COLLIDER SEARCHES AND MEASUREMENTS

Greg Landsberg

10.05.2023

2

Isometry Flavor Physics: QCD Factorization and Rare Greg Landsberg - Collider Searches and Measurements - 10.05.23 **Decays** SCET • Flavor Anomalies • 750 ALPs • Conferences • Conclusions

Flavor

QCD Factorization Calculations

Seminal papers on charmless hadronic B meson decays

VOLUME 83, NUMBER 10

PHYSICAL REVIEW LETTERS

6 September 1999

QCD Factorization for $B \rightarrow \pi \pi$ Decays: Strong Phases and *CP* Violation in the Heavy Quark Limit

M. Beneke,¹ G. Buchalla,¹ M. Neubert,² and C. T. Sachrajda³ ¹Theory Division, CERN, CH-1211 Geneva 23, Switzerland ²Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 ³Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom (Received 17 May 1999)

ELSEVIER

Nuclear Physics B 591 (2000) 313-418

www.elsevier.nl/locate/npe

1363 citations

QCD factorization for exclusive non-leptonic *B*-meson decays: general arguments and the case of heavy–light final states

M. Beneke^{a,*}, G. Buchalla^b, M. Neubert^c, C.T. Sachrajda^d

^a Institut für Theoretische Physik E, RWTH Aachen, D-52056 Aachen, Germany
 ^b Theory Division, CERN, CH-1211 Geneva 23, Switzerland
 ^c Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853, USA
 ^d Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

Received 19 June 2000; accepted 31 August 2000

1398 citations

NUCLEAR PHYSICS

1043 citations

QCD factorization for $B \rightarrow PP$ and $B \rightarrow PV$ decays

Martin Beneke^a, Matthias Neubert^b

^a Institut für Theoretische Physik E, RWTH Aachen, D-52056 Aachen, Germany
^b Newman Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, NY 14853, USA

Nuclear Physics B 606 (2001) 245-321

www.elsevier.com/locate/npe

1144 citations

QCD factorization in $B \rightarrow \pi K$, $\pi \pi$ decays and extraction of Wolfenstein parameters

M. Beneke^a, G. Buchalla^b, M. Neubert^c, C.T. Sachrajda^d ^a Institut für Theoretische Physik E, RWTH Aachen, D-52056 Aachen, Germany ^b Theory Division, CERN, CH-1211 Geneva 23, Switzerland ^c Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853, USA ^d Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

Recent LHCb Measurement

- Search for direct CP-violation in charmless PV decays
 - ***** Interplay of the short- and long-range contributions to produce strong-phase difference require for direct CP violation
- Studied a number of decays: $\rho\pi$, ρK , $K^*\pi$, K^*K , ϕK
- Dalitz plot projection analysis for each channel; most of the asymmetries are consistent with zero, except for pK

Rare Radiative Decays

Rare radiative W/Z/H boson decays

Published for SISSA by 🖉 Springer

RECEIVED: February 9, 2015 ACCEPTED: March 9, 2015 Published: April 20, 2015

67 citations

Exclusive radiative decays of W and Z bosons in **QCD** factorization

doi:10.1007/JHEP04(2015)101

Yuval Grossman,^a Matthias König^b and Matthias Neubert^{a,b}

^aDepartment of Physics, LEPP, Cornell University, Ithaca, NY 14853, U.S.A. ^bPRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University. 55099 Mainz, Germany

Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings

doi:10.1007/JHEP08(2015)012

Published for SISSA by D Springer

RECEIVED: May 18, 2015

ACCEPTED: July 13, 2015

PUBLISHED: August 4, 2015

108 citations

Matthias König^a and Matthias Neubert^{a,b,c}

^a PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz, Germany ^bInstitut für Theoretische Physik,

Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

^cDepartment of Physics, LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

Published for SISSA by D Springer

Received: September 29, 2016 REVISED: November 24, 2016 ACCEPTED: November 29, 2016 Published: December 12, 2016

Exclusive weak radiative Higgs decays in the standard

model and beyond

doi:10.1007/JHEP12(2016)037

Stefan Alte,^a Matthias König^a and Matthias Neubert^{a,b}

^aPRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz, Germany ^bDepartment of Physics, LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

CMS Search for Rare Radiative Decays

Similar search in CMS focused on the H → Zρ and Zφ decays

	Observed	Median expected	$\pm 68\%$ expected	$\pm 95\%$ expected	Theory	\bar{q} V
Isotropic decay	1.21%	0.73% Z	0.52-1.04%	0.38 – 1.41%	Z	
Z and ρ longitudinally polarized	1.04%	H 0.63%	0.44 – 0.89%	0.32H1.20%		H q
Z and ρ transversely polarized	1.31%	0.80%	$Z^* 0.57 - 1.14\%$	0.41–1.54%	ר- ¹ .4 x 10	q
-		V			<i>и</i> .	Y
	Observed	Median expected	±68% ^q 92 ted	$\pm 95\%$ expected		Z
Isotropic decay	0.36%	0.33%	0.23 V	0.18 – 0.61%	4.2 x)-6	"U
Z and φ longitudinally polarized	0.31%	0.27%	q = 0.20 - 0.39%	0.15 – 0.52%		
Z and ϕ transversely polarized	0.40%	0.36%	0.26 – 0.50%	0.19 – 0.68%		

Gauge Bosons at Small pr

SCET-based calculations for Λ_{QCD} « p_T(V) « M_V

Eur. Phys. J. C (2011) 71:1665 DOI 10.1140/epjc/s10052-011-1665-7 The European Physical Journal C

Regular Article - Theoretical Physics

398 citations

Drell–Yan production at small q_T , transverse parton distributions and the collinear anomaly

Thomas Becher¹, Matthias Neubert^{2,3,a}

¹Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

²Institut für Physik (THEP), Johannes Gutenberg-Universität, 55099 Mainz, Germany

³Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

10

Greg Landsberg - Collider Searches and Measurements -

11

Higgs Boson Cross Section

N³LL + EW corrections at two-loop level

ELS

Eur. Phys. J. C (2009) 62: 333–353 DOI 10.1140/epjc/s10052-009-1030-2 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Renormalization-group improved prediction for Higgs production at hadron colliders

Valentin Ahrens¹, Thomas Becher^{2,a}, **Matthias Neubert**¹, **Li Lin Yang**¹ ¹Institut für Physik (THEP), Johannes Gutenberg-Universität, 55099 Mainz, Germany ²Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA

235 citations

Physics Letters B		Contents lists available at ScienceDirect	
		Physics Letters B	
EVIER www.elsevier.com/locate/physletb	ER	www.elsevier.com/locate/physletb	

Physics Letters B 698 (2011) 271-274

CDF+D0, arXiv:1103.3233

Tevatron Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$

0 95% CL Limit/SM Expected Fevatron Observed Exclusion ±10 Expected ±20 Expected SM= March 7, 2011 190 130 140 150 160 170 180 200 $m_{\rm H} \, ({\rm GeV/c^2})$

Updated predictions for Higgs production at the Tevatron and the LHC

Valentin Ahrens^a, Thomas Becher^b, Matthias Neubert^a, Li Lin Yang^{a,*}

^a Institut für Physik (THEP), Johannes Gutenberg-Universität, D-55099 Mainz, Germany^b Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland

47 citations

Flavor Anomalies

PURY

AP CAL

HAMP

Ranch Ranch Dressins Bade

Y'all get yo

Rebirth of a Leptoquark

Simultaneous explanation of R(K), R(D*), and g-2 anomalies

PRL 116, 141802 (2016)

PHYSICAL REVIEW LETTERS

week ending 8 APRIL 2016

Minimal Leptoquark Explanation for the $R_{D^{(*)}}$, R_K , and $(g-2)_{\mu}$ Anomalies

Martin Bauer¹ and Matthias Neubert^{2,3}
¹Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
²PRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany
³Department of Physics & LEPP, Cornell University, Ithaca, New York 14853, USA
(Received 5 November 2015; published 8 April 2016)

Published for SISSA by O Springer

130 citations

RECEIVED: April 15, 2021 REVISED: July 8, 2021 ACCEPTED: July 19, 2021 PUBLISHED: August 11, 2021

Reading the footprints of the $B\mbox{-meson}$ flavor anomalies

Claudia Cornella,^a Darius A. Faroughy,^a Javier Fuentes-Martín,^b Gino Isidori^a and Matthias Neubert^{a,b,c}

 ^a Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
 ^b PRISMA⁺ Cluster of Excellence & MITP, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Germany
 ^c Department of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

CMS Searches for LQ3

m

CMS Searches for LQ3

- A new search for Pati-Salam U₁ vector LQ in the $\tau\tau$ channel, a spin-off of the MSSM Higgs search
- Significant interference with the SM DY ττ continuum taken into account
- Started probing interesting parameter space from the point of view of flavor anomalies

ATLAS Searches for LQ3

- Analogous ATLAS analysis focuses on the final states with τ leptons and b jets and sets limits on Yang-Mills vector LQs decaying to bτ or tv_τ
- Require either a pair of τ_h leptons or a single τ_h lepton and at least 2 b jets
- Limits also reach 1.8 TeV in this analysis

Cross-Generational Couplings

- ATLAS has recently done a search for scalar LQs that have cross-generational couplings, e.g., ce, bµ
- Only pair production is considered and the final states with a pair of OSSF leptons and b- or ctagged jets are analyzed
- Limits are set as functions of the LQ mass and B(LQ \rightarrow q ℓ) for q = b, c and ℓ = e, μ
- More recent search for LQ \rightarrow (t,b)+(e, μ , ν) considers both scalar and vector LQs

ATLAS Sear

- A new search for LQ3 coupled cro e.g. to a τ and a c quark, using a τ
- Can also be interpreted as an excited τ^* search
- **Employs S**_T as the sensitive variable
- Typically dominant background from misidentified τ_h is determined from control samples is data and verified in the DY control region

Composite model

10-

 10^{-2}

10

CMS Excess in LQ3 Search

- Another preliminary result from CMS, inspired by the flavor anomalies $oldsymbol{O}$
- Looks for single, pair, and t-channel production of LQ3 in the $\tau\tau$ +X final states

- **★** Uses $S_T = \Sigma p_T(\tau) + p_T(j_1) + ME_T$ as a discriminating variable for resonant and $\chi =$ e^{-2y^*} , where $y^* = |y_1 - y_2|/2$ the rapidity separation between two leading (tau) jets for non-resonant production
- Global fit to multiple search regions for different LQ3 mass and couplings
 - **\star** See ~3.5 σ excess peaking in non-resonant production at large VLQ masses and couplings; no excess is seen for resonant production; global σ is hard to quantify

What About ATLAS?

- A related search, just made public, actually sees a deficit at high masses .Q^uLQ^u) [pb]
 - Unlike CMS, ATLAS search is focused on pair p
- Uses NN parameterized w.r.t. m(LQ)
- Not exactly comparable with the CMS analysis channel LQ3 exchange considered), but likely that the CMS excess is due to a statistical flu

More From ATLAS

- Fresh off the press: a new search from ATLAS considers single LQ3 production, as well as t-channel diagram with the LQ3 mediator directly comparable with the CMS search
- Requires a τ lepton pair and a high-p_T (> 200 GeV) b jet
- No significant excess seen in the S_T distribution in both the τ_lτ_h and τ_hτ_h channels, with the sensitivity high enough to start ruling out the CMS excess (N.B. ATLAS assumes Br(LQ3 → bτ) = 0.5, while CMS assumes 1)
- Additional limits are also set in the low-p_T b jet signal region

21

CMS H(eµ) Excess - LFV Search

- New CMS search for LFV Higgs boson decay H(eµ) \bigcirc
- Apart from setting a stringent limit on the H(125) LFV decay, it also scans the eµ mass
- An excess with a local (global) significance of 3.8 (2.8) σ is seen at a mass of 146 GeV
- Probably already ruled out by an earlier ATLAS analysis, judging by the mass plot ***** Would be nice if ATLAS could produce a limit at 146 GeV based on that analysis

CMS H(eµ) Excess - LFV Search

- New CMS search for LFV Higgs boson decay H(eµ) \bigcirc
- Apart from setting a stringent limit on the H(125) LFV decay, it also scans the eµ mass
- An excess with a local (global) significance of 3.8 (2.8) σ is seen at a mass of 146 GeV
- Probably already ruled out by an earlier ATLAS analysis, judging by the mass plot ***** Would be nice if ATLAS could produce a limit at 146 GeV based on that analysis

CMS H(eµ) Excess - LFV Search

- New CMS search for LFV Higgs boson decay H(eµ) \bigcirc
- Apart from setting a stringent limit on the H(125) LFV decay, it also scans the eµ mass
- An excess with a local (global) significance of 3.8 (2.8) σ is seen at a mass of 146 GeV
- Probably already ruled out by an earlier ATLAS analysis, judging by the mass plot ***** Would be nice if ATLAS could produce a limit at 146 GeV based on that analysis

One of the first papers on the 750 GeV excess

PHYSICAL REVIEW D 93, 115030 (2016)

Flavor anomalies, the 750 GeV diphoton excess, and a dark matter candidate 140 citations

Fhed

Martin Bauer¹ and Matthias Neubert^{2,3}

 Lut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
 ²PRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany
 ³Department of Physics & LEPP, Cornell University, Ithaca, New York 14853, USA (Received 21 January 2016; published 22 June 2016)

Diphoton resonance from a warped extra dimension

Martin Bauer,^a Clara Hörner^b and Matthias Neubert^{b,c}

^a Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
^b PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz, Germany
^c Department of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

doi:10.1007/JHEP07(2016)094

21 December, 2015 140 citations

10

Background-only fit

35 citations

The "forgotten" decay S -> Z+h as a CP analyzer

Martin Bauer (U. Heidelberg), Matthias Neubert, Andrea Thamm (U. Mainz)

Scalar particles *S* which are gauge singlets under the Standard Model are generic features of many models of fundamental physics, in particular as possible mediators to a hidden or dark sector. We show that the decay $S \rightarrow Zh$ provides a powerful probe of the CP nature of the scalar, because it is allowed only if *S* has CP-odd interactions. We perform a model-independent analysis of this decay in the context of an effective Lagrangian and compute the relevant Wilson coefficients arising from integrating out heavy fermions to one-loop order. We illustrate our findings with the example of the 750 GeV diphoton resonance seen by ATLAS and CMS and show that the $S \rightarrow Zh$ decay rate could naturally be of similar magnitude or larger than the diphoton rate.

Comments: 6 pages, 2 figures Subjects: High Energy Physics - Phenomenology (hep-ph) Report number: MTTP/16-067 Cite as: arXiv:1607.01016 [hep-ph] (or arXiv:1607.01016v1 [hep-ph] for this version) https://doi.org/10.48550/arXiv.1607.01016 **20 citations**

Practical 95% CL

 In April 2016 I've offered Matthias a bet against X(750): 20 bottles of wine from me if it's real against 1 bottle from him if it's not

★ The catch: >€100/bottle

- Fortunately for Matthias, after some hesitation, he decided not to take the bet
 - ★ Now, €100 richer and 750 papers wiser he probably appreciates what 95% confidence implies!

Greg Landsberg - Collider Searches and Measurements - 10.05.23

Sic Transit Gloria Mundi

Sic Transit Gloria Mundi

From: "Kenneth Lane" <lane@bu.edu> Subject: New model for the 750 GeV diphoton resonance Date: January 11, 2016 at 4:42:13 PM GMT+1 To: "Kenneth Lane" <lane@bu.edu>

> The Sexion -- A New Model for the 750 GeV Diphoton Resonance Kan D. Kane, Department of Physics, Commonwealth University

> > Abstract

It is proposed that the apparent diphoton resonance at 750 GeV recently reported by ATLAS and CMS in their early Run 2 data is the "sexion", a loosely-bound state of six 125-GeV Higgs bosons. This model neatly explains the sexion's mass and its large two-photon branching ratio. The latter is understood as the square of an amplitude of a cooperative phenomenon in which any of the six constituent Higgs bosons decay to two photons, times phase space, thus implying a two-photon decay rate $6^{5} = 7760$ times as large as that of the H(125).

Our new model is described in the abstract. No further explanation is needed.

Note added in proof: The other five go "poof".

Acknowledgments: The author thanks many colleagues who have inspired and inquired about his <u>diphoton</u> resonance model. Those colleagues, those who have participated in valuable discussions, and my funding sources wish to remain anonymous.

Atonement

Greg Landsberg - Collider Searches and Measurements - 10.05.23 27

ALPS

Axion-Like Particles

• Axion-like particles at the LHC and beyond

Collider probes of axion-like particles

https://doi.org/10.1007/JHEP12(2017)044

327 citations

Martin Bauer,^a Matthias Neubert^{b,c} and Andrea Thamm^b

^aInstitut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany ^bPRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz, Germany ^cDepartment of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

PRL 119, 031802 (2017)

PHYSICAL REVIEW LETTERS

week ending 21 JULY 2017

LHC as an Axion Factory: Probing an Axion Explanation for $(g-2)_{\mu}$ with Exotic Higgs Decays

68 citations

Martin Bauer,¹ Matthias Neubert,^{2,3} and Andrea Thamm²

¹Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany ²PRISMA Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany ³Department of Physics & LEPP, Cornell University, Ithaca, New York 14853, USA (Received 27 April 2017; published 21 July 2017)

Eur. Phys. J. C (2019) 79:74 https://doi.org/10.1140/epjc/s10052-019-6587-9

THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

149 citations

Axion-like particles at future colliders

Martin Bauer¹, Mathias Heiles², Matthias Neubert^{2,3}, Andrea Thamm^{4,a}

¹ Institute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom

² PRISMA Cluster of Excellence, Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz, Germany

³ Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA

4 Theoretical Physics Department, CERN, 1211 Geneva, Switzerland

29

TLAS Sea

decaying hadronically

Limits on $\sigma(pp \rightarrow H)Br(H \rightarrow Za)$ [pb]

 $a \rightarrow s\bar{s}$ $a \rightarrow gg$ a mass [GeV] Exp Obs Exp Obs 16+6 0.5 17 0.75 19^{+7} 20 17^{+7} 18 1.0 20^{+8} 19^{+7} 1.5 22 20 26^{+10}_{-7} 23^{+9} 2.0 27 24 32^{+12}_{-9} 38^{+15}_{-11} 2.5 40 33 65^{+25}_{-18} 75^{+29}_{-21} 3.0 78 68 110^{+40}_{-30} 3.5 120 320+130 4.0 340

f_a [GeV]

 $oldsymbol{O}$

CMS: Machine Learning for ALPs

Recent example from CMS: end-to-end deep ML reconstruction of the ECAL to resolve overlapping photon showers

and its Application

10.05.23 **Greg Landsberg - Collider Searches and Measurements -** Based on this regression technique, a dedicated analysis for a very light pseudoscalar a in a 0.1-1.2 GeV mass range has been conducted

 Look for an excess in the plane of two reconstructed yy masses, for the overall mass in the H boson window

 Sensitivity exceeds that from the generic limits based on H→yy decays, demonstrating the power of the technique

CL upper limit on B(H

95%

 m_a [GeV]

m_{ALP} (GeV)

H \rightarrow a(bb)a(µµ) in highresolution dimuon mass distribution

Local (global) significance of
 3.3 (1.7)σ at M(a) = 52 GeV

10⁻³

20

30

40

50

60

m_a [GeV]

AS

AT

H \rightarrow a(bb)a(µµ) in highresolution dimuon mass distribution

Local (global) significance of
 3.3 (1.7)σ at M(a) = 52 GeV

Greg Landsberg - Collider Searches and Measurements -

34

What Does ATLAS See?

Observed

Expected for signal plus background

Expected for backgroun

LEP

85 90 95 100

ATLAS

- No full Run 2 ATLAS result in the ਰੁੱ low-mass diphoton channel yet ***** The 2016 ATLAS result is not 10 inconsistent with the CMS one The full Run 2 ATLAS MSSM H($\tau\tau$) 10⁻ result contradicts the 1.2 TeV excess seen in CMS 10
- The 95-96 GeV light Higgs boson has long been a subject of theoretical interest since an old LEP hint in the H(bb) channel

Looking forward to ATLAS 139 fb⁻¹ updates in the yy channel!

In the Meantime...

- CMS has just released a new low-mass h(γγ) analysis based on full Run 2 data
- The overall excess is still there, with about the same significance (2.9σ local; 1.3σ global) albeit with twice as low cross section
- Still need more data (ATLAS Run 2?) to understand whether the excess is real

In the Meantime...

- CMS has just released a new low-mass h(γγ) analysis based on full Run 2 data
- The overall excess is still there, with about the same significance (2.9σ local; 1.3σ global) albeit with twice as low cross section
- Still need more data (ATLAS Run 2?) to understand whether the excess is real

Conferences

Aspen Conferences

- In 2005, Matthias and I decided to organize the Aspen 2006 Winter Conference on Particle Physics
 - ★ We invited Marcela Carena and Gudrid Moortgat-Pick to join us
 - **★** Each Aspen conference has a motto; ours was

2006 Aspen Winter Conference "Particle Physics at the Verge of Discovery"

- It was a fun conference, with a skiing race filmed on a professional video, live tango performance, etc.
- And our motto worked out just six years later!

2006 Aspen Conference

Aspen Conferences (cont'd)

- Ten years later, we decided to do it again, this time with Marcela and Giulia Zanderighi
- Surely enough we didn't have to think twice about the motto (the year of 750!):

2016 Aspen Winter Conference on Particle Physics

Tango was replaced with a jazz quartet, but skiing competition stayed!

2016 Aspen Conference

Breaking News

- Greg Landsberg Collider Searches and Measurements 10.05.23 43
- We decided to do it yet again, ten years later!
- We invite you to the 2026 Aspen Winter Conference on Particle Physics
- Guess what the motto will be?

Breaking News

- We decided to do it yet again, ten years later!
 We invite you to the 2026 Aspen Winter Conference on Particle Physics
 - Guess what the motto will be?

2026 Aspen Winter Conference on Particle Physics

European Research Council Isott and syte Europee Commence

BROWN

PRISMA

Particle Physics on the Verge

Greg Landsberg - Collider Searches and Measurements -

44

Happy Birthday, Matthias ...

• ...and happy anniversary, MITP!

Let's keep an eye on the few anomalies I showed, but don't run to the printing press yet!

Mainz Institute for Theoretical ^{Physics}