MUON-ELECTRON BACKWARD SCATTERING AND ENDPOINT DIVERGENCES IN SCET

[GUIDO BELL]

based on: GB, P. Böer, T. Feldmann, JHEP 09 (2022), 183 [2205.06021]

NH E H.Savier	Physics Reports 24	PHYSICS 5 (1994) 259-395	REPORTS
	Heavy-quarl	c symmetry	
	Matthias	Nanhart 1	
Stauford Linear Ac	Waterias .	and University Stanford, CA 04200, USA	
Sianjora Linear Ac	celerator center, stanj	ora oniversity, stangora, CA 94309, USA	
	Received February 19	94; editor: R. Slansky	
Contents:			
0. Preface	262	4. Hadronic matrix elements	321
1. Heavy-quark symmetry	264	4.1. Covariant representation of states	321
1.1. The physical picture	264	4.2. Meson decay form factors	325
1.2. An effective theory	266	4.3. Implications of Luke's theorem	332
1.3. Spectroscopic implications	269	4.4. Second-order power corrections and	the
1.4. Weak decay form factors	270	anatomy of Succession	334

NH		
EUSE		
	Eur. Phys. J. C (2011) 71:1665 DOI 10.1140/epjc/s10052-011-1665-7	THE EUROPEAN PHYSICAL JOURNAL C
	Regular Article - Theoretical Physics	
Contr	Drell–Yan production at small q_T , transv and the collinear anomaly	erse parton distributions
Conte	Thomas Becher ¹ , Matthias Neubert ^{2,3,a}	
0. Pro 1. He 1.1	¹ Institut für Theoretische Physik, Universität Bern, Sidlerstrasse 5, 3012 Bern, Swi ² Institut für Physik (THEP), Johannes Gutenberg-Universität, 55099 Mainz, Germ ³ Institut für Theoretische Physik, Raprecht-Karls-Universität Heidelberg, Philosop	itzerland any hienweg 16, 69120 Heidelberg, Germany
1.4	Received: 23 July 2010 / Revised: 28 April 2011 / Published online: 17 June 2011 © Springer-Verlag / Società Italiana di Fisica 2011	
	Abstract Using methods from effective field theory, an ex- act all-order expression for the Drell–Yan cross section at small transverse momentum is derived directly in <i>qr</i> space, logarii in which all large logarithms are resummed. The anoma- lous dimensions and matching cerdification snecessary for -the that	terman (CSS) [4], and explicit results for the ingre- necessary for resummation at next-to-next-to-leading thmic (NNLL) order were derived in [5–7]. The region all qr is of phenomenological importance, since it has

... but despite the common interests I only wrote one paper with him so far

	Physics Letters B 704 (2011) 276-283
	Contents lists available at SciVerse ScienceDirect
	Physics Letters B
ELSEVIER	www.elsevier.com/locate/physletb
Factorization and result fhomas Becher ^a , Guido Bell Institut für Theoretische Physik (Intersite Bern, Institut für Physik (THEP), Johannes Gurenberg-U	mmation for jet broadening ^{a, e} , Matthias Neubert ^b Säteratures 5(31-3012 Jem.Sutterintad Wirestlut, <i>PSSBWaita</i> .commay
Factorization and result Thomas Becher ^a , Guido Bell ¹ ¹ Institut für Theoretische Physik, Universität Rem, ¹ Institut für Physik (THEP), Johanne Gaersberge U ARTICLE INFO	mmation for jet broadening ^{a,*} , Matthias Neubert ^b Sidersursus 5, CH-3012 Ben, Switzerland https://a.b.s.5009.Mail.com/any ABSTRACT

... but despite the common interests I only wrote one paper with him so far

5

Collaborators

Thomas G. Becher	34
Li Lin Yang	1
Benjamin Dale Pecjak	1
Martin Matthias Bauer	1
Andrea Ferroglia	1
Valentin Christian Ahrens	1
Matthias König	1
Martin Beneke	1
Andrea Thamm	1
Christopher T. Sachrajda	1
Alexander Leon Kagan	1
Gil Paz	1
Bjorn O Lange	1
Ze Long Liu	
Richard James Hill	1
Ulrich Haisch	
Gerhard Buchalla	
Xing Wang	
Marvin Schnubel	

Zoitan Ligeti
Seung J. Lee
Sandro Casagrande
Leonardo Vernazza
Raoul Malm
Sophie Renner
Stefan Alte
Berthold Stech
Yosef Nir
Yuval Grossman
Adam F. Falk
Stefan W. Bosch
Florian Goertz
Daniel Wilhelm
Alessandro Broggio
<mark>Alessandro Broggio</mark> Bianka Mecaj
<mark>Alessandro Broggio</mark> Bianka Mecaj Christoph Schmell
Alessandro Broggio Bianka Mecaj Christoph Schmell L. Rothen
Alessandro Broggio Bianka Mecaj Christoph Schmell L. Rothen Andrey G. Grozin

Irinel Caprini
Adrián Carmona
Gabriel Amoros
Ding Yu Shao
Anne Mareike Galda
Maria Girone
Torsten Pfoh
Michael Benzke
Kristiane Novotny
Claudia Cornella
Mathias Heiles
Javier Castellano Ruiz
Stephan Braig
Volker Rieckert
Clara Hörner
Marcela S. Carena
Jonathan L. Rosner
Alexey A. Petrov
Laurent Lellouch
Andre Leclair

MIKKO Laine
Matthias Jamin
Gino Isidori
Ralf Hofmann
Christoph Greub
Paolo Gambino
Sean Peter Fleming
Fulvia De Fazio
Hans Gunter Dosch
Sacha Davidson
Gustavo A. Burdman
Vladimir M. Braun
Patricia Ball
Francesco Giacosa
Rikkert Frederix
Guido Bell
David Michael Straub
Paul R. Archer
Ageel Ahmed
T. K.

Javier Fuentes-Martin
Cen Zhang
Jian Wang
Darius A. Faroughy
Yi Chung
J. Hahn
Christophe Salomon
Q.P. Xu
L. Grunder
B. Zalar
A. Gregorovic
M. Simsic
A. Zidansek
R. Blinc
S. Keast
Guang-Hua Xu
Christof Wetterich
Guido Martinelli
Thomas Mannel
Michael E. Luke

Back to physics

At leading power soft-collinear factorisation is well understood

$$\frac{d\sigma}{d\tau} = H(Q,\mu) \int d\tau_n \ d\tau_{\bar{n}} \ d\tau_s \ J(\sqrt{\tau_n}Q,\mu) \ J(\sqrt{\tau_{\bar{n}}}Q,\mu) \ S(\tau_sQ,\mu) \ \delta(\tau-\tau_n-\tau_{\bar{n}}-\tau_s)$$

Back to physics

At leading power soft-collinear factorisation is well understood

$$\frac{d\sigma}{d\tau} = H(Q,\mu) \int d\tau_n \ d\tau_n \ d\tau_s \ J(\sqrt{\tau_n}Q,\mu) \ J(\sqrt{\tau_n}Q,\mu) \ S(\tau_sQ,\mu) \ \delta(\tau-\tau_n-\tau_n-\tau_s)$$

At subleading power one often finds that the convolutions diverge at the endpoints

$$\int_0^1 \mathrm{d}z \ h(z) \ j(z) = \int_0^1 \mathrm{d}z \ z^{-\varepsilon} \ z^{-1-\varepsilon} \neq \int_0^1 \mathrm{d}z \left[1-\varepsilon \ln z + \dots\right] \left[-\frac{1}{\varepsilon}\delta(z) + \frac{1}{z_+} + \dots\right]$$

 $\Rightarrow\,$ convolution and renormalisation of EFT operators do not commute

 \Rightarrow prevents the use of RG techniques at subleading power

Back to physics

At leading power soft-collinear factorisation is well understood

$$\frac{d\sigma}{d\tau} = H(Q,\mu) \int d\tau_n \ d\tau_n \ d\tau_s \ J(\sqrt{\tau_n}Q,\mu) \ J(\sqrt{\tau_n}Q,\mu) \ S(\tau_sQ,\mu) \ \delta(\tau-\tau_n-\tau_n-\tau_s)$$

At subleading power one often finds that the convolutions diverge at the endpoints

$$\int_0^1 \mathrm{d}z \ h(z) \ j(z) = \int_0^1 \mathrm{d}z \ z^{-\varepsilon} \ z^{-1-\varepsilon} \neq \int_0^1 \mathrm{d}z \left[1-\varepsilon \ln z + \dots\right] \left[-\frac{1}{\varepsilon}\delta(z) + \frac{1}{z_+} + \dots\right]$$

 \Rightarrow convolution and renormalisation of EFT operators do not commute

 \Rightarrow prevents the use of RG techniques at subleading power

Generic problem in SCET at subleading power

- event shapes, DIS, $H \rightarrow \gamma \gamma$, $B \rightarrow X_s \gamma$, $B \rightarrow \pi \ell \nu$, $B \rightarrow \pi \pi$, ...
- \Rightarrow for some problems this has been solved at next-to-leading power

[Liu, Neubert 19; Beneke et al 22; Feldmann et al 22; Cornella, König, Neubert 22; Hurth, Szafron 23; ...]

backward scattering at high energies

$$s\sim -t\gg m_{\mu}^2\sim m_e^2\gg u$$

► equal masses
$$m_{\mu} = m_{\theta} \equiv m$$

exact backward limit $\theta = \pi$ } expansion parameter $\lambda = \frac{m}{\sqrt{s}} \ll 1$

$$\blacktriangleright \mathcal{M}(e^{-}\mu^{-} \to e^{-}\mu^{-}) = F_{1}(\lambda) \underbrace{\mathcal{M}^{(0)}}_{\text{helicity-conserving}} + F_{2}(\lambda) \underbrace{\widetilde{\mathcal{M}}}_{\text{helicity-flipping}} + \mathcal{O}(\lambda)$$

two form factors

 $F_{1}(\lambda) \simeq 1 + \frac{\alpha_{\text{em}}}{2\pi} \frac{1}{2} \ln^{2} \lambda^{2} + \dots \iff \text{focus on double logarithms } \left(\frac{\alpha_{\text{em}}}{2\pi}\right)^{n} \ln^{2n} \lambda^{2}$ $F_{2}(\lambda) \simeq \frac{\alpha_{\text{em}}}{2\pi} \ln \lambda^{2} + \dots$

NLO analysis

Double logarithms arise from configurations in which the fermions are soft $k^{\mu} \sim m$

$$F_{1}^{(1)}(\lambda) \sim \int \frac{d^{d}k}{(2\pi)^{d}} \frac{k_{\perp}^{2}}{(k^{2} - m^{2})^{2}(k - \bar{p})^{2}(k - \bar{p})^{2}} \sim \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k^{2} - m^{2})(k - \bar{p})^{2}(k - \bar{p})^{2}}$$

- \Rightarrow photon propagators become eikonal
- \Rightarrow integration over k_{\perp} yields discontinuity of fermion propagator
- \Rightarrow in the traditional approach one regularises the remaining integrations with hard cutoffs

All-order structure

Each subloop generates the double logarithms in a similar way

 \Rightarrow all fermion propagators go on-shell, but their long. momenta are strongly ordered

$$\frac{m^2}{\sqrt{s}} \approx n_+ \bar{p} \ll n_+ k_1 \ll \dots \ll n_+ k_n \ll n_+ p \approx \sqrt{s}$$
$$\frac{m^2}{\sqrt{s}} \approx n_- p \ll n_- k_n \ll \dots \ll n_- k_1 \ll n_- \bar{p} \approx \sqrt{s}$$

 \Rightarrow all photon propagators become eikonal

$$F_{1}^{(n)}(\lambda) \sim \int_{\lambda^{2}}^{1} \frac{dx_{1}}{x_{1}} \int_{x_{1}}^{1} \frac{dx_{2}}{x_{2}} \cdots \int_{x_{n-1}}^{1} \frac{dx_{n}}{x_{n}} \int_{\lambda^{2}/x_{1}}^{1} \frac{dy_{1}}{y_{1}} \int_{\lambda^{2}/x_{2}}^{y_{1}} \frac{dy_{2}}{y_{2}} \cdots \int_{\lambda^{2}/x_{n}}^{y_{n-1}} \frac{dy_{n}}{y_{n}} = \frac{\ln^{2n} \lambda^{2}}{n! (n+1)!}$$

All-order structure

Each subloop generates the double logarithms in a similar way

 \Rightarrow all fermion propagators go on-shell, but their long. momenta are strongly ordered

$$\frac{m^2}{\sqrt{s}} \approx n_+ \bar{p} \ll n_+ k_1 \ll \ldots \ll n_+ k_n \ll n_+ p \approx \sqrt{s}$$
$$\frac{m^2}{\sqrt{s}} \approx n_- p \ll n_- k_n \ll \ldots \ll n_- k_1 \ll n_- \bar{p} \approx \sqrt{s}$$

Nested integrals resum to a modified Bessel function

[Gorshkov, Gribov, Lipatov, Frolov 66]

$$F_{1}(\lambda) = \sum_{n=0}^{\infty} \left(\frac{\alpha_{\text{em}}}{2\pi}\right)^{n} F_{1}^{(n)}(\lambda) \simeq \frac{l_{1}(2\sqrt{z})}{\sqrt{z}} \qquad \qquad z = \frac{\alpha_{\text{em}}}{2\pi} \ln^{2} \lambda^{2}$$

SCET formulation

At fixed order one can reproduce the double logarithms with the method of regions

Loop integrals require rapidity regulator

$$\blacktriangleright \left(\frac{\nu}{n_+k+n_-k-i0}\right)^{\alpha}$$

⇒ symmetry between collinear/anti-collinear

$$\blacktriangleright \left(\frac{\nu}{n_+k-i0}\right)^{\alpha}$$

 \Rightarrow soft integrals are scaleless and vanish

$$F_{1}(\lambda) = \int \frac{dx}{x} \int \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y) + \int \frac{dx}{x} \int \frac{dy}{y} \int \frac{d\rho}{\rho} \int \frac{d\omega}{\omega} f_{c}(x) J_{hc}(x\rho) S(\rho\omega) J_{\bar{hc}}(\omega y) f_{\bar{c}}(y)$$

$$F_{1}(\lambda) = \int \frac{dx}{x} \int \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y) + \int \frac{dx}{x} \int \frac{dy}{y} \int \frac{d\rho}{\rho} \int \frac{d\omega}{\omega} f_{c}(x) J_{hc}(x\rho) S(\rho\omega) J_{\bar{hc}}(\omega y) f_{\bar{c}}(y)$$

Standard hard-scattering picture:

- ▶ hard function from QED \rightarrow SCET-1 matching
- flavour off-diagonal parton distribution functions

$$\underbrace{\left[\mu^{-}(\boldsymbol{p}) \right] \bar{\chi}_{c}^{(\mu)}(\tau n_{+}) \frac{\dot{h}_{+}}{2} P_{R} \chi_{c}^{(e)}(0) \left| e^{-}(\boldsymbol{p}) \right\rangle}_{\text{leading twist}} = \int dx \ e^{ix\tau n_{+}\boldsymbol{p}} \left\{ f_{c}(x) \left[\bar{u}_{\xi}^{(\mu)} \frac{\dot{h}_{+}}{2} P_{R} u_{\xi}^{(e)} \right] + \tilde{f}_{c}(x) \left[\bar{u}_{\xi}^{(\mu)} \frac{\dot{h}_{+}}{2} P_{L} u_{\xi}^{(e)} \right] \right\}}_{\text{helicity-conserving}}$$

$$F_{1}(\lambda) = \int \frac{dx}{x} \int \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y) + \int \frac{dx}{x} \int \frac{dy}{y} \int \frac{d\rho}{\rho} \int \frac{d\omega}{\omega} f_{c}(x) J_{hc}(x\rho) S(\rho\omega) J_{\bar{hc}}(\omega y) f_{\bar{c}}(y)$$

Soft-enhancement mechanism:

suppression from subleading Lagrangian

insertions is compensated by soft propagators

▶ jet functions from SCET-1 \rightarrow SCET-2 matching

$$S(\rho\omega) \sim \int d(n_{-}x_{1}) \int d(n_{+}x_{2}) \ e^{\frac{i}{2}\rho(n_{+}x_{2})} \ e^{-\frac{i}{2}\omega(n_{-}x_{1})} \int d^{d}x_{3}$$

$$\times \langle 0| \ T[\bar{\psi}_{s}^{(\mu)}\bar{S}_{n_{+}}](x_{1+}) \frac{\not{h}_{+}}{2} P_{R}[S_{n_{+}}^{\dagger}\psi_{s}^{(e)}](0)[\bar{\psi}_{s}^{(e)}\bar{S}_{n_{-}}](x_{3}) \frac{\not{h}_{-}}{2} P_{R}[S_{n_{-}}^{\dagger}\psi_{s}^{(\mu)}](x_{2-}+x_{3})|0\rangle$$

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y)$$

+
$$\int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\infty} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J_{hc}(x\rho) S(\rho\omega) J_{\bar{hc}}(\omega y) f_{\bar{c}}(y)$$

Bare factorisation theorem suffers from endpoint divergences

- rapidity divergences cancel only in the sum of the two terms
- \Rightarrow both terms must describe the same physics in the endpoint region

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y)$$

+
$$\int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\infty} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J_{hc}(x\rho) S(\rho\omega) J_{\bar{h}\bar{c}}(\omega y) f_{\bar{c}}(y)$$

Refactorisation of collinear matrix elements

[Böer 18; Liu,Neubert 19]

 \Rightarrow brings the hard-scattering term into the same form as the soft contribution!

note: the problem of endpoint divergences repeats itself in the refactorisation condition

Resummation

Double logarithms can be resummed using consistency relations

- poles in $1/\alpha$ and $1/\varepsilon$ must cancel in $F_1(\lambda)$
- each pole comes with characteristic logarithm
- non-trivial constraint from refactorisation condition

Derivation uses asymmetric rapidity regulator

$$\begin{split} F_{1}(\lambda) &\simeq \int_{0}^{1} \frac{dx}{x} \ f_{c}\left(x; \frac{\mu}{m}, \frac{\nu}{\sqrt{s}}\right) \int_{0}^{1} \frac{dy}{y} \ f_{\bar{c}}\left(y; \frac{\mu}{m}, \frac{\nu\sqrt{s}}{m^{2}}\right) \ H\left(\frac{\mu^{2}}{xys}\right) \\ &\simeq \sum_{n=0}^{\infty} \ z_{h}^{n} \ h^{(n)} \ \langle x^{-1-n\varepsilon} \rangle_{f_{c}}\left(\frac{\mu}{m}, \frac{\nu}{\sqrt{s}}\right) \ \langle y^{-1-n\varepsilon} \rangle_{f_{c}}\left(\frac{\mu}{m}, \frac{\nu\sqrt{s}}{m^{2}}\right) \qquad \qquad z_{h} = \frac{\alpha_{em}}{2\pi} \frac{1}{\varepsilon^{2}} \left(\frac{\mu^{2}}{s}\right)^{\varepsilon} \\ &\simeq \sum_{n=0}^{\infty} \ z_{h}^{n} \ h^{(n)} \ r_{n}(\mu/m) \ \times \ \left(\frac{m^{2}}{s}\right)^{\mathcal{F}_{n}(\mu/m)} \end{split}$$

 $\Rightarrow\,$ reproduce modified Bessel function order-by-order in perturbation theory

(up to a single coefficient that can be extracted from the one-loop expressions)

${\it H} \rightarrow \gamma \gamma$

Bottom-quark contribution

$$H \cdots b$$
 $b \gamma$

- ▶ scale hierachy $m_b \ll M_H$
- subleading power due to helicity suppression

Bare factorisation theorem

[Liu, Neubert 19]

$$\begin{split} \mathcal{M}_{b}(H \to \gamma \gamma) &\sim H_{1} \left\langle O_{1} \right\rangle \\ &+ 2 \int_{0}^{1} \frac{dz}{z} \, \bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \\ &+ H_{3} \int_{0}^{\infty} \frac{d\ell_{-}}{\ell_{-}} \int_{0}^{\infty} \frac{d\ell_{+}}{\ell_{+}} \, J(M_{H}\ell_{+}) \, J(M_{H}\ell_{-}) \, \mathcal{S}(\ell_{+}\ell_{-}) \end{split}$$

${\it H} \rightarrow \gamma \gamma$

Bottom-quark contribution

$$H \cdots b$$
 $b \gamma$ γ

- ▶ scale hierachy $m_b \ll M_H$
- subleading power due to helicity suppression

Bare factorisation theorem is spoilt by endpoint divergences

[Liu, Neubert 19]

$$\begin{split} \mathcal{M}_{b}(H \to \gamma \gamma) &\sim H_{1} \left\langle O_{1} \right\rangle \\ &+ 2 \int_{0}^{1} \frac{dz}{z} \, \bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \\ &+ H_{3} \int_{0}^{\infty} \frac{d\ell_{-}}{\ell_{-}} \int_{0}^{\infty} \frac{d\ell_{+}}{\ell_{+}} \, J(M_{H}\ell_{+}) \, J(M_{H}\ell_{-}) \, \mathcal{S}(\ell_{+}\ell_{-}) \end{split}$$

- in the endpoint regions the two terms describe the same physics
- \Rightarrow is there a way to combine these contributions?

${\it H} \rightarrow \gamma \gamma$

Bottom-quark contribution

$$H \cdots b$$
 $b \gamma$ γ

- ▶ scale hierachy $m_b \ll M_H$
- subleading power due to helicity suppression

Bare factorisation theorem is free from endpoint divergences

[Liu, Neubert 19]

$$\begin{split} \mathcal{M}_{b}(H \to \gamma \gamma) &\sim \left(H_{1} + \Delta H_{1}\right) \left\langle O_{1} \right\rangle \\ &+ 2 \int_{0}^{1} \frac{dz}{z} \left\{ \bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle - \left[\left[\bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \right] \right]_{0} - \left[\left[\bar{H}_{2}(z) \left\langle O_{2}(z) \right\rangle \right] \right]_{1} \right\} \\ &+ H_{3} \int_{0}^{M_{H}} \frac{d\ell_{-}}{\ell_{-}} \int_{0}^{M_{H}} \frac{d\ell_{+}}{\ell_{+}} J(M_{H}\ell_{+}) J(M_{H}\ell_{-}) S(\ell_{+}\ell_{-}) \end{split}$$

rearrangement based on refactorisation conditions

$$\left[\!\left[\bar{H}_{2}(z)\left\langle O_{2}(z)\right\rangle\right]\!\right]_{0} = \frac{H_{3}}{2} \int_{0}^{\infty} \frac{d\ell_{+}}{\ell_{+}} J(M_{H}\ell_{+}) J(z M_{H}^{2}) S(\ell_{+} z M_{H})$$

High-energy backward scattering

• scale hierachy $m \ll \sqrt{s}$

leading power QED process

Bare factorisation theorem

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y)$$

+
$$\int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\infty} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) f_{\bar{c}}(y)$$

High-energy backward scattering

• scale hierachy $m \ll \sqrt{s}$

leading power QED process

Bare factorisation theorem is spoilt by endpoint divergences

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) f_{\bar{c}}(y)$$

+
$$\int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\infty} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) f_{\bar{c}}(y)$$

High-energy backward scattering

• scale hierachy $m \ll \sqrt{s}$

leading power QED process

Bare factorisation theorem is spoilt by endpoint divergences

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) \left\{ f_{\bar{c}}(y) - \left[\left[f_{\bar{c}}(y) \right] \right]_{0} \right\}$$
$$+ \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\sqrt{s}} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) f_{\bar{c}}(y)$$

High-energy backward scattering

scale hierachy m ≪ √s
 leading power QED process

Bare factorisation theorem is spoilt by endpoint divergences

$$F_{1}(\lambda) = \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} f_{c}(x) H(xy) \left\{ f_{\bar{c}}(y) - \left[\!\!\left[f_{\bar{c}}(y)\right]\!\!\right]_{0} \right\}$$
$$+ \int_{0}^{1} \frac{dx}{x} \int_{0}^{1} \frac{dy}{y} \int_{0}^{\sqrt{s}} \frac{d\rho}{\rho} \int_{0}^{\infty} \frac{d\omega}{\omega} f_{c}(x) J(x\rho) S(\rho\omega) J(\omega y) \left\{ f_{\bar{c}}(y) - \left[\!\!\left[f_{\bar{c}}(y)\right]\!\!\right]_{0} \right\}$$
$$+ f_{c} \otimes J \otimes S \otimes J \otimes S \otimes J \otimes S \otimes J \otimes f_{\bar{c}} + \dots$$

$$\Rightarrow$$
 system does not close under rearrangements

High-energy backward scattering

Double logarithms can be derived from self-consistency relation

[GB, Böer, Feldmann 22]

$$F_{1}(\lambda) = \mathcal{F}_{1}(z) = 1 + z \int_{0}^{1} d\xi \int_{0}^{1} d\eta \, \mathcal{F}_{1}(\xi^{2}z) \, \theta(1 - \xi - \eta) \, \mathcal{F}_{1}(\eta^{2}z) = \frac{l_{1}(2\sqrt{z})}{\sqrt{z}}$$

in terms of logarithmic variables

$$z = \frac{\alpha}{2\pi} \ln^2 \lambda^2$$
, $\xi = \frac{\ln x}{\ln \lambda^2}$, $\eta = \frac{\ln y}{\ln \lambda^2}$

Compare to $H \rightarrow \gamma \gamma$

$$\mathcal{F}_{b}(z) = 2 \int_{0}^{1} d\xi \int_{0}^{1} d\eta \, \theta(1-\xi-\eta) \, e^{-2\xi\eta z} = {}_{2}F_{2}(1,1;3/2,2;-z/2)$$

Exclusive B decays

 $B_c
ightarrow \eta_c \ell
u$ in non-relativistic approximation

Pattern of endpoint divergences similar to muon-electron backward scattering

- no soft-enhancement mechanism
 - recover same modified Bessel function (in QED)

Additional source of double logarithms

- Sudakov logarithms from heavy-light vertex
- non-trivial interplay of cusp and endpoint logs

Conclusions

Progress in understanding endpoint divergences in SCET

- > partial solutions based on refactorisation conditions and rearrangement formulae
- more complicated for partonic $2 \rightarrow 2$ processes and beyond

Muon-electron backward scattering

- iterative pattern of endpoint-divergent convolution integrals
- endpoint logarithms sum up to modified Bessel function
- relation to exclusive B decays

Looking forward to the next MITP workshop ... and further interactions with Matthias!