Low-mass dileptons: A thermometer for the hottest stuff in the universe

> – Torsten Dahms – Excellence Cluster "Universe" - TU München

53rd International Winter Meeting on Nuclear Physics in Bormio January 30th, 2015

Technische Universität München

Properties of the QGP

- What is its temperature?
 - measure thermal photons
- Does it restore chiral symmetry?
 - modification of the vector mesons
- How does it affect heavy quarks?
 - modification of the intermediate mass region
- All these questions can be answered by measuring dileptons (e⁺e⁻ or µ⁺µ⁻)
 - no strong final state interactions:
 - leave collision system unperturbed
 - emitted at all stages: need to disentangle contributions

Properties of the QGP

- What is its temperature?
 - measure thermal photons
- Does it restore chiral symmetry?
 - modification of the vector mesons
- How does it affect heavy quarks?
 - modification of the intermediate mass region
- All these questions can be answered by measuring dileptons (e⁺e⁻ or μ⁺μ⁻)
 - no strong final state interactions:
 - leave collision system unperturbed
 - emitted at all stages: need to disentangle contributions

- Low Mass Region: $m_{ee} < 1.2 \text{ GeV/c}^2$
 - Dalitz decays of pseudo-scalar mesons
 - Direct decays of vector mesons
 - In-medium decay of p mesons in the hadronic gas phase

3

- Low Mass Region: $m_{ee} < 1.2 \text{ GeV/c}^2$
 - Dalitz decays of pseudo-scalar mesons
 - Direct decays of vector mesons
 - In-medium decay of p mesons in the hadronic gas phase

• LMR: m_{ee} < 1.2 GeV/c²

p^{ee} (GeV/c)

• LMR I ($p_T \gg m_{ee}$)

quasi-real virtual photon region. Low mass pairs produced by higher order QED correction to the real photon emission

 LMR II (p_T < 1 GeV) Enhancement of dileptons discovered at SPS (CERES, NA60)

- Low Mass Region: $m_{ee} < 1.2 \ GeV/c^2$
 - Dalitz decays of pseudo-scalar mesons
 - Direct decays of vector mesons
 - In-medium decay of p mesons in the hadronic gas phase
- Intermediate Mass Region:1.2 < m_{ee} < 2.9 GeV/c²
 - Correlated semi-leptonic decays of charm quark pairs
 - Dileptons from the QGP

- LMR: m_{ee} < 1.2 GeV/c²
 - ► LMR I (p_T ≫ m_{ee})

quasi-real virtual photon region. Low mass pairs produced by higher order QED correction to the real photon emission

 LMR II (p_T < 1 GeV) Enhancement of dileptons discovered at SPS (CERES, NA60)

- LMR: m_{ee} < 1.2 GeV/c²
 - ► LMR I (p_T ≫ m_{ee})
 - quasi-real virtual photon region. Low mass pairs produced by higher order QED correction to the real photon emission
 - LMR II (p_T < 1 GeV) Enhancement of dileptons discovered at SPS (CERES, NA60)

- Low Mass Region: $m_{ee} < 1.2 \text{ GeV/c}^2$
 - Dalitz decays of pseudo-scalar mesons
 - Direct decays of vector mesons
 - In-medium decay of p mesons in the hadronic gas phase
- Intermediate Mass Region:1.2 < m_{ee} < 2.9 GeV/c²
 - Correlated semi-leptonic decays of charm quark pairs
 - Dileptons from the QGP
- High Mass Region: m_{ee} > 2.9 GeV/c²
 - Dileptons from hard processes
 - Drell-Yan process
 - Correlated semi-leptonic decays of heavy quark pairs
 - Charmonium
 - Upsilon
 - HMR probe the initial stage
 - Little contribution from thermal radiation

 Same-sign spectrum contains all background sources

4

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance (acceptance difference from mixed events) ⁰/₂
)

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance ≥
 (acceptance difference from mixed events)
 - statistics limited (stat. error increases $\times \sqrt{2}$)

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance ≥
 (acceptance difference from mixed events)
 - statistics limited (stat. error increases $\times \sqrt{2}$)
 - at LHC energies: b-mixing is a physics source to same-sign spectrum

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance ≥
 (acceptance difference from mixed events)
 - statistics limited (stat. error increases $\times \sqrt{2}$)
 - at LHC energies: b-mixing is a physics source to same-sign spectrum
- Combinatorial Background from mixed events normalized to 2√N₊₊N₋₋
 - statistics only limited by memory

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance ≥
 (acceptance difference from mixed events)
 - statistics limited (stat. error increases $\times \sqrt{2}$)
 - at LHC energies: b-mixing is a physics source to same-sign spectrum
- Combinatorial Background from mixed events normalized to 2√N₊₊N₋₋
 - statistics only limited by memory
- Correlated Background

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance ≥
 (acceptance difference from mixed events) ≥
 - statistics limited (stat. error increases $\times \sqrt{2}$)
 - at LHC energies: b-mixing is a physics source to same-sign spectrum
- Combinatorial Background from mixed events normalized to 2√N++N--
 - statistics only limited by memory
- Correlated Background
 - Cross pairs simulated with decay generator EXODUS

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance ≥
 (acceptance difference from mixed events)
 - statistics limited (stat. error increases $\times \sqrt{2}$)
 - at LHC energies: b-mixing is a physics source to same-sign spectrum
- Combinatorial Background from mixed events normalized to 2√N₊₊N₋₋
 - statistics only limited by memory
- Correlated Background
 - Cross pairs simulated with decay generator EXODUS
 - Jet pairs simulated with PYTHIA

- Same-sign spectrum contains all background sources
 - need to corrected for different acceptance ≥
 (acceptance difference from mixed events)
 - statistics limited (stat. error increases $\times \sqrt{2}$)
 - at LHC energies: b-mixing is a physics source to same-sign spectrum
- Combinatorial Background from mixed events normalized to 2√N₊₊N₋₋
 - statistics only limited by memory
- Correlated Background
 - Cross pairs simulated with decay generator EXODUS
 - Jet pairs simulated with PYTHIA
- normalized to same-sign data and use same normalization for opposite-sign background

p+p at $\sqrt{s} = 200 \text{ GeV}$

- Data absolutely normalized
- Excellent agreement with cocktail
 - Filtered in PHENIX acceptance

$p+p at \sqrt{s} = 200 GeV$

- Data absolutely normalized
- Excellent agreement with cocktail
 - Filtered in PHENIX acceptance
- Light hadron contributions subtracted
 - Extract heavy quark cross sections

PHENIX, <u>PLB 670 (2009) 313</u>

p+p at √s = 200 GeV

- Data absolutely normalized
- Excellent agreement with cocktail
 - Filtered in PHENIX acceptance
- Light hadron contributions subtracted
 - Extract heavy quark cross sections

- Data consistent with cocktail
 - No significant cold nuclear matter effects

PHENIX, PRC 91 (2015) 014907

d+Au at √s_{NN} = 200 GeV

Data consistent with cocktail

PHENIX, PRC 91 (2015) 014907

No significant cold nuclear matter effects

d+Au at √s_{NN} = 200 GeV

Data consistent with cocktail

PHENIX, PRC 91 (2015) 014907

No significant cold nuclear matter effects

Au+Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Room for thermal contribution?

Centrality Dependence

PHENIX, PRC 81 (2010) 034911

Centrality Dependence

Centrality Dependence

STAR Low Mass Dileptons from STAR

- STAR observes smaller enhancement than PHENIX
 - In better agreement with models that involve broadening of p spectral function
 - Caveat: 1.4x larger charm cross sections used in cocktail: $d\sigma/dy = 171 \pm 26 \ \mu b$
 - Slower increase with centrality: Yield/Npart ~ Npart^{0.54±0.18}

 $\dots b \times N_{part}^{a}$

100

×10

(c)

 $\begin{array}{c} \text{Yield} / \, N_{\text{part}} \times 10^3 \\ 0.0 \\ 0$

Low Mass Dileptons: BES

- STAR measured low mass dileptons at five different √s_{NN}
 - no strong energy dependence of enhancement
 - total baryon density comparable at 20 and 200 GeV
 - increases only at even lower $\sqrt{s_{\text{NN}}}$

STAR, PRL 113 (2014) 022301

STAR (Preliminary)

Low Mass Dileptons: BES

- Enhancement compared at 19.6 and 200 GeV
 - Fully acceptance corrected
- Spectrum at low energy consistent with NA60 result
- In contrast to NA60
 - did not separate prompt from nonprompt charm decay experimentally

• subtracted charm and Drell-Yan with 10^{-5} PYTHIA 10^{-5} CeV 0-80% 10^{-7} CeV 0-80%

x,b

(submitted to PRC)

- Dielectron v₂ consistent with cocktail
- More data needed to extract v₂ of low mass enhancement

Virtual Photons

- Any source of real γ can emit γ^* with very low mass
- If the Q² (= m²) of virtual photon is sufficiently small, the source strength should be the same
- The ratio of real photon and quasi-real photon can be calculated by QED
- Real photon yield can be measured from virtual photon yield, which is observed as low mass e⁺e⁻ pairs

Fitting the direct γ^* fraction

• r = direct γ^* /inclusive γ^* determined by fitting the following function for each p_T bin

 $f_{\text{data}}(M_{ee}) = (1-r) \cdot f_{\text{cocktail}}(M_{ee}) + r \cdot f_{\text{direct}}(M_{ee})$

- *f*_{direct} given by Kroll-Wada formula with
 S = 1
- *f*_{cocktail} given by cocktail components
- Normalized to data for $m < 30 \ MeV/c^2$
- Fit in 120–300 MeV/c² (insensitive to π⁰ yield)
- Assuming direct γ^* mass shape: $\chi^2/NDF = 12.2/6$

PHENIX, <u>PRL 104 (2010) 132301</u> PHENIX, <u>PRC 81 (2010) 034911</u>

Thermal Photons

- Direct photon measurements
 - ▶ real (p_T > 4GeV)
 - virtual (1 < p_T < 4 GeV & m_{ee} < 300 MeV)
- p+p: good agreement with NLO pQCD down to $p_T = 1$ GeV/c
- Au+Au = pQCD + exponential
 - Tave = 221 ± 19 (stat) ± 19 (syst) MeV
- In agreement with hydrodynamic models:
 - Assume formation of a hot QGP with: 300 MeV < T_{init} < 600 MeV 0.6 fm/c < τ_0 < 0.15 fm/c

PHENIX, <u>PRL 104 (2010) 132301</u> PHENIX, <u>PRC 81 (2010) 034911</u>

well above the critical temperature of 170 MeV predicted by lattice QCD

PH*ENIX Internal vs. External Conversions

- Identify real photons via conversion pairs
- Tag photons from π^0 decays
 - look for an em. shower in the calorimeter and reconstruct γγ mass
 - conversion probability cancels

PHENIX, <u>arXiv:1405.3940</u> (submitted to PRC)

PH*ENIX Internal vs. External Conversions

- Identify real photons via conversion pairs
- Tag photons from π^0 decays
 - look for an em. shower in the calorimeter and reconstruct γγ mass
 - conversion probability cancels
- Matches result of internal conversions
 - validates internal conversion method and extrapolation to m = 0

PHENIX, <u>arXiv:1405.3940</u> (submitted to PRC)

PH*ENIX Internal vs. External Conversions

- Identify real photons via conversion pairs
- Tag photons from π^0 decays
 - Iook for an em. shower in the calorimeter and reconstruct yy mass
 - conversion probability cancels
- Matches result of internal conversions
 - validates internal conversion method and extrapolation to m = 0
- Excess scales with ~N_{part}^{1.5}
 - not an artefact of low pT points 101

 10^{1}

 10°

10-

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

 $\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$

 $rac{1}{2\pi p_T}rac{\mathrm{d}^2N}{\mathrm{d}p_T\mathrm{d}y}\left[(\mathrm{GeV}/c)^{-2}
ight]$

PHENIX, arXiv:1405.3940 (submitted to PRC)

 N_{coll} -scaled pp fit

Au+Au, min. bias

PRL 104, 132301 (2010)

PRL 98, 012002 (2010)

PRD 86, 072008 (2012)

PRL 109, 152302 (2012)

PRL 104, 132301 (2010)

10

12

pp fit

Thermal Photon v₂

- Elliptic flow of direct photons at low p_T similar to π⁰ flow
 - direct photons emitted from the late stage
 - hard to combine with large rates which suggest early emission from the hot phase

PHENIX, PRL 109 (2012) 122302

Thermal Photon v₃

- Direct photons show also a v^3 similar to π^0
- Expect direct photon v₃ from fluctuations in the initial geometry
 - viscosity should reduce v₃

Thermal photons at the LHC?

- ALICE measured real photons via conversion pairs
- Observed excess above hadron decays
- However: needs comparison to pp!
 - crucial for the quantifying enhancement
- Large background from π^0 decays
 - Can be avoided by measuring virtual γ
- Large uncertainty due to material budget

AI TCF

- Can be avoided by tagging not hod
- Similar flow as at RHIC

Direct Photons in p+p

- Preliminary measurement of direct photon fraction in p+p at 7 TeV
 - via low mass dielectrons
 - observe hint of small signal

 Extracted direct photon cross section consistent with NLO pQCD

Low Mass Dileptons in ALICE

- Dielectron spectra in p+p and p+Pb consistent with hadron cocktail
- Big uncertainty on open charm cross section

Low Mass Dileptons in ALICE: Pb+Pb

- S/B ratio of few ‰ at low p_T bin:
 - accurate combinatorial background evaluation needed
- Focus on virtual photon production

Low Mass Dileptons in ALICE: Future

- TPC and ITS upgrades:
 - allow high data rates
 - reduce charm background with dca cut

Summary

- EM probes ideal "penetrating probes" of dense partonic matter created at RHIC and the LHC
- Double differential measurement of dilepton emission rates can provide
 - Temperature of the matter
 - Medium modification of EM spectral function
- PHENIX and STAR measured dilepton continuum in p+p, d+Au and Au+Au:
 - In p+p and d+Au: good agreement between data and hadronic cocktail
 - measured charm and beauty cross section in IMR and HMR
 - ▶ In Au+Au: low p_T and low mass enhancement above hadronic cocktail
 - PHENIX data not reproduced by theoretical models
 - discrepancy to STAR measurement, which is well explained by models involving ρ broadening
 - In Au+Au: very low-mass enhancement for p_T>1 GeV/c
 - interpreted as thermal photons with inverse slope of ~220 MeV (initial T = 300–600 MeV)
 - strong elliptic flow in combination with large yields a challenge for theory
- At the LHC:
 - first performance studies from ALICE
 - need ITS and TPC upgrades for precise measurements (+ low B-field)

Backup

From SPS to RHIC

- 2 scenarios @ SPS profit from high baryon density
 - dropping p mass
 - broadening of p
- What to expect at RHIC?
 - increase of centre-of-mass per nucleon-nucleon pair from 17 to 200 GeV

	SPS (Pb+Pb)	RHIC (Au+Au)
dN(p̄)/dy	6.2	20.1
produced baryons (p, \overline{p} , n, \overline{n})	24.8	80.4
p - p	33.5	8.6
particpating nucleons (p - \overline{p})A/Z	85	21.4
total baryon number	110	102

 Baryon density: almost the same at SPS & RHIC (although the NET baryon density is not!)

Momentum Dependence

p+p in agreement with cocktail

PHENIX, PRC 81 (2010) 034911

Au+Au low mass enhancement concentrated at low p_T

Momentum Dependence: PHENIX vs. STAR

• PHENIX: Au+Au low mass enhancement concentrated at low p_T

Momentum Dependence: PHENIX vs. STAR

• PHENIX: Au+Au low mass enhancement concentrated at low pT

- PHENIX: Au+Au low mass enhancement concentrated at low p_{T}
- STAR: no p_T spectrum at $\sqrt{s_{NN}} = 200$ GeV

Direct γ*/Inclusive γ*

- Base line (curves):
 - NLO pQCD calculations with different theoretical scales done by W. Vogelsang

• p+p

- Consistent with NLO pQCD
- better agreement with small µ

• Au+Au

 Clear enhancement above NLO pQCD

Direct γ*/Inclusive γ*

 Also sees enhancement above NLO pQCD at low pT

Direct γ*/Inclusive γ*

- Preliminary result by STAR
- Also sees enhancement above NLO pQCD at low pT
- Below 2 GeV/c:
 - smaller fraction than PHENIX?

Direct Photons: Model Comparison

- From data: Au+Au = pQCD + exponential
 - Tave = 221 ± 19 (stat) ± 19 (syst) MeV
- Comparison to hydrodynamical models:
 - p_T < 3 GeV/c thermal contribution dominates over pQCD.
 - Assume formation of a hot QGP with: 300 MeV < T_{init} < 600 MeV 0.6 fm/c < τ_0 < 0.15 fm/c
 - Models reproduce the data within a factor of two

PHENIX, PRC 81 (2010) 034911

Temperature of the early QGP

- Photons emitted during all stages of the medium evolution
 - measurement is always time integrated
- Low mass virtual photons:
 - Emission dominated by the hadronic phase
- How to measure "early temperature" from ³
 the partonic phase?
 - Intermediate mass (1–3GeV/c²) provides another window to measure thermal dileptons
- NA60 at the SPS measured "prompt excess" above open charm continuum of possibly thermal origin
 - semileptonic charm decays = non-prompt
- At the LHC charm cross section 10³ times higher than at the SPS!
 - Such measurement requires good vertexing resolution for lepton pairs

Hadronic Cocktail

• Parameterization of PHENIX π^{\pm} , π^{0} data $(\pi^{0} = (\pi^{+} + \pi^{-})/2)$

$$E\frac{d^3\sigma}{dp^3} = \frac{A}{\left(\exp(-ap_T - bp_T^2) + p_T/p_0\right)^n}$$

- Other mesons: fit with m_T scaling of π^0 $p_T \rightarrow \sqrt{(p_T^2 + m_{meson}^2 - m_{\pi}^2)}$ fit the normalization constant
- All mesons m_T scale!
- Hadronic cocktail was well tuned to individually measured yield of mesons in PHENIX for both p+p and Au+Au collisions
- Mass distributions from hadron decays are simulated by Monte Carlo: π⁰, η, η', ω, φ, ρ, J/ψ, ψ'
- Effects on real data are implemented

Hadronic Cocktail

• Parameterization of PHENIX π^{\pm} , π^{0} data $(\pi^{0} = (\pi^{+} + \pi^{-})/2)$

$$E\frac{d^3\sigma}{dp^3} = \frac{A}{\left(\exp(-ap_T - bp_T^2) + p_T/p_0\right)^n}$$

- Other mesons: fit with m_T scaling of π^0 $p_T \rightarrow \sqrt{(p_T^2 + m_{meson}^2 - m_{\pi}^2)}$ fit the normalization constant
- All mesons m_T scale!
- Hadronic cocktail was well tuned to individually measured yield of mesons in PHENIX for both p+p and Au+Au collisions
- Mass distributions from hadron decays are simulated by Monte Carlo: π⁰, η, η', ω, φ, ρ, J/ψ, ψ'
- Effects on real data are implemented