

EndoTOFPET-US: an endoscopic Positron Emission Tomography detector for a novel multimodal medical imaging tool

Daniele Cortinovis on behalf of the EndoTOFPET-US collaboration

53rd International Winter Meeting on Nuclear Physics Bormio, 29.1.2015

Outline

- Introduction and motivation
- EndoTOFPET-US detector
- External plate
 - Photodetector and crystals
 - Readout ASICs
 - Integration
- Internal probe
- Simulations and image reconstruction
- Conclusions and outlook

Daniele Cortinovis

© DESY / Stuhrmann

PET principles

PET is a non-invasive, diagnostic imaging technique for measuring the metabolic activity of cells in the human body

PICOSEC

- β⁺ radio-labeled compound (e.g. ¹⁸FDG) is injected in the patient
- The positron annihilates with e⁻ from tissue, forming back-to-back 511 keV photon pair
- 511 keV photons detected in time coincidence
- Image reconstruction

Time Of Flight (TOF) PET uses TOF information to reduce background from neighboring organs

Medical requirements

Pancreatic cancer

- No early symptoms
- Low survival rate
- Imaging with US and CT

Prostate cancer

- Most frequent cancer in men
- Early detection improves prognosis
- Imaging with US and MRI

Limitations of standard full body PET, small organs and proximity to sources of background noise

EndoTOFPET-US

GOAL: Test of newly specific developed biomarkers

- Endoscopic approach \rightarrow High spatial resolution
- Time Of Flight → High Signal to noise ratio

✓ Image guided surgery

EndoTOFPET-US Endoscopic Time-Of-Flight PET & UltraSound

The system:

PICOSEC

- PET detector mounted on an endoscopic ultrasound probe (two versions)
- External PET detector

The Challenges:

- Asymmetric design
- Fusion between US and PET images
- Excellent time resolution: 200 ps FWHM (3 cm)
- 1 mm spatial resolution (PET image)

© DESY / Stuhrmann

External plate design

- Plate area: 23 x 23 cm²
- > 4096 channels
- Dedicated ASICs
- Cooling embedded in detector housing
- Mounted on a movable arm

4x4 LYSO:Ce crystals + Hamamatsu MPPC (SiPM) 4x4 discrete array

Components characterization

ENDO TOFPET US Endoscopic TOFPET & Ultrasound

Characterization of all 4096 SiPMs
(256 arrays) for the external plate

Through-Silicon-Via (TSV)	
4x4 MPPCs	
3 x 3 mm ² active area	

Quantity	Average value
Gain	(0.48 ± 0.02)× 10 ⁶ V ⁻¹
Breakdown voltage (U _{bd})	64.29 ± 0.2 ∨ (@25 °C)
Dark Count Rate	1.4 ± 0.4 MHz (@25 °C)
Correlated noise	~ 30%
U _{bd} temp. dependence	70.1 mV/°C

> 4x4 LYSO:Ce scintillators

- Crystal size 3.5 x 3.5 x 15 mm³
- Crystal pitch 3.6 mm
- Coating: ESR reflector by 3M

Detector modules characterization

Energy resolution Entries 4096 10³ SiPM saturation curve for different Mean 13.28 gamma energies RMS 0.5387 Mean: 13% SiPM has non-linear 4000 oixel fired 10² response due to the ²²Na 1277 keV 3500 limited number of pixels 3000 10 2500 ²²Cs 662 keV 2000 ²²Na 511 keV 1500 Linear correction and ¹³³Ba 356 keV 1000 energy calibration is 10 500 Energy resolution (@ 511 keV) [%] necessary 200 400 600 800 1000 1200 20% minimum required energy [keV] **Coincidence Time Resolution** 180 4096 Entries 239.5 160 Mean **Coincidence between two modules (1 is fixed as reference)** RMS 9.621 140 120 100 ²²Na Read out Mean: 80 provided by 240 ps 60 F ASIC NINO 40 Test 20 module 200 210 220 230 240 250 260 270 280 290 300 Reference CTR FWHM [ps]

Close to the goal of 200 ps

Daniele Cortinovis

module

External plate ASICs

PICOSEC

Timing measurement: leading edge technique

Energy measurement: Time-over-Threshold method

Requirements:

- Large channel density (4096 channels in 23 x 23 cm²)
- Low noise, low timing jitter (< 30 ps)
- Low power consumption (<20 mW/ch)
- SiPM bias tuning (500mV adjustment range)

Two options:

20

Crystals: LYSO 3.1x3.1x15 mm³ MPPC: Hamamatsu MPPC S12643-050CN(X) Temperature: 18 °C

Final front end board:

-800

-600

-400

-200

0

200

400 Time difference [ps]

External plate integration

STIC 3.0 FEB/A

0 0 0 0 0 0

Cooling plate (front)

PICOSEC

Cooling plate (back)

Crystals + MPPC module

Chiller

<u>Timing:</u> 416 pixels / SiPM with single bit count
<u>Energy:</u> 48 TDC / cluster < 50 ps time bin

Multi Digital SIPM prototype characterization

Daniele Cortinovis

15

Full system simulation and image reconstruction

- Dedicated software framework for simulation of asymmetric, non-rigid, freely-moving detector system based on GAMOS
- Full-body PET/CT DICOM import
- Parallelization on computing cluster
- Custom iterative image reconstruction based on ML-EM
- Image resolution of about 1 mm possible
- Scan time of about 10 minute sufficient
- Some detector movement is beneficial

Cross correlation (CC) error (image quality) vs. scan time

Full-Body PET/CT scan with prostate-specific membrane antigen (PSMA)

(a) transverse

(b) Coronal

(c) Sagittal

Reconstructed image of the prostatic lesion of this patient after 3 min acquisition

FICOSEC First prototype commissioning

FIRST PROTOTYPE:

- EndoTOFPET-US external plate (3072 channels)
- Temporary internal probe
 - 32 crystals of 3.2x3.2x15 mm³
 - 2 Hamamatsu 4x4 MPPCs
 - Readout with TOFPET ASIC
- $\checkmark\,$ System integration with the DAQ
- System validation
- Detector calibration

✓ Delivered to Marseille hospital for pre-clinical tests

Conclusions and outlook

- ✓ EndoTOFPET-US is a novel multimodal imaging tool specifically developed to improve the diagnosis for pancreatic and prostate cancer
- ✓ Technology transfer from High Energy Physics to medical imaging

✓ Very challenging system:

- Extreme miniaturization
- Asymmetric design
- Coincidence Time Resolution of 200 ps FWHM
- Spatial resolution of 1 mm
- Fusion with US

✓ Successful commissioning of the first EndoTOFPET-US prototype

Prototype delivered to Marseille hospital for pre-clinical tests

Thanks for your attention!

This research project is supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2011-289355-PicoSEC-MCNet).

