Factorization of Weak Annihilation Amplitudes in Nonleptonic B-Meson Decays

Michel Stillger

MPA Summer School 2023
September 14, 2023

B-anomalies: $b \rightarrow s \ell^{+} \ell^{-}$

\diamond lepton universality parameters $\quad K^{* 0} \equiv K^{*}(892)^{0}$

$$
R_{K, K^{*}}=\frac{\Gamma\left(B^{(\pm, 0)} \rightarrow K^{(\pm, * 0)} \mu^{+} \mu^{-}\right)}{\Gamma\left(B^{(\pm, 0)} \rightarrow K^{(\pm, * 0)} e^{+} e^{-}\right)}
$$

\diamond SM prediction: $\quad R_{K}=R_{K^{*}}=1+\mathcal{O}\left(m_{e} / m_{\mu}\right)$

B-anomalies: $b \rightarrow s \ell^{+} \ell^{-}$

\diamond lepton universality parameters

$$
R_{K, K^{*}}=\frac{\Gamma\left(B^{(\pm, 0)} \rightarrow K^{(\pm, * 0)} \mu^{+} \mu^{-}\right)}{\Gamma\left(B^{(\pm, 0)} \rightarrow K^{(\pm, * 0)} e^{+} e^{-}\right)}
$$

\diamond SM prediction: $\quad R_{K}=R_{K^{*}}=1$

- latest LHCb measurement from 2022
> agrees with SM prediction [LHCb 2022]

B-anomalies: $b \rightarrow s \ell^{+} \ell^{-}$

\diamond angular distribution in $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$
Δ branching fraction of $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$

B-anomalies: $b \rightarrow s \ell^{+} \ell^{-}$

\diamond angular distribution in $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$
\diamond branching fraction of $B_{S}^{0} \rightarrow \phi \mu^{+} \mu^{-}$
$\diamond \mathrm{LHCb}$ measurements
$\gg 2 \sigma$ deviation [LHCb 2020]
$\gg 3 \sigma$ deviation $\llbracket \mathrm{LHCb}$ 2021]

B-anomalies: $b \rightarrow s \ell^{+} \ell^{-}$

\diamond angular distribution in $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$
\diamond branching fraction of $B_{S}^{0} \rightarrow \phi \mu^{+} \mu^{-}$
$\diamond \mathrm{LHCb}$ measurements
$\gg 2 \sigma$ deviation [LHCb 2020]
$\gg 3 \sigma$ deviation [LHCb 2021]
\diamond possible explanation: shift in Wilson coefficient $C_{9 V}$

B-anomalies: $b \rightarrow c \ell v$

\diamond branching fractions of semitauonic decays

$$
R\left(D^{(*)}\right)=\frac{\Gamma\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\Gamma\left(B \rightarrow D^{(*)} \mu \nu_{\mu}\right)}
$$

B-anomalies: $b \rightarrow c \ell v$

\diamond branching fractions of semitauonic decays

$$
R\left(D^{(*)}\right)=\frac{\Gamma\left(B \rightarrow D^{(*)} \tau \nu_{\tau}\right)}{\Gamma\left(B \rightarrow D^{(*)} \mu \nu_{\mu}\right)}
$$

\diamond HFLAV results from 2023
$\gg 3 \sigma$ deviation [HFLAV 2023]

\diamond integrate out "heavy" physics at scale $\mu \sim M_{W}$
\diamond obtain effective operators describing low-energy physics

Weak effective Hamiltonian [Buchalla ectal. 1999]

\diamond integrate out "heavy" physics at scale $\mu \sim M_{W}$
\diamond obtain effective operators describing low-energy physics
\diamond Example: $\Delta B=1$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}= & \frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q b} V_{q d}^{*}\left[C_{1} Q_{1}^{q}+C_{2} Q_{2}^{q}+\sum_{i=3}^{10} C_{i} Q_{i}+C_{7 \gamma} Q_{7 \gamma}\right. \\
& \left.+C_{8 g} Q_{8 g}+C_{9 V} Q_{9 V}+C_{10 A} Q_{10 A}\right]+ \text { h.c. } \\
+ & \frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q b} C_{s l} Q_{s l}^{q}+\text { h.c. }
\end{aligned}
$$

Weak effective Hamiltonian [Buchalla ectal. 1999]

\diamond integrate out "heavy" physics at scale $\mu \sim M_{W}$
\diamond obtain effective operators describing low-energy physics
\diamond Example: $\Delta B=1$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q b} V_{q d}^{*}\left[C_{1} Q_{1}^{q}\right. & +C_{2} Q_{2}^{q}+\sum_{i=3}^{40_{i}^{6}} C_{i} Q_{i}+C_{7} Q_{7 \gamma} \\
& \left.+C_{8 \%} Q_{8 g}+C_{9 F} Q_{9 V}+C_{10 A} Q_{10 A}\right]+ \text { h.c. }
\end{aligned}
$$

$$
+\frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q} C_{s l} Q_{s l}^{q+\text { h.c. }}
$$

QCD Factorization [

\diamond amplitude factorization for $B \rightarrow M_{1} M_{2}$ with M_{1}, M_{2} both light

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle= & \sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d x T_{i j}^{I}(x) \Phi_{M_{2}}(x) \\
& +\left(M_{1} \leftrightarrow M_{2}\right)
\end{aligned}
$$

QCD Factorization [BBNs 2000$]$

\diamond amplitude factorization for $B \rightarrow M_{1} M_{2}$ with M_{1}, M_{2} both light

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle= & \sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d x T_{i j}^{I}(x) \Phi_{M_{2}}(x) \\
& +\left(M_{1} \leftrightarrow M_{2}\right)
\end{aligned}
$$

QCD Factorization [BENs 2000]

\diamond amplitude factorization for $B \rightarrow M_{1} M_{2}$ with M_{1}, M_{2} both light
process independent

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle= & \sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d x T_{i j}^{I}(x) \Phi_{M_{2}}(x) \\
& +\left(M_{1} \leftrightarrow M_{2}\right)
\end{aligned}
$$

M_{1}

QCD Factorization [BBNs 2000]

\diamond amplitude factorization for $B \rightarrow M_{1} M_{2}$ with M_{1}, M_{2} both light

$$
\begin{aligned}
& \text { amplitude factorization for } B \rightarrow M_{1} M_{2} \text { with } M_{1}, M_{2} \text { both light } \\
&\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle= \sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d x T_{i j}^{I}(x) \Phi_{M_{2}}(x) \\
&+\left(M_{1} \leftrightarrow M_{2}\right) \\
&+\int_{0}^{1} d \xi d x d y T_{i}^{I I}(\xi, x, y) \Phi_{B}(\xi) \Phi_{M_{1}}(y) \Phi_{M_{2}}(x)
\end{aligned}
$$

QCD Factorization [BBNs 2000]

\diamond amplitude factorization for $B \rightarrow M_{1} M_{2}$ with M_{1}, M_{2} both light

$$
\begin{aligned}
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle= & \sum_{j} F_{j}^{B \rightarrow M_{1}}\left(m_{2}^{2}\right) \int_{0}^{1} d x T_{i j}^{I}(x) \Phi_{M_{2}}(x) \\
& +\left(M_{1} \leftrightarrow M_{2}\right)
\end{aligned}
$$

Weak Annihilation [BBNs 2001]

\diamond effective Hamiltonian

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q b} V_{q d}^{*}\left[C_{1} Q_{1}^{q}+C_{2} Q_{2}^{q}+\sum_{i=3}^{6} C_{i} Q_{i}+C_{8 g} Q_{8 g}\right]+\text { h.c. }
$$

\diamond contains contributions that are subleading in $\lambda \equiv \Lambda_{\mathrm{QCD}} / m_{b}$

Weak Annihilation [BBNs 2001]

\diamond effective Hamiltonian

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} \sum_{q=u, c} V_{q b} V_{q d}^{*}\left[C_{1} Q_{1}^{q}+C_{2} Q_{2}^{q}+\sum_{i=3}^{6} C_{i} Q_{i}+C_{8 g} Q_{\mathrm{s} g}\right]+\text { h.c. }
$$

\diamond contains contributions that are subleading in $\lambda \equiv \Lambda_{\mathrm{QCD}} / m_{b}$
\diamond not included in previous factorization formula

Weak Annihilation [BBNs 2001]

\diamond leading order contribution

$$
A_{1}^{i}=\pi \alpha_{s} \int_{0}^{1} d x d y\left\{\Phi_{M_{1}}(y) \Phi_{M_{2}}(x)\left[\frac{1}{y(1-x \bar{y})}+\frac{1}{\bar{x}^{2} y}\right]+\frac{4 \mu_{M_{1}} \mu_{M_{2}}}{m_{b}^{2}} \frac{2}{\bar{x} y}\right\} \quad \begin{aligned}
& \bar{x} \equiv 1-x \\
& \bar{y} \equiv 1-y
\end{aligned}
$$

Weak Annihilation [BBNs 2001]

\diamond leading order contribution

$$
A_{1}^{i}=\pi \alpha_{s} \int_{0}^{1} d x d y\left\{\Phi_{M_{1}}(y) \Phi_{M_{2}}(x)\left[\frac{1}{y(1-x \bar{y})}+\frac{1}{\bar{x}^{2} y}\right]+\frac{4 \mu_{M_{1}} \mu_{M_{2}}}{m_{b}^{2}} \frac{2}{\bar{x} y}\right\} \quad \begin{aligned}
& \bar{x} \equiv 1-x \\
& \bar{y} \equiv 1-y
\end{aligned}
$$

\diamond endpoint divergent integral for $x \rightarrow 1$

Weak Annihilation [BbNs 2001]

\diamond leading order contribution

$$
A_{1}^{i}=\pi \alpha_{s} \int_{0}^{1} d x d y\left\{\Phi_{M_{1}}(y) \Phi_{M_{2}}(x)\left[\frac{1}{y(1-x \bar{y})}+\frac{1}{\bar{x}^{2} y}\right]+\frac{4 \mu_{M_{1}} \mu_{M_{2}}}{m_{b}^{2}} \frac{2}{\bar{x} y}\right\} \quad \begin{aligned}
& \bar{x} \equiv 1-x \\
& \bar{y} \equiv 1-y
\end{aligned}
$$

Δ endpoint divergent integral for $x \rightarrow 1$
\diamond similar contribution divergent for $y \rightarrow 0$
\diamond How to deal with these endpoint divergences?

Soft-Collinear Effective Theory (SCET)

\diamond momenta in B-Meson CMS

$$
\begin{aligned}
& n^{\mu}=(1,0,0,1) \\
& \bar{n}^{\mu}=(1,0,0,-1) \\
& v^{\mu}=(1,0,0,0)
\end{aligned}
$$

$$
n \cdot \bar{n}=2
$$

$$
p_{K^{-}}=m_{B} n
$$

$$
n^{2}=\bar{n}^{2}=0
$$

$$
p_{K^{+}}=m_{B} \bar{n}
$$

$$
n+\bar{n}=2 v
$$

$$
p_{B}=m_{B} v
$$

Soft-Collinear Effective Theory (SCET)

\diamond momenta in B-Meson CMS

$$
\begin{aligned}
& n^{\mu}=(1,0,0,1) \\
& \bar{n}^{\mu}=(1,0,0,-1) \\
& v^{\mu}=(1,0,0,0)
\end{aligned}
$$

$$
n \cdot \bar{n}=2
$$

$$
p_{K^{-}}=m_{B} n
$$

$$
n^{2}=\bar{n}^{2}=0
$$

$$
p_{K^{+}}=m_{B} \bar{n}
$$

$$
n+\bar{n}=2 v
$$

$$
p_{B}=m_{B} v
$$

\diamond decompose momenta

$$
p^{\mu}=(n \cdot p) \frac{\bar{n}^{\mu}}{2}+(\bar{n} \cdot p) \frac{n^{\mu}}{2}+p_{\perp}^{\mu} \quad \quad p \sim\left(n \cdot p, \bar{n} \cdot p, p_{\perp}\right)
$$

Soft-Collinear Effective Theory (SCET)

\diamond momenta in B-Meson CMS

$$
\begin{array}{rlr}
n^{\mu}=(1,0,0,1) & n \cdot \bar{n}=2 & p_{K^{-}}=m_{B} n \\
\bar{n}^{\mu}=(1,0,0,-1) & n^{2}=\bar{n}^{2}=0 & p_{K^{+}}=m_{B} \bar{n} \\
v^{\mu}=(1,0,0,0) & n+\bar{n}=2 v & p_{B}=m_{B} v
\end{array}
$$

\diamond decompose momenta

$$
p^{\mu}=(n \cdot p) \frac{\bar{n}^{\mu}}{2}+(\bar{n} \cdot p) \frac{n^{\mu}}{2}+p_{\perp}^{\mu} \quad \quad p \sim\left(n \cdot p, \bar{n} \cdot p, p_{\perp}\right)
$$

Δ relevant momentum regions

$$
\begin{array}{lll}
p_{h} \sim m_{b}(1,1,1) & p_{h c} \sim m_{b}\left(\lambda, 1, \lambda^{1 / 2}\right) & p_{c} \sim m_{b}\left(\lambda^{2}, 1, \lambda\right) \\
& p_{\overline{h c}} \sim m_{b}\left(1, \lambda, \lambda^{1 / 2}\right) & p_{\bar{c}} \sim m_{b}\left(1, \lambda^{2}, \lambda\right) \\
& & p_{s} \sim m_{b}(\lambda, \lambda, \lambda)
\end{array}
$$

Matching onto SCET-1

\diamond split fields according to momentum scaling: $\phi \rightarrow \phi_{h c}+\phi_{\overline{h c}}+\phi_{s}$

$$
\begin{array}{r}
\mathcal{L}^{\mathrm{SCET}-1}=\mathcal{L}_{h c}+\mathcal{L}_{\overline{h c}}+\mathcal{L}_{s}+\mathcal{L}_{h c+s}+\mathcal{L}_{\overline{h c}+s} \\
\mathcal{L}^{\mathrm{HQET}}+\mathcal{L}_{s}^{\mathrm{QCD}}
\end{array}
$$

Matching onto SCET-1

Δ split fields according to momentum scaling: $\phi \rightarrow \phi_{h c}+\phi_{\overline{h c}}+\phi_{s}$

$$
\begin{aligned}
\mathcal{L}^{\mathrm{SCET}-1}=\mathcal{L}_{h c}+\mathcal{L}_{\overline{h c}}+\mathcal{L}_{s}+\mathcal{L}_{h c+s}+\mathcal{L}_{\overline{h c}+s} \\
\mathcal{L}^{\mathrm{HQET}}+\mathcal{L}_{s}^{\mathrm{QCD}}
\end{aligned}
$$

\diamond match weak effective Hamiltonian onto SCET-1

$$
\mathcal{M}=\sum_{n} H_{n}(\mu) \otimes\left\langle K^{+} K^{-}\right| O_{n}(\mu)\left|\bar{B}^{0}\right\rangle
$$

Matching onto SCET-1

\diamond match weak effective Hamiltonian onto SCET-1

$$
\mathcal{M}=\sum_{n} H_{n}(\mu) \otimes\left\langle K^{+} K^{-}\right| O_{n}(\mu)\left|\bar{B}^{0}\right\rangle
$$

Matching onto SCET-2

\diamond split fields further: $\phi_{h c} \rightarrow \phi_{c}+\phi_{s}$ and $\phi_{\overline{h c}} \rightarrow \phi_{\bar{c}}+\phi_{s}$

$$
\mathcal{L}^{\mathrm{SCET}-2}=\mathcal{L}_{c}+\mathcal{L}_{\bar{c}}+\mathcal{L}_{s} \longleftarrow \text { no } s-c \text { interactions at leading power in } \lambda
$$

Matching onto SCET-2

\diamond split fields further: $\phi_{h c} \rightarrow \phi_{c}+\phi_{s}$ and $\phi_{\overline{h c}} \rightarrow \phi_{\bar{c}}+\phi_{s}$

$$
\mathcal{L}^{\mathrm{SCET}-2}=\mathcal{L}_{c}+\mathcal{L}_{\bar{c}}+\mathcal{L}_{s} \longleftarrow \text { no } s-c \text { interactions at leading power in } \lambda
$$

\diamond match SCET-1 operators onto SCET-2

$$
\begin{aligned}
\mathcal{M}= & \sum_{n} J_{n}(\mu) \otimes H_{n}(\mu) \otimes \bar{J}_{n}(\mu) \otimes\left\langle K^{+} K^{-}\right| \mathcal{Q}_{n}(\mu)\left|\bar{B}^{0}\right\rangle \\
& \text { so far unknown (LC)DAs }
\end{aligned}
$$

Matching onto SCET-2

\diamond match SCET-1 operators onto SCET-2

$$
\mathcal{M}=\sum_{n} J_{n}(\mu) \otimes H_{n}(\mu) \otimes \bar{J}_{n}(\mu) \otimes\left\langle K^{+} K^{-}\right| \mathcal{Q}_{n}(\mu)\left|\bar{B}^{0}\right\rangle
$$

Matching onto SCET-2

\diamond match SCET-1 operators onto SCET-2

$$
\mathcal{M}=\sum_{n} J_{n}(\mu) \otimes H_{n}(\mu) \otimes \bar{J}_{n}(\mu) \otimes\left\langle K^{+} K^{-}\right| \mathcal{Q}_{n}(\mu)\left|\bar{B}^{0}\right\rangle
$$

Conclusion

$\diamond B$-anomalies \rightarrow precise theoretical predictions needed
\diamond leading power factorization understood since 20 years
\diamond NLP factorization more complicated \rightarrow endpoint divergences
\diamond systematic study of weak annihilation amplitudes using SCET
> new universal (LC)DAs
$>$ need to study endpoint behavior

