Width difference and semileptonic asymmetry in B mesons

MPA Summer school 2023

Josua Scholze with Prof. Luca Silvestrini

11.09.2023

Testing the Standard Model

- Flavor observables (e.g.: ΔM_d , ΔM_s) put strong constrains on the Standard Model
- Unitarity triangle by CKMfitter, UTfit:

Josua Scholze | Width difference and semileptonic asymmetry in B mesons

Table of Contents

Introduction into B meson mixing

▶ Theory for Γ_{12}

Theory results

Mixing of neutral B mesons

- flavor eigenstates of *B* mesons defined by quark content: $B_s = (s, \bar{b}), \ \bar{B}_s = (\bar{s}, b)$
- weak interaction allows mixing:

Mixing of neutral B mesons

• time evolution:
$$i\frac{d\psi(t)}{dt} = \hat{H}\psi(t), \quad \psi(t) = \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix}$$
 with

$$\hat{H} = \hat{M} - irac{\hat{\Gamma}}{2} = egin{pmatrix} M_{11} - irac{\Gamma_{11}}{2} & M_{12} - irac{\Gamma_{12}}{2} \ M_{21} - irac{\Gamma_{22}}{2} & M_{22} - irac{\Gamma_{22}}{2} \end{pmatrix}$$

- without mixing \hat{H} would be diagonal
- Hermiticity and CPT invariance requires: $M_{21} = M_{12}^*, \quad \Gamma_{21} = \Gamma_{12}^*, \quad M_{11} = M_{22}, \quad \Gamma_{11} = \Gamma_{22}$

Mixing of neutral B mesons

• time evolution:
$$i\frac{d\psi(t)}{dt} = \hat{H}\psi(t), \quad \psi(t) = \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix}$$
 with

$$\hat{H} = \hat{M} - irac{\hat{\Gamma}}{2} = egin{pmatrix} M_{11} - irac{\Gamma_{11}}{2} & M_{12} - irac{\Gamma_{12}}{2} \ M_{12}^* - irac{\Gamma_{12}}{2} & M_{11} - irac{\Gamma_{11}}{2} \end{pmatrix}$$

- diagonalization \hat{H} gives mass eigenstates: $\ket{B_{\mathsf{H}}} = p \ket{B} + q \ket{ar{B}}, \ket{B_{\mathsf{L}}} = p \ket{B} q \ket{ar{B}}$
- M_{12} : off-shell contribution from: u, c, t, W
- Γ_{12} : on-shell contribution from: u, c

Physical observables

- Three independent observables: (in B system: $|\Gamma_{12}| \ll |M_{12}|$)
 - Mass difference: $\Delta M = M_{\rm H} M_{\rm L} pprox 2 |M_{12}|$
 - Width difference:

$$\Delta \Gamma = \Gamma_{\mathsf{L}} - \Gamma_{\mathsf{H}} = -\mathsf{Re}\left(rac{\Gamma_{12}}{M_{12}}
ight)\Delta M$$

semileptonic asymmetry:

$$a_{\mathsf{sl}} = \mathsf{Im}\left(rac{\Gamma_{12}}{M_{12}}
ight), \quad ext{experimentally:} \ rac{\Gamma\left(ar{B}(t) o ar{l}
u_l X
ight) - \Gamma\left(B(t) o ar{l}
u_l X
ight)}{\Gamma\left(ar{B}(t) o ar{l}
u_l X
ight) + \Gamma\left(B(t) o ar{l}
u_l X
ight)}$$

• Up to now measured: ΔM_s , ΔM_d , $\Delta \Gamma_s$

Introduction into B meson mixing

Theory results

Josua Scholze | Width difference and semileptonic asymmetry in B mesons

Obtaining Γ_{12}

• general procedure:

- Heavy Quark Expansion in $\Lambda/m_bpprox 0.05$
- decomposition of Γ_{12} :

$$\begin{split} \Gamma_{12} &= -\left[\,\lambda_{c}^{2}\,\Gamma_{12}^{cc} \,+\, 2\,\lambda_{c}\,\lambda_{u}\,\Gamma_{12}^{uc} \,+\, \lambda_{u}^{2}\,\Gamma_{12}^{uu}\,\right] \\ &= -\lambda_{t}^{2}\left[\,\Gamma_{12}^{cc} \,+\, 2\,\frac{\lambda_{u}}{\lambda_{t}}\,\left(\Gamma_{12}^{cc} - \Gamma_{12}^{uc}\right) \,+\, \frac{\lambda_{u}^{2}}{\lambda_{t}^{2}}\,\left(\Gamma_{12}^{cc} - 2\Gamma_{12}^{uc} + \Gamma_{12}^{uu}\right)\right] \end{split}$$

Josua Scholze | Width difference and semileptonic asymmetry in B mesons

Obtaining Γ_{12}

• decomposition of Γ_{12} :

$$\Gamma_{12} = -\lambda_t^2 \left[\Gamma_{12}^{cc} + 2 \frac{\lambda_u}{\lambda_t} \left(\Gamma_{12}^{cc} - \Gamma_{12}^{uc} \right) + \frac{\lambda_u^2}{\lambda_t^2} \left(\Gamma_{12}^{cc} - 2\Gamma_{12}^{uc} + \Gamma_{12}^{uu} \right) \right]$$

• in terms of Wilson coefficients C_i and $\Delta B = 2$ matrix elements:

$$\Gamma_{12} \propto \sum_{i} C_i \langle B | H_i^{\Delta B=2} | \overline{B} \rangle$$

• for $a_{sl} = \operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)$: Γ_{12}^{cc} doesn't contribute \Rightarrow depends on m_c

Why do we calculate the ratio Γ_{12}/M_{12} ?

• decomposition of Γ_{12} :

$$\Gamma_{12} = -\lambda_t^2 \left[\Gamma_{12}^{cc} + 2 \frac{\lambda_u}{\lambda_t} (\Gamma_{12}^{cc} - \Gamma_{12}^{uc}) + \frac{\lambda_u^2}{\lambda_t^2} (\Gamma_{12}^{cc} - 2\Gamma_{12}^{uc} + \Gamma_{12}^{uu}) \right]$$

• in terms of $\Delta B = 1$ Wilson coefficients C_i and $\Delta B = 2$ matrix elements:

$$\Gamma_{12} \propto \sum_{i} C_{i} \langle B | H_{i}^{\Delta B=2} | \overline{B}
angle$$

- factor λ_t^2 appears also in M_{12} : cancels in the ratio Γ_{12}/M_{12}
- M_{12} contains just one factor $\langle B|H_i^{\Delta B=2}|\overline{B}\rangle \Rightarrow$ cancellation with Γ_{12} possible

Table of Contents

Introduction into B meson mixing

▶ Theory for Γ_{12}

► Theory results

Comparison with measurement

Theory predictions by Gerlach et al. [2205.07907]

$$\begin{split} \Delta \Gamma_s &= (0.076 \pm 0.017) \, \mathrm{ps}^{-1} \\ a_{\mathrm{sl}}^s &= (2.19 \pm 0.14) \times 10^{-5} \\ \Delta \Gamma_d &= (2.16 \pm 0.47) \times 10^{-3} \, \mathrm{ps}^{-1} \\ a_{\mathrm{sl}}^d &= (-5.04 \pm 0.33) \times 10^{-4} \end{split}$$

Experimental values by HFLAV [2206.07501]

$$\begin{split} \Delta \Gamma_s &= (0.083 \pm 0.005) \, \mathrm{ps}^{-1} \\ a_{\mathrm{sl}}^s &= (-60 \pm 280) \times 10^{-5} \\ \Delta \Gamma_d &= (0.7 \pm 6.6) \times 10^{-3} \, \mathrm{ps}^{-1} \\ a_{\mathrm{sl}}^d &= (-21 \pm 17) \times 10^{-4} \end{split}$$

• I confirmed the theory uncertainties with MC simulations

Renormalization scale dependence

- μ_1 scale dependence shrinks by including higher orders
- Potential Subtracted (PS) and MS scheme behave better than the pole scheme

Josua Scholze | Width difference and semileptonic asymmetry in B mesons

- Implemented $\Delta\Gamma$ and $a_{\rm sl}$ for different mass schemes in HEPfit
- Reevaluated the uncertainties for $\Delta \Gamma_s$ and $a_{\rm sl}$ with MC simulations
- Next step: get constraints for the Standard Model with a complete UT analysis
- Future: extension to New Physics models possible

Thank you. Any questions?

- "Effective Theories for Quark Flavour Physics" by Silvestrini
- "Meson width differences and asymmetries", thesis by Gerlach
- "CP violation in the B_s^0 system" by Artuso et al.
- "Gauge Theory of Weak Decays" by Buras
- "HEPfit Manual" by de Blas et al.

$\Delta B = 1$ Effective Hamiltonian

$$\begin{split} H_{\text{eff}}^{\Delta B=1} &= \frac{\mathcal{G}_F}{\sqrt{2}} \left\{ \left[\left(V_{cb}^* V_{ud} \left(\mathcal{C}_1 Q_1 + \mathcal{C}_2 Q_2 \right) + V_{cb}^* V_{cd} \left(\mathcal{C}_1 Q_1^c + \mathcal{C}_2 Q_2^c \right) + (c \leftrightarrow u) \right) \right. \\ &\left. - V_{tb}^* V_{td} \left(\sum_{i=3}^6 \mathcal{C}_i Q_i + \mathcal{C}_{86} Q_{86} \right) \right] + \left[d \to s \right] \right\} + h.c. \end{split}$$

• operator in traditional basis [hep-ph/9211304], [hep-ph/0308029]:

$$\begin{array}{ll} Q_{1} = (\bar{b}_{i}c_{j})_{V-A}(\bar{u}_{j}d_{i})_{V-A} \,, & Q_{2} = (\bar{b}_{i}c_{i})_{V-A}(\bar{u}_{j}d_{j})_{V-A} \,, \\ Q_{1}^{c} = (\bar{b}_{i}c_{j})_{V-A}(\bar{c}_{j}d_{i})_{V-A} \,, & Q_{2}^{c} = (\bar{b}_{i}c_{i})_{V-A}(\bar{c}_{j}d_{j})_{V-A} \,, \\ Q_{3} = (\bar{b}_{i}d_{i})_{V-A} \sum_{q} (\bar{q}_{j}q_{j})_{V-A} \,, & Q_{4} = (\bar{b}_{i}d_{j})_{V-A} \sum_{q} (\bar{q}_{j}q_{i})_{V-A} \,, \\ Q_{5} = (\bar{b}_{i}d_{i})_{V-A} \sum_{q} (\bar{q}_{j}q_{j})_{V+A} \,, & Q_{6} = (\bar{b}_{i}d_{j})_{V-A} \sum_{q} (\bar{q}_{j}q_{i})_{V+A} \,, \\ Q_{8C} = \frac{g_{s}}{8\pi^{2}} m_{b} \bar{b}_{i} \sigma^{\mu\nu} \left(1 - \gamma^{5}\right) t_{ij}^{a} d_{j} G_{\mu\nu}^{a} \end{array}$$

$\Delta B = 1$ Effective Hamiltonian

$$\begin{split} H_{\text{eff}}^{\Delta B=1} &= \frac{\mathcal{G}_F}{\sqrt{2}} \left\{ \left[\left(V_{cb}^* V_{ud} \left(\mathcal{C}_1 Q_1 + \mathcal{C}_2 Q_2 \right) + V_{cb}^* V_{cd} \left(\mathcal{C}_1 Q_1^c + \mathcal{C}_2 Q_2^c \right) + (c \leftrightarrow u) \right) \right. \\ &\left. - V_{tb}^* V_{td} \left(\sum_{i=3}^6 \mathcal{C}_i Q_i + \mathcal{C}_{86} Q_{86} \right) \right] + \left[d \to s \right] \right\} + h.c. \end{split}$$

• to diminish problems with γ_5 :

alternative basis by Chetyrkin, Misiak and Münz [hep-ph/9711280] known up to NNLO and transformation to traditional basis up to NLO

Matching procedure

- matching of Standard Model (SM) to Weak Effective Theory (WET): get $\Delta B = 1$ Wilson coefficients $C_i(\mu_0 \approx m_W)$
- use Renormalization Group Equation (RGE): $\mu \frac{d}{du} \vec{C}(\mu) = \vec{\gamma} \vec{C}(\mu)$
- matching to $\Delta B = 2$ Hamiltonian at: μ_1
- RGE to obtain scale μ_2 of the $\Delta B = 2$ operator matrix elements

Operator basis for $\Delta B = 2$

• Result:
$$\Gamma_{12} = \frac{G_F^2 m_b^2}{24 \pi M_B} \left[H(z) \langle B | Q | \bar{B} \rangle + H_S(z) \langle B | Q_S | \bar{B} \rangle + \widetilde{H}_S(z) \langle B | \widetilde{Q}_S | \bar{B} \rangle \right] + \Gamma_{1/m_b}$$

• with dimension 6 operators:

$$\begin{split} & Q = \bar{s}_i \gamma^{\mu} \left(1 - \gamma^5\right) b_i \ \bar{s}_j \gamma_{\mu} \left(1 - \gamma^5\right) b_j \\ & Q_S = \bar{s}_i \left(1 + \gamma^5\right) b_i \ \bar{s}_j \left(1 + \gamma^5\right) b_j \\ & \widetilde{Q}_S = \bar{s}_i \left(1 + \gamma^5\right) b_j \ \bar{s}_j \left(1 + \gamma^5\right) b_i \\ & R_0 = \frac{1}{2} \alpha_1 Q + Q_S + \alpha_2 \widetilde{Q}_S = \mathcal{O}\left(\frac{\Lambda}{m_b}\right), \text{at LO in } \alpha_s: \alpha_1 = \alpha_2 = 1 \end{split}$$

• coefficients: $H_i = H_i(\mathcal{C}_j(\mu_0, \mu_1), \mu_1, \mu_2)$

Operator basis for $\Delta B = 2$

• Result:
$$\Gamma_{12} = \frac{G_F^2 m_b^2}{24 \pi M_B} \left[H(z) \langle B | Q | \bar{B} \rangle + \underline{H_S(z)} \langle B | Q_S | \bar{B} \rangle + \widetilde{H}_S(z) \langle B | Q_S | \bar{B} \rangle \right] + \Gamma_{1/m_b}$$

• with dimension 6 operators:

$$\begin{split} & Q = \bar{s}_i \gamma^{\mu} \left(1 - \gamma^5\right) b_i \ \bar{s}_j \gamma_{\mu} \left(1 - \gamma^5\right) b_j \\ & Q_S = \bar{s}_i \left(1 + \gamma^5\right) b_i \ \bar{s}_j \left(1 + \gamma^5\right) b_j \\ & \widetilde{Q}_S = \bar{s}_i \left(1 + \gamma^5\right) b_j \ \bar{s}_j \left(1 + \gamma^5\right) b_i \\ & R_0 = \frac{1}{2} \alpha_1 Q + Q_S + \alpha_2 \widetilde{Q}_S = \mathcal{O}\left(\frac{\Lambda}{m_b}\right), \text{at LO in } \alpha_s: \alpha_1 = \alpha_2 = 1 \end{split}$$

- old choice: use *Q* and *Q*_S [hep-ph/9808385], implemented from [hep-ph/0308029]
- better alternative: use Q and \widetilde{Q}_S [hep-ph/0612167] to cancel $\langle B|Q|\bar{B}\rangle$ in $\Delta\Gamma/\Delta M$

Switch to the RI scheme for $\Delta B = 2$ operators

• renormalization prescription for the RI scheme [hep-ph/9501265]:

 $\langle F|Q_i|I
angle_\lambda = \langle F|Q_i|I
angle_{ ext{tree}}$

- ensures to all orders: $\langle B|R_0|ar{B}
 angle=\mathcal{O}\left(rac{\Lambda}{m_b}
 ight)$
- conversion only known to NLO [hep-lat/0110091]:

$$\begin{pmatrix} \langle Q(\mu) \rangle \\ \langle Q_{S}(\mu) \rangle \\ \langle \widetilde{Q}_{S}(\mu) \rangle \end{pmatrix}_{\overline{\mathrm{M5}}} = \begin{bmatrix} \mathbbm{1} + r_{123} \frac{\alpha_{s}(\mu)}{4\pi} \end{bmatrix} \begin{pmatrix} \langle Q(\mu) \rangle \\ \langle Q_{S}(\mu) \rangle \\ \langle \widetilde{Q}_{S}(\mu) \rangle \end{pmatrix}_{\mathrm{RI}}, r_{123} = \frac{1}{9} \begin{pmatrix} -42 + 72 \log 2 & 0 & 0 \\ 0 & 61 + 44 \log 2 & -7 + 28 \log 2 \\ 0 & -25 + 28 \log 2 & -29 + 44 \log 2 \end{pmatrix}$$

$1/m_b$ corrections

• Beside *R*₀, the operators

$$\begin{array}{l} - & R_1 = \frac{m_s}{m_b} \, \bar{s}_\alpha (1+\gamma_5) b_\alpha \, s_\beta (1-\gamma_5) b_\beta \\ - & R_2 = \frac{1}{m_b^2} \, \bar{s}_\alpha \overleftarrow{D}_\rho \gamma^\mu (1-\gamma_5) D^\rho b_\alpha \, s_\beta \gamma_\mu (1-\gamma_5) b_\beta \\ - & R_3 = \frac{1}{m_b^2} \, s_\alpha \overleftarrow{D}_\rho (1+\gamma_5) D^\rho b_\alpha \, s_\beta (1+\gamma_5) b_\beta \end{array}$$

and \widetilde{R}_i (with interchanged colour indices α, β) occur

• known to LO in α_s and parameterized by [hep-ph/0612167]:

$$\widetilde{\Gamma}^{ab}_{12,1/m_b} = rac{G_F^2 m_b^2}{24\pi M_{B_s}} \left[g_0^{ab} raket{B_s}{R_0} \ket{B_s} + \sum_{j=1}^3 \left[g_j^{ab} raket{B_s}{R_j} \ket{B_s} + \widetilde{g}_j^{ab} raket{B_s}{\widetilde{R}_j} \ket{\overline{B}}
ight]
ight]$$

Resummation of logarithms

- dominant z-dependent contribution at order α_s^n from $\alpha_s^n z \ln^n z$
- change renormalisation scheme [hep-ph/0307344]:

$$z = rac{\overline{m}_c^2(\overline{m}_c)}{\overline{m}_b^2(\overline{m}_b)}
ightarrow \overline{z} = rac{\overline{m}_c^2(\overline{m}_b)}{\overline{m}_b^2(\overline{m}_b)} pprox rac{z}{2}$$

• important for semileptonic asymmetry (of order *z*)

Different mass renormalization schemes

- $\Gamma_{12}^{ab} = rac{G_F^2 m_b^2}{24 \pi M_B} \left[H^{ab}(z) \langle B | Q | \bar{B} \rangle + \widetilde{H}_S^{ab}(z) \langle B | \widetilde{Q}_S | \overline{B} \rangle \right] + \mathcal{O}(\Lambda_{ ext{QCD}}/m_b)$
- $H^{ab} = H_0 + \alpha_s H_1 + \alpha_s^2 H_2$ were calculated in pole mass scheme
- for numerical evaluation: switch scheme of the prefactor m_b^2 to $\overline{\mathrm{MS}}$ or PS
- general scheme transformation: $m_b = m_b' \left(1. + lpha_s \Delta m_b^1 + lpha_s^2 \Delta m_b^2
 ight)$
- adapt the expansion of H^{ab} to:

$$H = H_0 + lpha_s \left[H_1 + 2\Delta m_b^1 H_0
ight] + lpha_s^2 \left[H_2 + 2 \left(\Delta m_b^1
ight) H_1 + \left(2\Delta m_b^2 + \left(\Delta m_b^1
ight)^2
ight) H_0
ight]$$