Neutrino Fits, Tensions and Puzzles

Patrick Huber

Center for Neutrino Physics – Virginia Tech

MPA Summer School 2023 Abtei Frauenwörth, Fraueninsel, Chiemsee September 10 – 15, 2023

P. Huber – VT CNP – p. 1

All theorists are liars

Neutrino physics has a rich history of anomalies:

It took 40 years for Ray Davis and John Bahcall to be taken seriously with the solar neutrino anomaly.

The atmospheric neutrino anomaly did not last quite that long, but still was labeled an anomaly till Super-K came around in 1998.

Much of the anomalous nature stemmed from theoretical prejudice: neutrinos are massless, neutrino mixing angles are small, astrophysics isn't an exact science, chemistry is really scary asf.

Of course, I happen to be a theorist ...

Why sterile?

We have measured in neutrino oscillation:

- $\Delta m_{21}^2 \sim 8 \cdot 10^{-5} \,\mathrm{eV}^2$ and $\theta_{12} \sim 1/2$
- $\Delta m_{31}^2 \sim 2 \cdot 10^{-3} \,\mathrm{eV}^2$ and $\theta_{23} \sim \pi/4$
- $\theta_{13} \sim 0.16$

This implies a lower bound on the mass of the heaviest neutrino

 $\sqrt{2 \cdot 10^{-3}} \,\mathrm{eV}^2 \sim 0.04 \,\mathrm{eV}$ This IS BSM physics!

Any $\Delta m^2 \gg \Delta m_{21}^2$, Δm_{31}^2 requires a 4th neutrino, BUT only three neutrinos with $m_{\nu} \leq m_Z$ couple to the Z \Rightarrow "sterile" neutrino.

Evidence in favor

Or at least at odds with a simple 3-flavor framework

- LSND $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
- MiniBooNE $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$
- Reactors $\nu_e \rightarrow \nu_e$
- Gallium $\nu_e \rightarrow \nu_e$

LSND and MiniBooNE

 $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \simeq 0.003$

Statistically significant: $4 - 6\sigma$

Fermilab SBN

Figure courtesy D. Schmitz and C. Adams Signal to noise not so different from LSND... will a near detector of completely different design help?

Pion decay at rest at JSNS, Gd-doped scintillator. JSNS2, 2017

Direct test of the LSND result \rightarrow should have been done 20 years ago!

Pauli's idea

The neutrino was first proposed by Wolfgang Pauli

Physikalisches Institut der Eidg. Technischen Hochschule Zurich

Zirich, 4. Des. 1930 Oloriastrasse

Liebe Radioaktive Damen und Herren,

Wie der Ueberbringer dieser Zeilen, den ich huldvollst ansuhören bitte, Ihnen des näheren auseinandersetzen wird, bin ich angesichts der "falschen" Statistik der N- und Li-6 Kerne, sowie des kontinuierlichen beta-Spektrums auf einen versweifelten Ausweg verfallen um den "Wechselsats" (1) der Statistik und den Energiesats zu retten. Mämlich die Möglichkeit, es könnten elektrisch neutrale Teilchen, die ich Neutronen nennen will, in den Kernen existieren, welche den Spin 1/2 haben und das Ausschliessungsprinzip befolgen und sich von Lichtquanten ausserdem noch dadurch unterscheiden, dass sie dant mit Lichtgeschwindigkeit laufen. Die Masse der Neutronen merte von derselben Grossenordnung wie die Elektronenmasse sein und jedenfalls nicht grösser als 0,01 Protonermasse.- Das kontinuierliche Spektrum wäre dann verständlich unter der Annahme, dass beim beta Zerfall mit dem blektron jeweils noch ein Neutron emittiert Mirde derart, dass die Summe der Energien von Neutron und Elektron konstant ist.

He postulates a neutral, very light, spin 1/2 particle inside the nucleus.

Beta decay 101

Fermi would take this idea and develop a first theory of beta decay (1934):

$$n \rightarrow p + e^- + \nu$$

or in a nuclear bound state

$$(Z,A) \to (Z+1,A) + e^- + \nu$$

Fermi's Golden Rule (invented for this problem) reads as, with O being the operator for weak interactions

$$\frac{dP}{dt} \propto \underbrace{\left|\left\langle\psi_f |\mathbf{O}|\psi_i\right\rangle\right|^2}_{\text{metric closest 2}} \qquad \underbrace{\rho(E)}_{\text{phase space density}} dE$$

matrix element \mathcal{H}_{fi} phase space density

Beta decay 101 – cont'd

$$d\Gamma = \int \frac{\mathbf{p}_e}{(2\pi)^3} \frac{\mathbf{p}_\nu}{(2\pi)^3} |\mathcal{H}_{fi}|^2 2\pi \delta(E_0 - E_e - E_\nu)$$

assuming $|\mathcal{H}_{fi}|^2$ is independent of momentum transfer this becomes for $m_{\nu} = 0$ and $M_N \to \infty$

$$d\Gamma = |\mathcal{H}_{fi}|^2 p_e E_e (E_0 - E_e)^2 dE_e$$

The electron wave function is not a plane wave, but an unbound solution of the hydrogen atom, yielding a correction term

$$|\psi_e(r=0)|^2 =: F(Z, E_e)$$

so called Fermi function

P. Huber – VT CNP – p. 10

Beta decay 101 – cont'd

Cleaning up our notation (and make it compatible with modern literature)

$$|\mathcal{H}_{fi}|^2 = F(Z, E_e) \frac{G_F^2 |V_{ud}|^2}{2\pi^3} |\mathcal{M}_{fi}|^2$$

Fermi used the solution to the relativistic, point-like, infinitely heavy hydrogen atom to compute $F(Z, E_e)$. $|\mathcal{M}_{fi}|^2$ incorporates all the nuclear bound state physics and the assumption that it is independent of momentum transfer implies that we approximate the nucleus as a point. Transitions for which this approximation is valid are called "allowed".

Beta decay 101 – cont'd

Now the lifetime is given by

$$\frac{1}{\tau} = \Gamma = \frac{G_F^2 |V_{ud}|^2}{2\pi^3} |\mathcal{M}_{fi}|^2$$
$$\int_{m_e}^{E_0} dE_e F(Z, E_e) p_e E_e (E_0 - E_e)^2$$
$$=: f(Z, E_0)$$

or

$$ft := \log 2f\tau = \frac{2\pi^3 \log 2}{G_F^2 |V_{ud}|^2} |\mathcal{M}_{fi}|^{-2}$$

The ft-value of more often $\log ft$ -value is a measure of the nuclear matrix element.

Inverse beta decay

Now that we can describe

 $n \rightarrow p + e^- + \nu$

what about the inverse beta decay

$$\nu + p \rightarrow n + e^+$$
?

Bethe and Peirls in 1934 estimate the cross section to be (neutron decay was not yet discovered!)

$$\sigma \simeq \frac{\hbar^3}{m^3 c^4 \tau} (E_{\nu}/mc^2)^2 \simeq E_{\nu}^2 \, 10^{-43} \, \mathrm{cm}^2$$

and conclude: "there is no practically possible way of observing the neutrino."

Avogadro's number

Using a cross section of around 10^{-42} cm²... We can get a factor 10^{24} from Avogadro's number but that still leaves us with 10^{18} neutrinos to see anything. Where do we get 10^{18} neutrinos?

 \rightarrow digression on nuclear fission

Neutrinos from fission

P. Huber – VT CNP – p. 15

How many?

 $^{235}U + n \rightarrow X_1 + X_2 + 2n$

with average masses of X_1 of about A=94 and X_2 of about A=140. X_1 and X_2 have together 142 neutrons. The stable nuclei with A=94 and A=140 are $\frac{94}{40}Zr$ and $\frac{140}{58}Ce$, which together have only 136 neutrons. Thus 6 β -decays will occur, yielding 6 $\bar{\nu}_e$. Fissioning 1kg of 235U gives 10^{24} neutrinos, or at distance of 50 m about 10^{16} cm⁻².

Ca. 1951

Reines' Nobel Lecture, 1995

Reines & Cowan's day job was to instrument nuclear weapons tests.

Bethe and Fermi thought this was a good idea and thus, not surprisingly their A-bomb proposal was approved.

What really happened

In the fall of 1952 Reines & Cowan revisited the idea of using a reactor:

number of fissions per second = thermal reactor power / energy per fission

 $\frac{300\,\mathrm{MW}}{200\,\mathrm{MeV}} \simeq 10^{19}\,\mathrm{s}^{-1}$

so 10^5 seconds yields the same fluence, 10^{24} as a 20 kt explosion.

Delayed coincidence

This is the basis for all reactor neutrino experiments since then.

Savannah River

P-reactor became operational in Feb 1954, initially rated for less than 500MW, heavy water cooled, plutonium production reactor.

Note, positron energy is NOT observed.

1956

They report a cross section (!) of 6×10^{-44} cm⁻².

The reactor anomaly

Daya Bay, 2014

Mueller *et al.*, 2011, 2012 – where have all the neutrinos gone?

Status quo early 2021

3 different flux models, data from 2 different experiments

Except for U235: + the models agree within error bars + the models agree with neutrino data

U235 has smallest error bars, not surprising that discrepancies show up first.

Berryman, PH, 2020

Fuel evolution

STEREO, 2020

Berryman, PH, 2020

U235 seems to "own" all of the deficit.

The 5 MeV bump

Double Chooz 2019 Contains only 0.5% of all neutrino events – not important for sterile neutrinos

Yet, statistically more significant than the RAA!

Why is this so complicated?

P. Huber – VT CNP – p. 27

β -branches

Two ways to predict

Summation calculations

Fission yields Beta yields

Problem: databases are insufficient & difficulty of assigning an error budget **Conversion calculations**

Cumulative beta spectra Z_{eff} from databases

Problem: single set of cumulative beta spectra & forbidden corrections have to rely on databases

In both approaches, one has to deal with: Forbidden decays Weak magnetism corrections Non-equilibrium corrections Structural materials in the reactor

Summation method – EF

Take fission yields from database.

Take beta decay information from database.

For the most crucial isotopes use β -feeding functions from total absorption γ spectroscopy.

Estienne et al., 2019

Conversion method – HM

²³⁵U foil inside the High Flux Reactor at ILL

Electron spectroscopy with a magnetic spectrometer

Same method used for ²³⁹Pu and ²⁴¹Pu

Mueller *et al.*, 2011; PH, 2011

Schreckenbach, et al. 1985.

Virtual branches

1 – fit an allowed β -spectrum with free normalization η and endpoint energy E_0 the last s data points

- 2 delete the last s data points
- 3 subtract the fitted spectrum from the data
- 4 goto 1

Invert each virtual branch using energy conservation into a neutrino spectrum and add them all.

Shell model – HKSS

Forbidden decays major source of systematic.

Microscopic shell model calculation of 36 forbidden isotopes, otherwise similar to HM.

Increases the IBD rate anomaly by 40%, but the uncertainty increases by only 13% relative to HM

Hayen, et al. 2019

Kill BILL?

(Electron detector in focal plane: multi chamber proportional counter in transmission, rear mounted scintillator in coincidence)

Neutron flux calibration standards different for U235 and Pu239: 207Pb and 197Au respectively.

Combined with potential differences in neutron spectrum – room for a 5% shift of U235 normalization?

A. Letourneau, A. Onillon, AAP 2018

2021 beta measurement

Relative measurement of U235 and Pu239 targets under identical conditions.

Beta detection with stilbene.

This slide and the following are based on V. Kopeikin, M. Skorokhvatov, O. Titov (2021) and V. Kopeikin , Yu. Panin, A. Sabelnikov (2020) and we will refer to this as the Kurchatov Institute (KI) data.

2021 beta results

At relevant energies the new measurement is about 5% below the previous one

Systematics is difficult in these measurements, but no obvious issues.

2021 beta impact

HM – conversion HKSS – conversion + forbidden decays EF – summation unclear theory error KI – HM + KI data HKSS+KI – HKSS +KI

With the KI correction agreement between summation and conversion improved.

RAA significance reduced to less than 2σ

Oscillations are everywhere

Hypothetical two baseline experiment
Maximum likelhood estimate is biased and not consistent.
Wilks' theorem does not apply

Coloma, PH, Schwetz, 2020

Agostini, Neumair, 2019; Silaeva, Sinev, 2020; Giunti, 2020 PROSPECT+STEREO, 2020

Global reactor data

 $\Delta \chi^2 = 7.3$ for nooscillation hypothesis, flux model-independent Solar data provides a strong constraint at large $\sin^2 2\theta$

Berryman, Coloma, PH, Schwetz, Zhou 2021

Feldman-Cousins p-value 24.7% (1.1σ) \Rightarrow no evidence for oscillation No tension with Neutrino-4

Gallium anomaly

Radioactive source experiments

GALLEX	GALLEX	SAGE	SAGE	BEST	BEST
				(inner)	(outer)
0.953 ± 0.11	0.812 ± 0.10	0.95 ± 0.12	0.791 ± 0.084	0.791 ± 0.044	0.766 ± 0.045

Nuclear matrix elements

ground state follows from beta decay excited states?

Gallium and solar

Any model for the matrix element yields than 5σ for the gallium anomaly, even the ground state contribution by itself.

BCHSZ 2021

BUT, there is a more than 3σ tension with solar data.

Explanations?

Experimental reasons (all disfavored)

longer ⁷¹Ge halflife

new excited state in ^{71}Ga larger BR($^{51}\text{Cr} \rightarrow {}^{51}\text{V}^*)$

⁷¹Ge extraction efficiency

smaller matrix element, smaller cross section see also Giunti 2023 would change the matrix element changes relation between decay heat and source strength some ⁷¹Ge does not get extracted

Engineer a MSW resonance at the ⁵¹Cr neutrino energy.

Brdar, Gehrlein, Kopp, 2023

All together now

Full FC analysis Reactor+solar: 1.1σ Reactor+gallium: $5.3-5.7\sigma$

BCHSZ 2021

Evidence for neutrino disappearance entirely driven by gallium results, only tension gallium vs solar at $> 3\sigma$.

CEvNS

Coherent elastic neutrino nucleus scattering (CEvNS) is threshold-less.

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} N^2 M_N \left(1 - \frac{M_N T}{2E_\nu^2}\right)$$

T recoil energy, ${\cal N}$ neutron number

- Measured for the 1st time in 2017 by COHERENT.
- Perfect proxy for dark matter detection
- Requires nuclear recoil (!) threshold of less than 1 keV

Hic sunt leones

Shown is the data of a number of different dark matter/CEvNS experiments below 1 keV as reported at the EXCESS workshop 2021 https://indico.cern.ch/event/1013203/

Observed accross a wide range of technologies and shielding configurations – origin unknown!

Reactor CEvNS is a critical testbed for dark matter detection.

Optical detection of crystal defects as technological alternative? Goel, Cogswell, PH 2021

Disappearance and appearance

 $\nu_{\mu} \rightarrow \nu_{e}$ requires that the sterile neutrino mixes with both ν_{e} and ν_{μ}

 \Rightarrow there must be effects in *both* $\nu_e \rightarrow \nu_e$ and $\nu_\mu \rightarrow \nu_\mu$

Up to factors of 2, the energy averaged probabilities obey

$$P_{\mu e} \lesssim (1 - P_{\mu \mu})(1 - P_{ee})$$

Disappearance data

 $\sin^2 2\theta_{e\mu} = 4|U_{e4}U_{\mu4}|^2$ with $1 - P_{ee} \propto |U_{e4}|^2$ and $1 - P_{\mu\mu} \propto |U_{\mu4}|^2$

Dentler, *et al.*, 2018

There is (and has been for decades) a strong tension between **global** appearance data and disappearance data.

Finding a sterile neutrino

All pieces of evidence have in common that they are less than 5σ effects and they may be all due to the extraordinary difficulty of performing neutrino experiments, if not:

- N sterile neutrinos are the simplest explanation for each data set
- Tension with null results in disappearance remains
- It is difficult for only a sterile neutrino to fit all data
- At this point only the gallium seems to be robust