u which also contains non-diagonal contributions:

U(M,�t, ✓, µh, µ) = exp


2S(µh, µ)� a�(µh, µ)

✓
ln

M2

µ2

h

� i⇡

◆�
u(M,�t, ✓, µh, µ) . (2.12)

The double and single logarithmic resummation are provided by the functions S and a�
respectively, defined as

S(µa, µb) = �
Z

↵s(µb)

↵s(µa)

d↵
�cusp(↵)

�(↵)

Z
↵

↵s(µa)

d↵0

�(↵0)
,

a�(µa, µb) = �
Z

↵s(µb)

↵s(µa)

d↵
�cusp(↵)

�(↵)
. (2.13)
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perform the resummation. We consider the various ingredients of the factorisation theorem

in turn.

2.4 The hard function and its evolution

The colour-decomposed hard functions Hij(�0, µ) for tt̄ production were first computed at

one-loop order in Ref. [32]. The two-loop amplitudes which are necessary for the construc-

tion of the NNLO hard functions can instead be found in Ref. [69]. From hereon we express

the �0 dependence in terms of the variables �t, ✓ defined in eq. (2.4) and the top-quark

pair invariant mass M . Dropping the channel subscripts for ease of notation, each hard

function satisfies the following RG equation [32]
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The non-cusp anomalous dimension matrices �
h were computed up to two-loop order in

Refs. [30, 31]. The all-order solution can be written as [32]
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where µh is a hard scale of the process, e.g. the tt̄ invariant mass M , such that the hard

function is free from large logarithms. When evaluated at a generic scale µ instead of at
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For later convenience, we use the fact that U can be rewritten by separating out a
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The o↵-diagonal, non-cusp evolution is instead provided by the colour matrix

u(M,�t, ✓, µh, µ) = P exp

Z
↵s(µ)

↵s(µh)

d↵

�(↵)
�
h(M,�t, ✓,↵) , (2.14)

where the symbol P specifies the path-ordered exponential. All of the previous ingredients

S, a� and u are channel-specific and their exact definition depends on whether one is

examining the quark or gluon-initiated case. Their explicit expressions can be found in

e.g. the appendix of Ref. [32].

In all functions so far, we have highlighted the dependence on both the invariant mass

M of the tt̄ pair and on the variable �t. These are related by eq. (2.4) through the value

of the top-quark mass mt. In order to simplify the notation, from hereon we will drop

the explicit M dependence in the soft functions and in the evolution kernels, with the

understanding that these objects still implicitly depend on mt.

2.5 The soft function and its evolution

To the best of our knowledge, the soft function for tt̄ production which appears in eq. (2.6)

has been defined for the first time in this work. In this section, we therefore compute

the function at one-loop order, which is a necessary ingredient for resummation of the

logarithms of T0 at NLL0 accuracy and beyond.

2.5.1 Calculation of the one-loop soft function

The integrated soft functions in momentum space are given by

SB,ij(Ts,�t, ✓, µ) =
Z

dk+a dk
+

b
Sij(k

+

a , k
+

b
,�t, ✓, µ) �(Ts � k+

b
� k+a ) . (2.15)

where the channel indices i, j = {qq̄, q̄q, gg}. The operatorial definition in SCET is given

by eq. (A.30). We expand the soft functions in ↵s as

Sij(k
+

a , k
+

b
,�t, ✓, µ) = s(0)

ij
�(k+a )�(k

+

b
) +

✓
↵s

4⇡

◆
S(1)

ij
(k+a , k

+

b
,�t, ✓, ✏, µ) +O(↵2

s ), (2.16)

where we have expressed the bare coupling ↵0
s in terms of the renormalised coupling ↵s(µ)

in the MS scheme using the relation Z↵s ↵s(µ)µ2✏ = e��E✏(4⇡)✏↵0
s . The leading order

(LO) coe�cients s(0)
ij

for the qq̄ and gg channels are defined in eq. (65) of Ref. [32]. The

next-to-leading order (NLO) bare soft functions in momentum space can be written as

S(1)

bare, ij
(k+a , k

+

b
,�t, ✓, ✏, µ) =

X

↵,�

w↵�

ij
Î↵�(k+a , k+b ,�t, ✓, ✏, µ) , (2.17)

where the colour matrices w↵�

ij
for the qq̄ and gg channels are defined in eq. (71) of Ref. [32]

and the integrals are defined as

Î↵�(k+a , k+b ,�t, ✓, ✏, µ) = �2(µ2e�E )✏

⇡1�✏

Z
ddk

v↵ · v�
v↵ · k v� · k �(k2)⇥(k0) (2.18)

⇥
⇥
�(k+a � k · na)⇥(k · nb � k · na) �(k

+

b
) + �(k+

b
� k · nb)⇥(k · na � k · nb) �(k

+

a )
⇤
.
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Solution:

We have split the anomalous dimension into a cusp (diagonal in colour space) and non-cusp 
(not diagonal) part

We evaluate the matrix exponential

u as a series expansion in  [1003.5827],


[Buchalla,Buras,Lautenbacher `96]
αs

[Ferroglia, Neubert, Pecjak, Yang,`09]
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Beam functions

The beam functions are given by convolutions of perturbative kernels with the standard PDFs  fi(x, μ)

Bi(t, z, μ) = ∑
j

∫
1

z

dξ
ξ

Iij(t, z /ξ, μ) fj(ξ, μ)

RG equation in Laplace space is given by 

 kernels are known up to N LO,

process independent

Iij
3

dimension for the beam function. The evolution formula in eq. (2.34) for the soft function

can therefore be rewritten as

SB(l
+,�t, ✓, µ) = exp

⇥
4S(µs, µ) + 2a�B (µs, µ)

⇤
(2.36)

⇥ u†(�t, ✓, µ, µs) S̃B(@⌘s ,�t, ✓, µs)u(�t, ✓, µ, µs)
1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
,

where the order of the scale arguments in the u evolution matrices is now inverted relative

to the v matrices and

a�B (µs, µ) = �
Z

↵s(µ)

↵s(µs)

d↵
�B(↵)

�(↵)
. (2.37)

2.6 The beam functions and their evolution

The process-independent T0 beam functions Bi have been computed up to N3LO accuracy

and are available in the literature [62–66]. The quark and gluon beam functions satisfy the

following RG equation in Laplace space

d

d lnµ
B̃i(Lc, z, µ) =


� 2�cusp(↵s)Lc + �Bi (↵s)

�
B̃i(Lc, z, µ) , (2.38)

where the index i = {q, q̄, g}, Lc = ln
⇥
(M)/µ2

⇤
and �cusp = CD�cusp with CD = {CF , CA}

for the quark and the gluon beam functions respectively. The explicit expressions for the

non-cusp beam anomalous dimensions �B
i

up to NNLO can be found in e.g. Appendix D

of Ref [57]. Dropping the flavour index for brevity, the evolution equation has the solution

B̃(Lc, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

✓
M

µ2

B

◆
⌘B

, (2.39)

where ⌘B ⌘ 2a�(µB, µ) and µB ⇠
p
T0M is the beam scale. Taking the inverse transform

again we find that, in momentum space,

B(t, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

1

t

✓
t

µ2

B

◆
⌘B e��E⌘B

�(⌘B)
. (2.40)

3 Resummation via renormalisation group evolution

In this section, we combine the factorisation theorem and the perturbative ingredients

presented in sec. 2 to resum logarithms of T0/M . We present explicit formulæ for the

resummed T0 spectrum at NLL0, NNLL and NNLL0 order.

3.1 All-order solutions of the RG equations

Substituting the resummed expressions for the ingredients of eq. (2.6) which we have pre-

sented in sec. 2 and after integrating over the virtualities ta and tb, we are able to write

– 12 –
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Substituting the resummed expressions for the ingredients of eq. (2.6) which we have pre-

sented in sec. 2 and after integrating over the virtualities ta and tb, we are able to write

– 12 –

with solution in momentum space

where  and the collinear log is given by  ηB ≡ 2aΓ(μB, μ) Lc = ln(Mκ /μ2)
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Soft functions
We computed the soft functions matrices at NLO which were unknown for this observable 

The o↵-diagonal, non-cusp evolution is instead provided by the colour matrix

u(M,�t, ✓, µh, µ) = P exp

Z
↵s(µ)

↵s(µh)

d↵

�(↵)
�
h(M,�t, ✓,↵) , (2.14)

where the symbol P specifies the path-ordered exponential. All of the previous ingredients

S, a� and u are channel-specific and their exact definition depends on whether one is

examining the quark or gluon-initiated case. Their explicit expressions can be found in

e.g. the appendix of Ref. [32].

In all functions so far, we have highlighted the dependence on both the invariant mass

M of the tt̄ pair and on the variable �t. These are related by eq. (2.4) through the value

of the top-quark mass mt. In order to simplify the notation, from hereon we will drop

the explicit M dependence in the soft functions and in the evolution kernels, with the

understanding that these objects still implicitly depend on mt.

2.5 The soft function and its evolution

To the best of our knowledge, the soft function for tt̄ production which appears in eq. (2.6)

has been defined for the first time in this work. In this section, we therefore compute

the function at one-loop order, which is a necessary ingredient for resummation of the

logarithms of T0 at NLL0 accuracy and beyond.

2.5.1 Calculation of the one-loop soft function

The integrated soft functions in momentum space are given by

SB,ij(Ts,�t, ✓, µ) =
Z

dk+a dk
+

b
Sij(k

+

a , k
+

b
,�t, ✓, µ) �(Ts � k+

b
� k+a ) . (2.15)

where the channel indices i, j = {qq̄, q̄q, gg}. The operatorial definition in SCET is given

by eq. (A.30). We expand the soft functions in ↵s as

Sij(k
+

a , k
+

b
,�t, ✓, µ) = s(0)

ij
�(k+a )�(k

+

b
) +

✓
↵s

4⇡

◆
S(1)

ij
(k+a , k

+

b
,�t, ✓, ✏, µ) +O(↵2

s ), (2.16)

where we have expressed the bare coupling ↵0
s in terms of the renormalised coupling ↵s(µ)

in the MS scheme using the relation Z↵s ↵s(µ)µ2✏ = e��E✏(4⇡)✏↵0
s . The leading order

(LO) coe�cients s(0)
ij

for the qq̄ and gg channels are defined in eq. (65) of Ref. [32]. The

next-to-leading order (NLO) bare soft functions in momentum space can be written as

S(1)

bare, ij
(k+a , k

+

b
,�t, ✓, ✏, µ) =

X

↵,�

w↵�

ij
Î↵�(k+a , k+b ,�t, ✓, ✏, µ) , (2.17)

where the colour matrices w↵�

ij
for the qq̄ and gg channels are defined in eq. (71) of Ref. [32]

and the integrals are defined as

Î↵�(k+a , k+b ,�t, ✓, ✏, µ) = �2(µ2e�E )✏

⇡1�✏

Z
ddk

v↵ · v�
v↵ · k v� · k �(k2)⇥(k0) (2.18)

⇥
⇥
�(k+a � k · na)⇥(k · nb � k · na) �(k

+

b
) + �(k+

b
� k · nb)⇥(k · na � k · nb) �(k

+

a )
⇤
.
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ij
for the qq̄ and gg channels are defined in eq. (71) of Ref. [32]

and the integrals are defined as

Î↵�(k+a , k+b ,�t, ✓, ✏, µ) = �2(µ2e�E )✏

⇡1�✏

Z
ddk

v↵ · v�
v↵ · k v� · k �(k2)⇥(k0) (2.18)

⇥
⇥
�(k+a � k · na)⇥(k · nb � k · na) �(k

+

b
) + �(k+

b
� k · nb)⇥(k · na � k · nb) �(k

+

a )
⇤
.
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The renormalisation procedure also completely determines the structure of the O(↵s)

term Z(1)

S
, which allows us to extract the soft anomalous dimension at one-loop. We verified

that by doing so, this object satisfies consistency relations required by RG invariance of

eq. (2.6) (see eq. (2.35)). In addition, by exploiting this relation at one order higher, we

are able to extract the soft anomalous dimension at two-loop order.

2.5.2 Solving the soft RG equations at fixed order

A resummation at full NNLL0 accuracy would require knowledge of the two-loop contribu-

tions to the soft function, which have not yet been calculated. It is, however, possible to

obtain partial knowledge about the two-loop function by solving the renormalisation group

evolution equations at fixed order. In this way, one can obtain the logarithmic terms at

O(↵2
s) expressed in terms of coe�cients at lower order, leaving only the term proportional

to �(T0) to be determined by an explicit calculation.

The soft functions in Laplace space satisfy the following renormalisation group equa-

tions

d

d lnµ
S̃B(L,�t, ✓, µ) =


�cuspL � �

s
†
�
S̃B(L,�t, ✓, µ) + S̃B(L,�t, ✓, µ)


�cuspL � �

s

�
,

(2.24)

where we have dropped the channel subscript for simplicity. Since the expansions of �cusp

and the non-cusp soft anomalous dimension matrices �s start at O(↵s), defining

S̃B(L,�t, ✓, µ) = s(0) +
↵s

4⇡
S̃(1)

B
+

✓
↵s

4⇡

◆2

S̃(2)

B
+O(↵3

s) (2.25)

and expanding eq. (2.24) at NNLO we have

d

dL
S̃(2)

B
=

1

2
S̃(1)

B


(��(0)

cuspL� �0) + �
s(0)

�
+

1

2
s(0)


� �(1)

cuspL+ �
s(1)

�
+ h.c. (2.26)

Denoting further the logarithmic coe�cients of the soft function as

S̃B(L,�t, ✓, µ) =
1X

n=0

2nX

m=0

⇣↵s

4⇡

⌘
n

S̃(n,m)

B
(�t, ✓)L

m (2.27)

and again suppressing arguments for brevity, we find the solution

S̃(2,4)

B
= �1

8
S̃(1,2)

B
�(0)

cusp + h.c.

S̃(2,3)

B
=

1

6

⇣
�S̃(1,1)

B
�(0)

cusp + S̃(1,2)

B
�
s(0) � �0S̃

(1,2)

B

⌘
+ h.c. (2.28)

S̃(2,2)

B
=

1

4

⇣
�S̃(1,0)

B
�(0)

cusp + S̃(1,1)

B
�
s(0) � s(0)�(1)

cusp � �0S̃
(1,1)

B

⌘
+ h.c.

S̃(2,1)

B
=

1

2

⇣
S̃(1,0)

B
�
s(0) + s(0)�s(1) � �0S̃

(1,0)

B

⌘
+ h.c.

Upon transforming back to momentum space, we thus have all the soft ingredients

necessary to construct the T0 spectrum at approximate NNLO. We are only missing the
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dimension for the beam function. The evolution formula in eq. (2.34) for the soft function

can therefore be rewritten as

SB(l
+,�t, ✓, µ) = exp

⇥
4S(µs, µ) + 2a�B (µs, µ)

⇤
(2.36)

⇥ u†(�t, ✓, µ, µs) S̃B(@⌘s ,�t, ✓, µs)u(�t, ✓, µ, µs)
1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
,

where the order of the scale arguments in the u evolution matrices is now inverted relative

to the v matrices and

a�B (µs, µ) = �
Z

↵s(µ)

↵s(µs)

d↵
�B(↵)

�(↵)
. (2.37)

2.6 The beam functions and their evolution

The process-independent T0 beam functions Bi have been computed up to N3LO accuracy

and are available in the literature [62–66]. The quark and gluon beam functions satisfy the

following RG equation in Laplace space

d

d lnµ
B̃i(Lc, z, µ) =


� 2�cusp(↵s)Lc + �Bi (↵s)

�
B̃i(Lc, z, µ) , (2.38)

where the index i = {q, q̄, g}, Lc = ln
⇥
(M)/µ2

⇤
and �cusp = CD�cusp with CD = {CF , CA}

for the quark and the gluon beam functions respectively. The explicit expressions for the

non-cusp beam anomalous dimensions �B
i

up to NNLO can be found in e.g. Appendix D

of Ref [57]. Dropping the flavour index for brevity, the evolution equation has the solution

B̃(Lc, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

✓
M

µ2

B

◆
⌘B

, (2.39)

where ⌘B ⌘ 2a�(µB, µ) and µB ⇠
p
T0M is the beam scale. Taking the inverse transform

again we find that, in momentum space,

B(t, z, µ) = exp
⇥
�4S(µB, µ)� a�B (µB, µ)

⇤
B̃(@⌘B , z, µB)

1

t

✓
t

µ2

B

◆
⌘B e��E⌘B

�(⌘B)
. (2.40)

3 Resummation via renormalisation group evolution

In this section, we combine the factorisation theorem and the perturbative ingredients

presented in sec. 2 to resum logarithms of T0/M . We present explicit formulæ for the

resummed T0 spectrum at NLL0, NNLL and NNLL0 order.

3.1 All-order solutions of the RG equations

Substituting the resummed expressions for the ingredients of eq. (2.6) which we have pre-

sented in sec. 2 and after integrating over the virtualities ta and tb, we are able to write

– 12 –

term S̃(2,0)

B
, which contributes only at the point T0 = 0 and must be computed separately.

This means that once we combine these with the contributions coming from the beam

and hard functions we are able to cancel all the singular pieces at small T0 of the NLO

calculation for tt̄+jet production.

2.5.3 Evolution

In Laplace space, the all-order solutions of the soft RG evolution in eq. (2.24) can be

written as

S̃B(L,�t, ✓, µ) = V†(,�t, ✓, µs, µ) S̃B(L,�t, ✓, µs)V(,�t, ✓, µs, µ) , (2.29)

where the unitary matrix V satisfies the di↵erential equation

d

d lnµ
V(,�t, ✓, µs, µ) =

✓
�cusp ln

2

µ2
� �s

◆
V(,�t, ✓, µs, µ) , (2.30)

and the soft scale µs ⇠ T0 minimises the logarithms in the soft functions. Proceeding

analogously to the hard function case and resumming the soft logarithms while evolving

from the soft scale to a generic scale µ, we find the solution

V(,�t, ✓, µs, µ) = exp [2S(µs, µ)]

✓
2

µ2
s

◆�a�(µs,µ)

v(�t, ✓, µs, µ), (2.31)

with the non-cusp soft evolution matrices given by

v(�t, ✓, µs, µ) = P exp

(
�
Z

↵s(µ)

↵s(µs)

d↵

�(↵)
�
s(�t, ✓,↵)

)
. (2.32)

Substituting these ingredients into eq. (2.29) we obtain

S̃B(L,�t, ✓, µ) = exp [4S(µs, µ)]v
†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

✓
2

µ2
s

◆⌘s

(2.33)

where ⌘s ⌘ �2a�(µs, µ). In the last equation we have rewritten the logarithms appearing as

an argument of the soft function in terms of partial derivatives acting on the last factor [71,

72]. Transforming back to momentum space yields

SB(l
+,�t, ✓, µ) = exp [4S(µs, µ)]v

†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

⇥ 1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
. (2.34)

Due to the RG invariance of the full cross section we have the following relation between

the non-cusp anomalous dimensions of the hard, soft, and beam functions

�
s = �

h + �B 1 , (2.35)

where the non-diagonal part of the soft anomalous dimension arises entirely from the

non-cusp anomalous dimension of the hard function and �B is the non-cusp anomalous
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One can average over the two hemisphere momenta, the soft function

satisfies the RG equation in Laplace space

Solution in momentum space, where we used the consistency relation 
among anomalous dimensions

term S̃(2,0)

B
, which contributes only at the point T0 = 0 and must be computed separately.

This means that once we combine these with the contributions coming from the beam

and hard functions we are able to cancel all the singular pieces at small T0 of the NLO

calculation for tt̄+jet production.

2.5.3 Evolution

In Laplace space, the all-order solutions of the soft RG evolution in eq. (2.24) can be

written as

S̃B(L,�t, ✓, µ) = V†(,�t, ✓, µs, µ) S̃B(L,�t, ✓, µs)V(,�t, ✓, µs, µ) , (2.29)

where the unitary matrix V satisfies the di↵erential equation

d

d lnµ
V(,�t, ✓, µs, µ) =

✓
�cusp ln

2

µ2
� �s

◆
V(,�t, ✓, µs, µ) , (2.30)

and the soft scale µs ⇠ T0 minimises the logarithms in the soft functions. Proceeding

analogously to the hard function case and resumming the soft logarithms while evolving

from the soft scale to a generic scale µ, we find the solution

V(,�t, ✓, µs, µ) = exp [2S(µs, µ)]

✓
2

µ2
s

◆�a�(µs,µ)

v(�t, ✓, µs, µ), (2.31)

with the non-cusp soft evolution matrices given by

v(�t, ✓, µs, µ) = P exp

(
�
Z

↵s(µ)

↵s(µs)

d↵

�(↵)
�
s(�t, ✓,↵)

)
. (2.32)

Substituting these ingredients into eq. (2.29) we obtain

S̃B(L,�t, ✓, µ) = exp [4S(µs, µ)]v
†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

✓
2

µ2
s

◆⌘s

(2.33)

where ⌘s ⌘ �2a�(µs, µ). In the last equation we have rewritten the logarithms appearing as

an argument of the soft function in terms of partial derivatives acting on the last factor [71,

72]. Transforming back to momentum space yields

SB(l
+,�t, ✓, µ) = exp [4S(µs, µ)]v

†(�t, ✓, µs, µ) S̃B(@⌘s ,�t, ✓, µs)v(�t, ✓, µs, µ)

⇥ 1

l+

✓
l+

µs

◆2⌘s e�2�E⌘s

�(2⌘s)
. (2.34)

Due to the RG invariance of the full cross section we have the following relation between

the non-cusp anomalous dimensions of the hard, soft, and beam functions

�
s = �

h + �B 1 , (2.35)

where the non-diagonal part of the soft anomalous dimension arises entirely from the

non-cusp anomalous dimension of the hard function and �B is the non-cusp anomalous

– 11 –
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Resummed result for the cross section

‣We have


‣ hard functions at NLO


‣ soft functions at NLO, by knowing the two-loop soft anomalous dimensions we 
can solve the RG equations order by order and obtain all the NNLO logarithmic 
contributions, we miss  terms at NNLO


‣ beam functions at NNLO (both for  and gg channels)


‣ two-loop anomalous dimensions

�(T0)

qq̄

‣We can resum to NNLL. We are missing   terms (NNLO hard functions and 

NNLO soft). If we include everything we know we obtain a NNLL  result


‣We construct an approximate (N)NLO formula which reproduces the fixed-order 

behaviour of the spectrum (for )

�(T0)

′￼a

T0 > 0
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Singular vs Fixed-order

Figure 1: Approximate fixed order results for the T0 distribution obtained from our

factorisation theorem compared with full calculations at LO (left) and NLO (right). The

approximate results correctly reproduce the fixed order behaviour in the T0 ! 0 limit.

cross section as a function of ⌧B relative to the fixed order calculation. This is shown at

LO1 and NLO1 accuracy in fig. 2. We see that the singular contribution to the cross section

becomes of a similar size to the fixed order when ⌧B is just above 0.2. The behaviour at

di↵erent orders is very similar. We therefore make the choices

y0 = 1.0GeV/M , {y1, y2, y3} = {0.1, 0.175, 0.25} . (4.3)

We now discuss the resummed results. In order to estimate the theoretical uncer-

tainties, we vary the central choices for the profile scales in eq. (4.1) independently while

keeping the hard scale fixed. This gives us four independent variations. In addition, we

consider two more profile functions where we shift all the yi transition points together by

±0.05 while keeping all of the scales fixed at their central values. Hence, we obtain in

total six profile variations. We consider the maximal absolute deviation in the results with

respect to the central prediction as the resummation uncertainty.

In fig. 3, we show the peak region of the resummed T0 distribution. We compare

predictions at di↵erent primed and unprimed levels of accuracy from NLL to NNLL0
a.

Examining the unprimed results, we see a large shift in the central value between the NLL

and NNLL results, though the central prediction for the NNLL result remains within the

scale uncertainty band of lower order calculation. We also observe that the size of the band

does not reduce substantially when moving from one order to the next. On the other hand,

comparing the NLL0 and NNLL0
a results we observe both a more stable central value and

– 19 –

Fixed-order comparisons, approximate NLO and approximate NNLO vs LO  and NLO1 1
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Resummed results

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.

– 21 –

NNLL   is our best prediction, it includes NNLO beam functions, all mixed NLO x NLO terms, NNLL 
evolution matrices, all NNLO soft logarithmic terms. Resummation is switched off via profile scales

′￼a
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Matched results to fixed-order

Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.

– 20 –

Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.

– 22 –
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One-jettiness resummation for Z+jet production

at the LHC

work in progress…
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‣ Start from expression for 1-jettiness in the Born frame, where 


‣ 1-jettiness in the color singlet frame by making a different choice of the ’s (similar way 
to go to the laboratory frame)


‣ We also employ a Fully-Recursive (FR) version of one-jettiness which is used in the fixed 
order calculations. Closest particles in the one-jettiness metric are merged together.


‣ Factorization formula in the region                                            [Stewart, Tackmann,Waalewijn 
`09,`10]

ρi = 1

ρi

1-jettiness

<latexit sha1_base64="/YTn3PcHYL18tAw3fOw9Qg7dQII=">AAACjXicbZHLahsxFIY107RN3UvcZtmNiCl0UcxMaXqjLaFdJHiVQJwELDOckTWxsC5TSVMwQm/TJ8qub1N5PIvYyQHBr/N/B0m/ylpw67LsX5I+2Hn46PHuk97TZ89f7PVfvrqwujGUjakW2lyVYJngio0dd4Jd1YaBLAW7LBe/Vv7lH2Ys1+rcLWs2lXCteMUpuNgq+n+JBDenIDyZg/PnIRQ5/o6JbWSxwK1ppJdcBeJJZYCuud+hAEJn2uF2W4diETwxc11AeLfJlfdz5TY32uRGHTcKJBT9QTbM2sJ3Rd6JAerqtOjfkJmmjWTKUQHWTvKsdlMPxnEqWOiRxrIa6AKu2SRKBZLZqW/TDPhN7MxwpU1cyuG2e3vCg7R2KctIruKx296qeZ83aVz1eeq5qhvHFF0fVDUCO41XX4Nn3DDqxDIKoIbHu2I6h5iRix/YiyHk20++Ky7eD/OPw8OzD4Ojn10cu+g1OkBvUY4+oSN0gk7RGNGkl2TJl+Rrupcept/SH2s0TbqZfbRR6fF/ixHLvQ==</latexit>

T̂1 =
X

k

min{ q̂a · p̂k
⇢a

,
q̂b · p̂k
⇢b

,
q̂J · p̂J
⇢J

}

In the LAB frame we choose Qa,b = 2⇢a,bEa,b = ⇢a,b xa,bEcm = ⇢a,b QV j e
±YV j and QJ =

2⇢J EJ . (Note: for a massless jet EJ = (Q2

V j
�M

2

``
)/(2QV j) in terms of Mandelstam variables

QV j,M`` at the Born level). This means that the T1 definition reads

T1 =
X

k

min
�2qa · pk

Qa

,
2qb · pk
Qb

,
2qJ · pk

QJ

 
. (5)

with qa,b = xa,bEcmna,b/2 = QV j e
±YV jna,b/2. In order to minimize the power corrections

we set ⇢a,b = e
⌥YV j and ⇢J = 1 in the LAB frame. In the frame where the V j system has

YV j = 0 this results into the definition of T1

T̂1 =
X

k

min{n̂a · p̂k, n̂b · p̂k, n̂J · p̂k} . (6)

where the hat notation denotes the YV j = 0 frame.
It is possible to choose appropriate values for the ⇢i, where i = a, b, J such that we can

express the T1 definition in the laboratory frame in terms of the momenta defined in the
YV j = 0 frame. Starting from the following definition

T
LAB

1
=
X

k

min{
n̂a · p̂k

⇢a
,
n̂b · p̂k

⇢b
,
n̂J · p̂k

⇢J
} , (7)

where the n̂i and p̂k are evaluated in the YV j = 0 frame, we find the following values for the
⇢i’s:

⇢a = e
ŶLAB ,

⇢b = e
�ŶLAB ,

⇢J =
e
�ŶLAB(p̂J)+ + e

ŶLAB(p̂J)�

2ÊJ

, (8)

where all the hatted quantities are evaluated in the YV j = 0 frame. In particular ŶLAB is the
rapidity of the laboratory frame as seen in the YV j = 0 frame and (p̂J)⌥ are the projections
of the constructed massless jet 4-momentum in the YV j = 0 frame. For configurations with
up to 1 extra parton the YV j = 0 frame corresponds to the CM frame. It is then possible to
express the ŶLAB in terms of the partonic center of mass rapidity seen in the laborary frame
as ŶLAB = �Y

LAB frame

CM
.

The same reasoning can be used to obtain the ⇢i to express the T1 definition in the color
singlet frame YV = 0 in terms of the momenta defined in the YV j = 0 frame. We have

⇢a = e
ŶV ,

⇢b = e
�ŶV ,

⇢J =
e
�ŶV (p̂J)+ + e

ŶV (p̂J)�

2ÊJ

, (9)

where now ŶV is the rapidity of the color singlet as seen in the YV j = 0 frame. For config-
urations with up to 1 extra parton the YV j = 0 frame corresponds to the CM frame so this
can be expressed in terms of rapidities in the laboratory frame as ŶV = YV � YCM.

2
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T1 ⌧ Mll ⇠
p
s ⇠ MT,ll

One jettiness resummation for colour singlet plus jet

Various

May 4, 2023

1 Factorisation theorem in Laplace space

We assume a factorisation formula of the form

d�

d�1dT1

=
X
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H(�1)
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�
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◆
, (1)

where the index  runs over all relevant partonic channels, with a, b, J denoting the
individual parton types ( ⌘ {a,b,J}).

Taking the Laplace transform with respect to T1,
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
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and defining ⌦ ⌘ T1 �
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, we have that
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Using the definitions of the Laplace transforms of the beam, soft and jet functions and
defining �E = e

��E/�, we arrive at
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⇣
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.

(4)

1

Dependence on the

frame
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Hard, Soft, Beam and Jet functions

‣ Hard functions: two-loop amplitudes for  known from [T. Gehrmann and L. Tancredi 
1112.1531]. Recently available also the axial vector couplings [T. Gehrmann,T. Peraro,L. Tancredi 
2211.13596] but not-included yet. IR-finite functions taken from [T. Becher, G. Bell, C. Lorentzen, S. Marti 

1309.3245].  added, squared amplitude complete analytic result. At NNLL` accuracy 
included the 1loop squared .


‣ Beam and quark Jet functions known up to N LO [M. Ebert, B. Mistlberger, G. Vita 2006.03056] and [R. 
Bruser, Z.L. Liu, M. Stahlhofen 1804.09722], only needed up to NNLO here Beams [J.R. Gaunt, M. 
Stahlhofen, F. Tackmann 1401.5478, 1405.1044] and Jets [T. Becher and M. Neubert 0603140], [T. Becher and G. 
Bell 1104.4108].


‣ Soft function boundary terms at NLO implemented as on-the-fly integrals using results in [T.T. 
Jouttenus, I.W. Stewart, F. Tackmann, W. Waalewijn 1302.0846], kept full dependence on       frame 
dependence.


‣ Frame dependent NNLO soft function boundary contribution is provided by using the SoftSERVE 
[G. Bell, R. Rahn, J. Talbert 1812.08690, 2004.08396] method (thanks to Bahman Dehnadi, Guido Bell, 
Rudi Rahn) in the form of an interpolation grid over the parameters 


‣ Validation against NLO result in different frames, at NNLO validated in UB frame against the 
interpolation in MCFM [J. Campbell, K. Ellis, R. Mondini, C. Williams, 1711.09984]. In CS and Lab frames 
new results.

qq̄ → Zg

γ*/Z* → l+l−

gg → Zg

3

{cos θJ,1/ρa,1/ρJ}

<latexit sha1_base64="LV2kTobzcaG7FvLsJEcI2veoQsg=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsKfUE7lEyaaUMzyZhkCmXod7hxoYhbP8adf2OmnYW2HggczrmXe3KCmDNtXPfbKaytb2xuFbdLO7t7+wflw6OWlokitEkkl6oTYE05E7RpmOG0EyuKo4DTdjC+z/z2hCrNpGiYaUz9CA8FCxnBxkp+L8JmRDBPG7O+1y9X3Ko7B1olXk4qkKPeL3/1BpIkERWGcKx113Nj46dYGUY4nZV6iaYxJmM8pF1LBY6o9tN56Bk6s8oAhVLZJwyaq783UhxpPY0CO5mF1MteJv7ndRMT3vopE3FiqCCLQ2HCkZEoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1buuXj1eVmp3eR1FOIFTOAcPbqAGD1CHJhB4gmd4hTdn4rw4787HYrTg5DvH8AfO5w++EZIY</latexit>

T1
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Resummation formula
REPLACED THE NEW HARD EVOLUTION UNTIL HERE
The final expression therefore reduces to
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Q

◆
. (104)

The expression in eq. (104) does not include any additional approximation apart from the

leading-power expansion on which SCET is based – which we have indicated via the O
⇣

T1
Q

⌘

term – and it is formally valid at any logarithmic order. Depending at which order in ↵s the
anomalous dimensions and the boundary terms are available one can extract predictions at
di↵erent logarithimc orders. To this purpose we introduce the notation

S̃


T1(LS,�1, µs) = S̃
, (0)

T1 +
↵s

4⇡
S̃
, (1)
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T1 +O(↵3

s
) , (105)
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i
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(1)

i
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✓
↵s

4⇡
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i
+O(↵3

s
) , (107)

where the order zero contributions of the soft and jet functions are S̃
, (0)

1
= J̃

, (0) = 1 and
the order zero contribution to the beam functions is just the parton distribution function
B̃

(0)

i
(x, µB) = fi(x, µB).

3.0.1 Fixed order expansion of the 1-jettiness soft function

The single di↵erential soft function is defined as the projection of the fully di↵erential via

S


T1(k, µ) =
Y

i=a,b,c

⇣Z
dki

⌘
S3({ki}, µ) �(k � ka � kb � kc) . (108)

where we leave implicit its dependence in products of the jet axes ni · nj. It satisfies the
RGE

µ
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dµ
S
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

T1(k, µ)⌦k S


T1(k, µ) ⌘

Z
d` �

T1(k � `, µ)S

T1(`, µ) , (109)
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the common scale Q to break the the powers of the scales such that they can be moved
to the left of the derivative operators and up into the exponent, generating the logarithmic
shifts in the soft, beam and jet functions, we obtain
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In the previous equation we used the definitions
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The previous equation can be further simplified considering that
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and we eventually have that
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Using also the condition nq + nq̄ + ng = 3 together with eqs. (25)-(66) and defining n
J

g
as

the number of gluons in the final state, we can write the total non-cusp contribution as
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the common scale Q to break the the powers of the scales such that they can be moved
to the left of the derivative operators and up into the exponent, generating the logarithmic
shifts in the soft, beam and jet functions, we obtain
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The previous equation can be further simplified considering that
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Using also the condition nq + nq̄ + ng = 3 together with eqs. (25)-(66) and defining n
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the common scale Q to break the the powers of the scales such that they can be moved
to the left of the derivative operators and up into the exponent, generating the logarithmic
shifts in the soft, beam and jet functions, we obtain
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Combine the solutions to the RG equations for the hard, soft, beam and jet functions to obtain

where we defined
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Singular vs Nonsingular

‣ Different frame choices for one-jettiness definition have different sizes of power corrections 
(fully-recursive results below, only fixed-order is different for )


‣ CS frame as good as UB frame for different cuts, Lab. frame is worse


𝒯1 > 0
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Singular vs Nonsingular
<latexit sha1_base64="tyIT5Vgi2hJqchRs5nEj4auP5iQ="></latexit>

⌧1 = 2 T1/
q

M2
l+l� + q2T‣ Reduced definition 


‣ When we use as born defining cut the Z boson transverse momentum ,                        
differences in power corrections among definitions are reduced


qT
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Resummed results

‣ We use profile scales to switch off resummation at μH = M2
l+l− + q2

T
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Matched results
<latexit sha1_base64="QPjGLxjm24HMRM71wDDaBWuvdtg=">AAADE3icpVJLS8QwEE7re32tevQSXARFXFrxdRFEQby5gqvCtpY0m3aDSVuSVFhK/4MX/4oXD4p49eLNf2O6u4i7ih4cCPn4ZuabyWT8hFGpLOvdMIeGR0bHxidKk1PTM7PluflzGacCkzqOWSwufSQJoxGpK6oYuUwEQdxn5MK/Piz8FzdESBpHZ6qdEJejMKIBxUhpypszVp1AIJw5HKmW4Fkzh46kIUdXn5S+cCvP876YAmLEsrPcs3O4BwdVBkUEkSn/XWTtT5Gjk98V1qHj0zBs/L+Zjo7r9VX2yhWranUMfgd2D1RAz2pe+c1pxjjlJFKYISkbtpUoN0NCUcxIXnJSSRKEr1FIGhpGiBPpZp0/zeGyZpowiIU+kYId9mtGhriUbe7ryKJHOegryJ98jVQFu25GoyRVJMLdQkHKoIphsSCwSQXBirU1QFhQ3SvELaQHqvQalfQQ7MEnfwfnG1V7u7p1ulnZP+iNYxwsgiWwAmywA/bBMaiBOsDGrXFvPBpP5p35YD6bL91Q0+jlLIA+M18/AORjBjw=</latexit>

d�match

dT1
=

d�resum

dT1
+

d�FO

dT1
�


d�resum

dT1

�

FO

‣  large corrections especially for small values of 


‣ We know that nonsingular in   is divergent for 


‣ We sum in quadrature profile scales variations and fixed-order 
scale variations


𝒪(α3
s ) 𝒯cut

0

𝒯1 𝒯0 → 0
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Outlook

‣ Calculate and extract all the missing ingredients to reach NNLL  accuracy for the top-
quark pair production process (hard and soft functions). Implement in GENEVA event 
generator


‣ Extend top-quark pair to study associated production of a top-pair and a heavy boson  
( ) [AB,Ferroglia,Pecjak,Signer, Yang `15], [AB,Ferroglia,Pecjak,Ossola `16],
[AB,Ferroglia,Pecjak,Yang `16],[AB,Ferroglia,Pecjak,Ossola,Sameshima `17],[AB,Ferroglia,Frederix, 
Pagani,Pecjak,Tsinikos `19]


‣ Extend resummation to N LL for Z+jet production. Implementation in Monte Carlo event 
generator

′￼

tt̄V
V = H, W±, Z

3

Thank you!
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Backup slides
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N-Jettiness and Resummation

‣ At NNLO one needs a 0-jet and a 1-jet (for Z+j also 2-jet) resolution parameters


‣ Emissions below            are unresolved (integrated over) and the kinematic considered is 
the one of the event before extra emissions


‣ Emissions above          are kept and the full kinematics is considered 


‣ When we take                   , large logarithms of          ,        appear and need to be 
resummed


‣ Including the higher-order resummation will improve the accuracy of the predictions 
across the whole spectrum

T cut
N

T cut
N

T cut
N ! 0 T cut

N TN

Step 2: Combining resummation with fixed-order in
GENEVA

I The inclusion of the higher-order resummation is key to improve the
accuracy of the predictions across the whole spectrum.

I Assuming a counting in which ↵sL ⇠ 1, the first “next-to-leading-order”
correction to the spectrum enters at NNLL.

I To correctly match this to fixed-predictions one needs to include all singular
↵
2

s terms, hence the NNLL0 , and match to NNLO.
I These conditions set the minimum accuracy requirement for GENEVA.

Simone Alioli | GENEVA | DESY 3/6/2021 | page 8
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Resummed result for the cross section

We can combine the solutions for the hard, soft and beam functions to obtain
the resummed cross section in a compact form as

d�

d�0d⌧B
= U(µh, µB, µs, Lh, Ls)

⇥ Tr

⇢
u(�t, ✓, µh, µs)H(M,�t, ✓, µh)u

†(�t, ✓, µh, µs) S̃B(@⌘s + Ls,�t, ✓, µs)

�

⇥ B̃a(@⌘B + LB, za, µB)B̃b(@⌘0B + LB, zb, µB)
1

⌧1�⌘tot
B

e��E⌘tot

�(⌘tot)
. (3.1)

The derivative terms inside the arguments of the soft and beam functions act on the factor

in the last line of the previous equation, which we refer to as the generating function. In

the previous formula we have defined

U(µh,µB, µs, Lh, Ls) = (3.2)

exp


4S(µh, µB) + 4S(µs, µB) + 2a�B (µs, µB)� 2a�(µh, µB)Lh � 2a�(µs, µB)Ls

�
.

We have also introduced the quantities ⌘s ⌘ 2a�(µ, µs), ⌘B ⌘ 2a�(µB, µ), ⌘tot = 2⌘s +

⌘B + ⌘0
B
, and we explicitly write the beam, soft and hard logarithms as LB = log(M2/µ2

B
),

Ls = log(M2/µ2
s) and Lh = log(M2/µ2

h
). For the derivation of the formula above we have

used the relations

u(�t, ✓, µc, µa)u(�t, ✓, µb, µc) = u(�t, ✓, µb, µa) ,

a�(µa, µc) = a�(µa, µb) + a�(µb, µc) ,

a�i(µa, µc) = a�i(µa, µb) + a�i(µb, µc) ,

S(µa, µb)� S(µc, µb) = S(µa, µc)� a�(µc, µb) log
µa

µc

. (3.3)

to simplify the final expressions.

The expression in eq. (3.1) is our master formula and the primary outcome of this

work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,

NNLL and NNLL0 depending on the order in ↵s at which the anomalous dimensions and

the boundary terms are available.

In order to evaluate u we first find the matrix ⇤ which diagonalises the LO non-cusp

hard anomalous dimension

�
h(0)

D
= ⇤�1

�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D

✓
1� ↵s(µh)

4⇡
K

◆
⇤�1

3

5

O(↵s)

(3.5)

– 13 –
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work. It is formally valid at all logarithmic orders. It is possible to evaluate it at NLL0,
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hard anomalous dimension
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h(0)

D
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�
h(0)⇤ (3.4)

and define the vector ~�h(0) consisting of the eigenvalues of the diagonal matrix �
h(0)

D
. The

solution of the non-cusp evolution matrix in eq. (2.14) up to NNLL can then be obtained

perturbatively as an expansion in ↵s following App. A of Ref. [32] and the references

therein [73, 74]. We find

uNNLL(�t, ✓, µh, µ) =

2

4⇤
✓
1 +

↵s(µ)

4⇡
K

◆0

@

↵s(µh)

↵s(µ)

�~�h(0)

2�0

1

A

D
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1� ↵s(µh)
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and , ,  and Ls = ln(M2/μ2
s ) Lh = ln(M2/μ2

h) LB = ln(M2/μ2
B) ηtot = 2ηS + ηB + ηB′￼

where
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Figure 2: Comparison of the absolute values for the singular and nonsingular contributions

to the T0 distribution with fixed order results at LO (left) and NLO (right) accuracy.

also a sizeable reduction of the theoretical uncertainties. This highlights the need for full

NNLL0 accuracy in this process, which we hope to report on in future work.

As mentioned in sec. 3.2, for the production of coloured particles there is a certain

amount of ambiguity in whether one should expand terms or instead keep them inside the

exponential prefactor. This ambiguity starts at NNLL accuracy, since these terms are the

first to contribute at O(↵s) in the logarithmic counting of the exponent. Indeed, while it is

necessary to evaluate the non-diagonal evolution matrix u as a perturbative expansion, the

product between the diagonal evolution matrix U and the generating function appearing

e.g. in the first line of eq. (3.14) may be expanded in the same way or kept exact. We

choose the former by default; however, it is interesting to assess the (formally higher order)

e↵ect of making the other choice. In fig. 4, we compare the resummed distribution with

and without this expansion, at both NNLL and NNLL0
a accuracy. We observe very little

di↵erence between the expanded and unexpanded results, suggesting that the e↵ects of

these missing higher order terms in the expanded results are minimal.

We now consider the matching of the resummed and fixed order calculations. We per-

form an additive matching, following the same spirit as recent Geneva implementations

(see e.g. Ref. [49]). The appropriate combinations of resummed and fixed order accuracies

are given in Tab. 1. The total perturbative uncertainty is calculated by adding in quadra-

ture the previously discussed fixed order and resummation uncertainties. We define our

matched spectrum as

d�match

dT0
=

d�resum

dT0
+

d�FO

dT0
�

d�resum

dT0

�

FO

, (4.4)

where the final term removes double-counting between the resummed and fixed order pieces.

– 20 –

Singular vs Nonsingular contributions
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Resummed results

Figure 3: Resummed T0 distribution at successive unprimed (left) and primed (right)

orders. Compared to the full NNLL0 result, the approximate NNLL0
a prediction shown

on the right misses only finite O(↵2
s ) terms proportional to �(T0) in the hard and soft

functions.

In Geneva implementations at NNLL0+NNLO, it acts as a subtraction term local in T0,
which requires the fixed order calculation to use a T0-preserving mapping. This can have

the positive feature of reducing the impact of fiducial power corrections compared to a

simple slicing approach [80, 81].

Finally, in fig. 5 we present our best predictions across the whole spectrum. In order

to highlight the e↵ect of these higher-order corrections we show the resummed results

at various resummation orders matched to the appropriate fixed order calculations. We

divide the spectrum into the peak region, where resummation e↵ects are most important,

the transition, where resummed and fixed order contributions compete for importance, and

the tail, where the fixed order is dominant. Examining the peak region, we notice slightly

larger uncertainty bands for the NNLL+LO1 compared to the NLL0+LO1. The uncertainty

bands are, however, significantly reduced once NNLL0
a+NLO1 accuracy is reached. In the

transition and tail regions, a clear di↵erence between the NNLL0
a+NLO1 and the lower

order results emerges above ⇠ 60 GeV due to the additional contributions of the NLO1

calculation.

– 21 –

NNLL   is our best prediction, it includes NNLO beam functions, all mixed NLO x NLO terms, NNLL 
evolution matrices, all NNLO soft logarithmic terms. Resummation is switched off via profile scales

′￼

distributions and the matching of the resummed calculation to the fixed order. For sake of

definiteness, all the results presented in this section have been obtained for pp collisions at

a centre-of-mass energy of
p
S = 13 TeV and using PDF4LHC15 nnlo parton distribution

functions from LHAPDF [75, 76]. The central predictions have been obtained running all

scales to a common scale µ equal to the tt̄ invariant mass M . In all figures present in

this section, the statistical uncertainties associated with the Monte Carlo integrations are

reported, when visible, as vertical error bars. We estimate the theoretical uncertainties for

the fixed order predictions by varying the central choice for µR = µF = M up and down

by a factor of two and take the maximal absolute deviation from the central result as the

fixed order uncertainty.

We begin by verifying that the approximate fixed order expressions, which we obtain

from the resummed calculation by setting the various resummation scales equal to the hard

scale, are able to reproduce the behaviour of the full fixed order calculation as T0 ! 0.

Comparisons of the full with the approximate fixed order results are shown in fig. 1 at LO1

(i.e. LO tt̄+jet) and NLO1 accuracy. We observe that, for small values of T0 . 10�1 GeV,

the approximate FO reproduces the behaviour of the full calculation very well, both for

the central values and the scale variations. This gives us confidence that the factorisation

theorem is valid and that our calculation of the finite part of the one-loop soft function

is correct. We notice that when the full NLO1 result crosses zero in the right plot, the

associated statistical errors grow large, resulting in a instability in the ratio plot shown in

the lower panel.

Before studying the resummed result, we have to provide a procedure to turn o↵

the resummation before the exponentiated singular terms become too large, spoiling the

predictions in the fixed order region. We do so in a smooth fashion by employing the profile

scales introduced in Refs. [64, 77, 78]. These profiles evolve the beam and soft scales to the

hard scale as a function of ⌧B and hence stop the RG evolution and resummation when the

common scale µNS = µS = µB = µH is reached. Specifically, the profiles take the form:

µH = µNS ,

µS(T0) = µNS frun(T0/M) , (4.1)

µB(T0) = µNS

p
frun(T0/M) ,

where the common profile function frun(y) is given by [79]

frun(y) =

8
>>>>>>>><

>>>>>>>>:

y0
⇥
1 + (y/y0)2/4

⇤
y  2y0 ,

y 2y0  y  y1 ,

y + (2�y2�y3)(y�y1)
2

2(y2�y1)(y3�y1)
y1  y  y2 ,

1� (2�y1�y2)(y�y3)
2

2(y3�y1)(y3�y2)
y2  y  y3 ,

1 y3  y .

(4.2)

This functional form ensures the canonical scaling behaviour for values below y1 and turns

o↵ the resummation above y3. In order to determine the parameters yi of the profiles, it is

instructive to examine the behaviour of the singular and nonsingular contributions to the
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Figure 1: Approximate fixed order results for the T0 distribution obtained from our

factorisation theorem compared with full calculations at LO (left) and NLO (right). The

approximate results correctly reproduce the fixed order behaviour in the T0 ! 0 limit.

cross section as a function of ⌧B relative to the fixed order calculation. This is shown at

LO1 and NLO1 accuracy in fig. 2. We see that the singular contribution to the cross section

becomes of a similar size to the fixed order when ⌧B is just above 0.2. The behaviour at

di↵erent orders is very similar. We therefore make the choices

y0 = 1.0GeV/M , {y1, y2, y3} = {0.1, 0.175, 0.25} . (4.3)

We now discuss the resummed results. In order to estimate the theoretical uncer-

tainties, we vary the central choices for the profile scales in eq. (4.1) independently while

keeping the hard scale fixed. This gives us four independent variations. In addition, we

consider two more profile functions where we shift all the yi transition points together by

±0.05 while keeping all of the scales fixed at their central values. Hence, we obtain in

total six profile variations. We consider the maximal absolute deviation in the results with

respect to the central prediction as the resummation uncertainty.

In fig. 3, we show the peak region of the resummed T0 distribution. We compare

predictions at di↵erent primed and unprimed levels of accuracy from NLL to NNLL0
a.

Examining the unprimed results, we see a large shift in the central value between the NLL

and NNLL results, though the central prediction for the NNLL result remains within the

scale uncertainty band of lower order calculation. We also observe that the size of the band

does not reduce substantially when moving from one order to the next. On the other hand,

comparing the NLL0 and NNLL0
a results we observe both a more stable central value and
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Resummed results

The evolution matrix u is evaluated in  expansion, we can choose to expand or not expand ,

the difference is quite small

αs U

Figure 4: Resummed T0 distribution with and without the expansion of U in eq. (3.2), at

both NNLL (left) and NNLL0
a accuracy (right).

Figure 5: Resummed predictions matched to the appropiate fixed order for the T0 distri-

bution at increasing accuracy in the peak (left), transition (centre) and tail (right) regions.
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Singular vs Nonsingular

‣ Result for exact one-jettiness in CS frame, very similar results to FR


