Beyond the LHC

Lyn Evans – CERN/Linear Collider Collaboration

IWMNP Bormio 28th January 2015

http://www.electer.com/locate/physioth

The Economist

JULY 7TH-13TH 2012

Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

In praise of charter schools

A giant leap for science

Economist.com

Finding the Higgs boson

(a)					
•	Circumference	26.7		km	
•	Beam energy at collision	7		TeV	
•	Beam energy at injection	0.45		TeV	
•	Dipole field at 7 TeV		8.33		Т
•	Luminosity	10 ³⁴		cm ⁻² .s ⁻	·1
•	Beam current	0.56		Α	
•	Protons per bunch	1.1x10	11		
•	Number of bunches		2808		
•	Nominal bunch spacing	24.95		ns	
•	Normalized emittance	3.75		ր ա	
•	Total crossing angle		300		μ rad
•	Energy loss per turn		6.7		keV
•	Critical synchrotron energy		44.1		eV
•	Radiated power per beam	3.8		kW	
•	Stored energy per beam	350		MJ	
•	Stored energy in magnets	11		GJ	
•	Operating temperature	1.9		κ	
	Luminosity Beam current Protons per bunch Number of bunches Nominal bunch spacing Normalized emittance Total crossing angle Energy loss per turn Critical synchrotron energy Radiated power per beam Stored energy per beam Stored energy in magnets Operating temperature	10 ³⁴ 0.56 1.1x10 24.95 3.75 3.75 3.8 350 11 1.9	¹¹ 2808 300 6.7 44.1	cm ⁻² .s ⁻ A ns μm kW MJ GJ K	μ rad keV eV

L. Rossi @ Fermi Colloquium 18Feb2014

- Full exploitation of the LHC and its upgrades
- High luminosity LHC
- High energy LHC?
- FCC hadrons
- FCC-ee
- International Linear Collider (ILC)
- Compact Linear Collider (CLIC)

Goal of High Luminosity LHC (HL-LHC)

as fived in November 2010

EU collaboration with JP and USA :FP7 – HiLumi LHC Design Study

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

A peak luminosity of 5×10³⁴ cm⁻²s⁻¹ with levelling, allowing: An integrated luminosity of 250 fb⁻¹ per year, enabling the goal of 3000 fb⁻¹ twelve years after the upgrade.

Pt 7

Technical bottlenecks

Cryogenics P4

RF 8 x 18 kW @ 4.5 K

1'800 SC magnets

Never good to couple RF with Magnets ! Reduction of availabe cryopower and coupling of the RF wiht the Arc (thermal cycle requires > 2 months and many tests)

Pt 2

24 km and 20 kW @ 1.9 K

36'000 tons @ 1.9 K

96 tons of He

Pt 1 Ocryogenic plantbssi@Fermi Colloquium 18Feb2014

Magnet the progress

- LHC dipoles features 8.3 T in 56 mm (designed for 9.3 peak field)
- LHC IT Quads features 205
 T/m in 70 mm with 8 T peak
 field
- Fermilab KEK

- HL-LHC
- 11 T dipole (designed for 12.3 T peak field, 60 mm)
- New IT Quads features 140 T/m in 150 mm > 12 T operational field, designed for 13.5 T).

L. Rossi @ Fermi Colloquium 18Feb2014

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

- *pp*-collider (*FCC-hh*)
 → defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km
- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option

www.cern.ch/fcc

FCC-hh: 100 TeV pp collider

- L. Bottura
- B. Strauss

11.

FCC topography

Lac Léman 300 – 372 m/mer

Plaine du genevois 350 – 550 m/mer

Montse

Vallée flu Rhône ~330 m/mer

Mont Auache

50 - 110

Massi Junning

Plateau du Mont Sion 550 - 860 m/mer

Vallon des Usses 380 - 500 m/mer

Mandallaz

Pré-Alpes du Chablais 600 – 2500 m/mer

Jalée de l'Arve

Plateau des Bornes 600 - 850 m/mg

> Bornes - Aravis 600 - 2500 m/mer

J. Osborne

FCC-hh opens three physics windows

Access to new particles in the few TeV to 30 TeV mass range, beyond LHC reach

➡ Immense/much-increased rates for phenomena in the sub-TeV mass range → increased precision w.r.t. LHC and possibly ILC

 Access to very rare processes in the sub-TeV mass range → search for stealth phenomena, invisible at the LHC

M. Mangano

FCC-hh key parameters

parameter	FCC-hh	LHC
energy	100 TeV c.m.	14 TeV c.m.
dipole field	16 T	8.33 T
# IP	2 main, +2	4
normalized emittance	2.2 μm	3.75 µm
luminosity/IP _{main}	5 x 10³⁴ cm ⁻² s ⁻¹	1 x 10 ³⁴ cm ⁻² s ⁻¹
energy/beam	8.4 GJ	0.39 GJ
synchr. rad.	28.4 W/m/apert.	0.17 W/m/apert.
bunch spacing	25 ns (5 ns)	25 ns

Preliminary, subject to evolution (several luminosity scenarios)

parameter	LHC	HL-LHC	FCC-hh
c.m. energy [TeV]		14	100
dipole magnet field [T]	Ş	3.33	16 (20)
circumference [km]		26.7	100 (83)
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	5 [→20?]
bunch spacing [ns]		25 {5}	
events / bunch crossing	19	135	170 {34}
bunch population [10 ¹¹]	1.15	2.2	1 {0.2}
norm. transverse emitt. [µm]	3.75	2.5	2.2 {0.44}
IP beta-function [m]	0.55	0.15	1.1
IP beam size [µm]	16.7	7.1	6.8 {3}
synchrotron rad. [W/m/aperture]	0.17	0.33	28 (44)
critical energy [keV]	0.044		4.3 (5.5)
total syn.rad. power [MW]	0.0072	0.0146	4.8 (5.8)
longitudinal damping time [h]		12.9	0.54 (0.32)

FCC tunnel configuration

В Exp4 lnj1 lnj1 1.4km . **K**. 1.4km 1.4km С - Arc (L=16km,R=13km) Mini-arc (L=3.2km,R=13km) DS (L=0.4km,R=17.3km) Straight Coll1 2.8km Coll2 2.8km Extrl 1.4 km Extr2 1.4 km Е Exp1 Exp2 Exp3 1.4km 1.4km 1.4km F Н G

- FCC circumference is a multiple of LHC :
 - 80 km
 - 87 km
 - 93 km
 - 100 km

Ph. Lebrun

cost-optimized high-field dipole magnets

only a quarter is shown

"hybrid magnets" example block-coil layout

L. Rossi, E. Todesco, P. McInty

machine protection

energy per proton beam *LHC*: 0.4 GJ \rightarrow *FCC-hh*: 8 GJ (20x more !)

- kinetic energy of Airbus A380 at 720 km/h
- can melt 12 tons of copper, or drill a 300-m long hole

LEP – highest energy *e*⁺*e*⁻ collider so far

maximum c.m. energy 209 GeV maximum synchrotron radiation power 23 MW

physics requirements for FCC-ee

- I highest possible luminosity for a wide physics program ranging from the Z pole to the $t\bar{t}$ production threshold
 - beam energy range from 45 GeV to 175 GeV
- □ main physics programs / energies:
 - > Z (45.5 GeV): Z pole, 'TeraZ' and high precision $M_Z \& \Gamma_Z$,
 - > W (80 GeV): W pair production threshold,
 - > H (120 GeV): ZH production (maximum rate of H's),
 - t (175 GeV): tt threshold
- □ some polarization up to ≥80 GeV for beam energy calibration
- optimized for operation at 120 GeV?!

FCC-ee key parameters

parameter	FCC-ee	LEP2
energy/beam	45 – 175 GeV	105 GeV
bunches/beam	98 – 16700	4
beam current	6.6 – 1450 mA	3 mA
hor. emittance	~2 nm	~22 nm
emittance ratio $\epsilon_{y}/\epsilon_{y}$	0.1%	1%
vert. IP beta function ${\beta_y}^*$	1 mm	50 mm
luminosity/IP	1.8-28 x 10 ³⁴ cm ⁻² s ⁻¹	0.0012 x 10 ³⁴ cm ⁻² s ⁻¹
energy loss/turn	0.03-7.55 GeV	3.34 GeV
synchr. power	100 MW	23 MW
RF voltage	2.5 – 11 GV	3.5 GV

Preliminary, subject to evolution (staging scenarios)

parameter	LEP2	2 FCC-ee					
		Z	Z (c.w.)	W	н	t	н
E _{beam} [GeV]	104	45	45	80	120	175	120
circumference [km]	26.7	100	100	100	100	100	54
current [mA]	3.0	1450	1431	152	30	6.6	16.6
P _{SR,tot} [MW] t	ne large	number	of b <mark>un</mark> che	es <mark>at Z</mark> ,	W&H re	equires 2	2 rings
no. bunches	4	16700	29791	4490	1360	98	50
<i>N_b</i> [10 ¹¹]	4.2	1.8	1.0	0.7	0.46	1.4	3.7
ε _x [nm]	22	29	0.14	3.3	0.94	2	6.8
ε _γ [pm]	250	60	1	1	2	2	20
β* _x [m]	1.2	0.5	0.5	0.5	0.5	1.0	0.8
β* _y [mm]	50	1	1	1	1	1	1.2
σ_{y}^{*} [nm]	3500	250	32	130	44	45	160
σ _{z,SR} [mm]	11.5	1.64	2.7	1.01	0.81	1.16	2.3
$\sigma_{\rm z,tot}$ [mm] (w beamstr.)	11.5	2.56	short I	ifetimes	s due to h	nigh lum	inosity
hourglass factor <i>F_{hg}</i>	0.99	0.64	0.94 → c	continue	ous inject	tion (top	-up)61
L/IP [10 ³⁴ cm ⁻² s ⁻¹]	0.01	28	212	12	6	1.7	1.8
τ _{beam} [min]	300	287	39	72	30	23	40

FCC-ee luminosity vs energy

luminosity $[10^{34} \text{ cm}^{-2}\text{s}^{-1}]$ 1000 crab waist & improved parameters baseline 100 10 1 100 200 300 400 0

c.m. energy [GeV]

M. Benedikt, A. Blondel, A. Bogomyagkov, E. Levichev, D. Shatilov, J. Wenninger, F. Zimmermann,...

HEP time scale

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Key points

The ILC and CLIC accelerator studies are organised under the heading of LCC with goals:

•Strongly support the Japanese initiative to construct a linear collider as a staged project in Japan

•Prepare CLIC machine and detectors as an option for a future high-energy linear collider at CERN

•Further improve collaboration between CLIC and ILC machine experts

•Beyond the significant progress on the basic RF studies, increased and successful effort on system-studies of various types (FACET, ATF, etc)

•Many common challenges with 3rd generation light sources and FELs, the latter providing very important industrial/lab production experiences

Comprehensive physics studies – and in parallel technical detector R&D and concept studies – demonstrate the realism and unique impact of LC e+emeasurements and searches at energy scales from 250 to 3 TeV

The on-going process in Japan for ILC is nevertheless (by some margin) the most central activity right now 26

Linear Colliders

Generic LC:

Key features: scalable to high energies, expandable (also with novel technologies later), very linked to light-sources (low emittance rings and FEL linacs)

Challenges: Gradients, luminosity (nano beams), power efficiency

Strategies:

- Japan-KEK: Consider hosting ILC
- European Strategy: High energy frontier beyond LHC: CLIC technology an option to be pursued, ILC in Japan a welcome initiative shorter timescale, follow up Higgs discovery
- Snowmass -> P5: High-lights physics potential of ILC and US participation (within 2025 Horizon)
- Many other countries have their own strategies with LC activities central

The ILC Accelerator Concept

- Electron and Positron Sources (e-, e+)
- Damping Ring (DR)
- Ring to ML beam transport (RTML)
- Main Linac (ML) : SCRF Technology
- Beam Delivery System (BDS)

Production yield: 94 % at > 35+/-20% Average gradient: 37.1 MV/m > R&D goal of 35 MV/m reached (2012)

2nd pass yield - established vendors, standard process

Table 2.1. Summary table of the 200–500 GeV baseline parameters for the ILC. The reported luminosity numbers are results of simulation [12]

Centre-of-mass energy	E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate		Hz	5	5	5	5	5
Positron production mode			10 Hz	10 Hz	10 Hz	nom.	nom.
Estimated AC power	P_{AC}	MW	114	119	122	121	163
Bunch population	N	$\times 10^{10}$	2	2	2	2	2
Number of bunches	n_b		1312	1312	1312	1312	1312
Linac bunch interval	Δt_b	ns	554	554	554	554	554
RMS bunch length	σ_z	μm	300	300	300	300	300
Normalized horizontal emittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35
Horizontal beta function at IP	eta_x^*	mm	16	14	13	16	11
Vertical beta function at IP	β_y^*	mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam size at IP	σ_x^*	nm	904	789	729	684	474
RMS vertical beam size at IP	σ_{u}^{*}	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption parameter	D_y		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy loss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity	L	$ imes 10^{34}~{ m cm^{-2}s^{-1}}$	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1% E_{CM}	$L_{0.01}$	%	91	89	87	77	58
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30
Electron relative energy spread at IP	$\Delta p/p$	%	0.20	0.19	0.19	0.16	0.13
Positron relative energy spread at IP	$\Delta p/p$	%	0.19	0.17	0.15	0.10	0.07

Upgradeable to 1 GeV – parameter sets also available

Cryomodule System Tests

DESY: FLASH

- 1.25 GeV linac (TESLA-Like tech.)
- ILC-like bunch trains:
- ♦ 600 ms, 9 mA beam (2009);
 ♦ 800 ms 4.5 mA (2012)
- ◆ RF-cryomodule string with beam → PXFEL1 operational at FLASH

KEK: STF/STF2

- \$1-Global: completed (2010)
- Quantum Beam Accelerator (Inverse Llaser Compton): 6.7 mA, 1 ms ← Demonstrated
- CM1 test with beam (2014 ~2013)
- STF-COI: Facility to demonstrate CM assembly/test in near future

FNAL: ASTA

(Advanced Superconducting Test Accelerator)

- CM1 test complete
- CM2 operation (2013)
- CM2 with beam (soon)

FEL and advanced linacs with SCRF modules

ILC post TDR team: towards site specific design 🔊

Category	Work-base	Specific subject	Global Co	ollaboration w/				
Positron Source		Positron source	PosiPol C	ollaboration				
Nano Beam	ATF	37 nm beam 2 nm stability	ATF colla	boration				
SCRF Cavity Integration	STF	Power Input Coupler Tuner He-Vessel	CERN-DES CEA-Ferm DESY-KEK	SY-KEK ni/SLAC-KEK K				
CM integration	STF, ILC	Conduction-cooled SC Quadrupole	Fermilab-	КЕК				
Cryogenics	ILC	Cryog. Underground He inventry High p. Gas Safety	CERN-Fer (WS at CE	milab-KEK ERN, 18 June)				
CFS	ILC	CFS design prep.	CERN-Fer	milab-KEK	N. Walker and	H. Hayano	*KEK LC Project Office F	lead: A. Yamamoto
Radiation Safety	ILC	ML radiation shield	SLAC-DESY-CERN-KEK		KEK-Leader* Deputy	Deputy Sub-Group	Deputy/Contact P.	<u>KEK-Leader*</u> Deputy
			Integr.	K. Yokoya(KEK)	<u>K. Yokoya</u>	SRF	<u>H. Hayano (KEK)</u> C. Ginsburg (Fermi), E. Montesinos (CERN)	<u>H. Hayano</u> Y. Yamamoto
			Sources (e-, e+)	<u>W. Gai (ANL)</u> M. Kuriki (Hiroshima U.)	<u>J. Urakawa</u> T. Omori	RF Power & Cntl	<u>S. Michizono (KEK)</u> TBD (AMs , EU)	<u>Michizono</u> T. Matsumoto
			Damping Ring	<u>D. Rubin (Cornell)</u> N. Terunuma (KEK)	<u>N. Terunuma</u>	Cryogenics (incl. HP gas issues)	<u>H. Nakai: KEK</u> T. Peterson (Fermi), D. Delikaris (CERN)	<u>H. Nakai</u> Cryog. Center
			RTML	<u>S. Kuroda (KEK)</u> A. Latina (CERN)	<u>S. Kuroda</u>	CFS	<u>A. Enomoto (KEK)</u> V. Kuchler (Fermi), J. Osborne (CERN),	<u>A. Enomoto</u> M. Miyahara
			Main Linac (incl. B. Compr. & B. Dynamics)	<u>N. Solyak (Fermi)</u> K. Kubo (KEK)	<u>K. Kubo</u>	Radiation Safety	<u>T. Sanami (KEK)</u> TBD (AMs, EU)	<u>T. Sanami</u> T. Sanuki
			BDS	<u>G. White (SLAC),</u> R. Tomas (Cern) T. Okugi (KEK)	<u>T. Okugi</u>	Electrical Support (Power Supply etc.)	TBD	<u>TBD</u>
			MDI	<u>K. Buesser (DESY)</u> T. Tauchi (KEK)	<u>T. Tauchi</u>	Mechanical S. (Vac. & others)	TBD	TBD
						Domestic Program, Hub Lab. Facilities	TBD	<u>H. Hayano</u> T. Saeki

ILC Project Overview

Years	TDR baseline Scenario
1 - 2	Pre-preparation for 2yrs (for technical effort continuity)
3 - 6	Preparation (4 yrs)
7 - 15	Construction (9 yrs)
(12 -)	(start installation)
(13 -)	(start preparation for Operation)
16 -	Beam Commissioning start
17 –	Operation at 250 ~ 500 GeV (550 GeV)
TBD	Toward 500 GeV HL upgrade
TBD	Toward 1 TeV upgrade

Site specific studies

Establish a site-specific Civil Engineering Design - map the (site independent) TDR baseline onto the preferred site - assuming "Kitakami" as a primary candidate

ILC preferred site - Kitakami

30km

Possible CLIC stages studied in the CDR

Fig. 3.6: Simplified upgrade scheme for CLIC staging scenario B.

Key features:

- High gradient (energy/length)
- Small beams (luminosity)
- Repetition rates and bunch spacing (experimental conditions)

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	500	1400	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n _b		354	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	80	80/100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	2.3	3.2	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.4	1.3	2
Main tunnel length		km	13.2	27.2	48.3
Charge per bunch	Ν	10 ⁹	6.8	3.7	3.7
Bunch length	σ_z	μm	72	44	44
IP beam size	σ_x/σ_y	nm	200/2.6	$\sim 60/1.5$	\sim 40/1
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	2350/20	660/20	660/20
Normalised emittance (IP)	$\varepsilon_x/\varepsilon_y$	nm	2400/25	—	—
Estimated power consumption	Pwall	MW	272	364	589

Table 2: Parameters for the CLIC energy stages of scenario B.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	500	1500	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	nb		312	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	100	100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.3	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.7	1.4	2
Main tunnel length		km	11.4	27.2	48.3
Charge per bunch	Ν	10 ⁹	3.7	3.7	3.7
Bunch length	σ_z	μm	44	44	44
IP beam size	σ_x/σ_y	nm	100/2.6	\sim 60/1.5	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	_	660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	660/25	_	-37
Estimated power consumption	Pwall	MW	235	364	589

New institutes are joining: In 2014 SINAP Shanghai and IPM Tehran

2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors,

Detector collaboration operative with 23 institutes

2018-19 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects as FCC), take decisions about next project(s) at the Energy Frontier. Common work with ILC related to several acc. systems as part of the LC coll., also related to initial stage physics and detector developments Common physics benchmarking with FCC pp and common detect. challenges (ex: timing, granularity), as well as project implementation studies (costs, power, infrastructures ...) Experimental verification •Drive Beam and two beam scheme (CTF3) •Low emittance ring tests – low emittances •System Tests: ATF – final focus, FACET and FELs – beam based alignment and emittance preservation in linacs (see later)

Module into CTF

Main activities

Technical Developments

• Key components for systemtests, machine performance, cost or power reduction

QD0, nm-stabilization, BPM, NbTi wiggler

0.5

í٥

Thanks

 Slides/figures/advice from Lucio Rossi, Michael Benedict, Frank Zimmerman and Steiner Stapnes.