

Direct Reactions with Exotic Beams at Low Momentum Transfer: Investigations with Stored Beams and with Active Targets

FAIR

Peter Egelhof GSI Darmstadt, Germany

53rd International Winter Meeting on Nuclear Physics

Bormio, Italy January 26 - 30, 2015

Direct Reactions with Exotic Beams at Low Momentum Transfer: Investigations with Stored Beams and with Active Targets

FAIR

- I. Introduction
- II. Direct Reactions at Internal Targets of Storage Rings
 - 1. The EXL* Project an Overview
 - 2. Recent Experiments and Future Perspectives
- **III.** Direct Reactions with Active Targets
 - 1. Experimental Concept
 - 2. Small Angle Elastic Proton Scattering
 - a Tool to Study the Radial Shape of Exotic Nuclei
- IV. Conclusions

^{*} EXL: Exotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

I. Introduction: Direct Reactions with Radioactive Beams in Inverse Kinematics

classical method of nuclear spectroscopy:

- \Rightarrow light ion induced direct reactions: (p,p), (p,p'), (d,p), ...
- \Rightarrow to investigate exotic nuclei: inverse kinematics
- ⇒ important information at low momentum transfer!

of particular interest:

- \Rightarrow radial shape of nuclei: skin, halo structures
- \Rightarrow doubly magic nuclei: ⁵⁶Ni, ¹³²Ni
- \Rightarrow parameters of the EOS :
- nuclear compressibility, symmetry energy

future perspectives at FAIR:

- \Rightarrow profit from intensity upgrade (up to 10⁴ !!)
- \Rightarrow explore new regions of the chart of nuclides \Rightarrow use new and powerful methods:
- EXL: direct reactions at internal storage ring target
 - ⇒ high luminosity even for very low momentum transfer measurements
- ACTAR: active Target at R³B

 \Rightarrow access to very short life times: $T_{1/2} \le 1$ sec

I. Introduction: Direct Reactions with Radioactive Beams in Inverse Kinematics

classical method of nuclear spectroscopy:

- \Rightarrow light ion induced direct reactions: (p,p), (p,p'), (d,p), ...
- \Rightarrow to investigate exotic nuclei: inverse kinematics
- \Rightarrow important information at low momentum transfer!

of particular interest:

- ⇒ radial shape of nuclei: skin, halo structures ⇒ doubly magic nuclei: ${}^{56}Ni$, ${}^{132}Ni$
- \Rightarrow parameters of the EOS :
- nuclear compressibility, symmetry energy

future perspectives at FAIR:

- \Rightarrow profit from intensity upgrade (up to 10⁴ !!)
- \Rightarrow explore new regions of the chart of nuclides
- \Rightarrow use new and powerful methods:

⇒ high luminosity even for very low momentum transfer measurements

ACTAR: active Target at R³B

 \Rightarrow access to very short life times: $T_{1/2} \le 1$ sec

First Experiments already performed

Nuclear Physics with Radioactive Beams at the Present GSI Facility

The Present GSI Accelerator Facilities:

SIS ເສສາ້ແ UNILAC: universal linear accelerator FRS all ions (¹H ...²³⁸U) transfer channel 50m E = 3 - 20 MeV/uSIS: heavy ion synchrotron E = 100 - 2000 MeV/u**ESR** ESR: experimental storage ring ▝▝▝▖▖▖ beam cooling experimental hall \Rightarrow excellent beam qualities UNILAC (3 - 20 MeV/u)FRS: fragment separator projectile fragmentation, fission \Rightarrow secondary radioactive beams experimental hall with energies $E \ge 100 - 1000 \text{ MeV/u}$ (up to 2000 MeV/u)

The Present Radioactive Beam Facility at GSI

FRS: In-Flight Separator & High-Resolution Spectrometer

Perspectives at the Future International Facility FAIR

FAIR: Facility for Antiproton and Ion Research

FAIR: Facility Characteristics

Key Technical Features

- Cooled beams
- •Rapidly cycling superconducting magnets

Primary Beams

- 10¹²/s; 1.5-2 GeV/u; ²³⁸U²⁸⁺
- Factor 100-1000 over present in intensity
- 2(4)x10¹³/s 30 GeV protons
- 10¹⁰/s ²³⁸U⁷³⁺ up to 35 GeV/u
- up to 90 GeV protons

Secondary Beams

- •Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- •Antiprotons 3 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •e A collider
- •10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

Nuclear Physics with Radioactive Beams -Physics Questions to be Adressed

regions of interest:

⇒ towards the driplines for medium heavy and heavy nuclei

physics interest:

- matter distributions (halo, skin...)
- single-particle structure evolution (new magic numbers, new shell gaps, spetroscopic factors)
- NN correlations, pairing and clusterization phenomena
- new collective modes (different deformations for p and n, giant resonance strength)
- parameters of the nuclear equation of state
- in-medium interactions in asymetric and low-density matter
- astrophysical r and rp processes, understanding of supernovae

Light-Ion Induced Direct Reactions

- elastic scattering (p,p), (α,α), ...
 nuclear matter distribution ρ(r), skins, halo structures
- inelastic scattering (p,p'), (α , α '), ... giant resonances, deformation parameters, B(E2) values, transition densities
- charge exchange reactions (p,n), (³He,t), (d, ²He), ...
 Gamow-Teller strength
- transfer reactions (p,d), (p,t), (p, ³He), (d,p), ... single particle structure, spectroscopic factors spectroscopy beyond the driplines neutron pair correlations neutron (proton) capture cross sections
- knock-out reactions (p,2p), (p,pn), (p,p ⁴He)...
 ground state configurations, nucleon momentum distributions, cluster correlations

Nuclear Physics with Radioactive Beams at FAIR: NUSTAR: NUclear STructure, Astrophysics and Reactions

I High intensity primary beams from SIS 100 (e.g. $10^{12} \, {}^{238}\text{U}$ / sec at 1 GeV/u)

Reactions with Relativistic Radioactive Beams at FAIR

- R³B: <u>Reactions with Relativistic Radioactive Beams</u> ⇒ High Energy Branch
- EXL: <u>EX</u>otic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring ⇒ Ring Branch
- ELISe: ELectron Ion Scattering in a Storage Ring e-A Collider ⇒ Ring Branch

R3B: Reactions with Relativistic Radioactive Beams

<u>The R³B experiment:</u> a universal setup for kinematical complete measurements

II. Direct Reactions at Internal Targets of Storage Rings

The EXL Project: EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Light-Ion Induced Direct Reactions at Low Momentum Transfer

- elastic scattering (p,p), (α,α), ...
 nuclear matter distribution ρ (r), skins, halo structures
- inelastic scattering (p,p'), (α,α'), ...
 deformation parameters, B(E2) values, transition densities, giant resonances
- transfer reactions (p,d), (p,t), (p, ³He), (d,p), ...
 single particle structure, spectroscopic factors, spectroscopy beyond the driplines, neutron pair correlations, neutron (proton) capture cross sections
- charge exchange reactions (p,n), (³He,t), (d, ²He), ...
 Gamow-Teller strength
- knock-out reactions (p,2p), (p,pn), (p,p ⁴He)... ground state configurations, nucleon momentum distributions

for almost all cases:

region of low momentum transfer contains most important information

Speciality of EXL:

measurements at very low momentum transfer

 \Rightarrow complementary to R³B !!!

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - ⇒ probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - ⇒ in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>: high sensitivity to nuclear periphery

Proposed Experiments at FAIR

- investigation of nuclear matter distributions along isotopic chains towards proton/neutron asymmetric matter
- investigation of the same nuclei by (e,e) (ELISe) and (p,p) (EXL) scattering
 - ⇒ separate neutron/proton content of nuclear matter
 - ⇒ unambiguous and "model independent" determination of size and radial shape of neutron skins (halos)

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - ⇒ probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - ⇒ in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>: high sensitivity to nuclear periphery

- Investigation of the Giant Monopole Resonance:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering <u>at low q</u>

The Collective Response of the Nucleus: Giant Resonances

M. Itoh

Investigation of the Giant Monopole Resonance in Doubly Magic Nuclei by Inelastic α -Scattering

• GMR gives access to nuclear compressibility $K_{nm} (Z,N) \sim \rho_0^2 d^2(E/A) / d\rho^2 |_{\rho_0}$ \Rightarrow key parameter of EOS

investigation of isotopic chains arround ¹³²Sn, ⁵⁶Ni, … with high δ = (N-Z)/A
 ⇒ disentangle different contributions to

 $K_A = K_{vol} + K_{surf} A^{-1/3} + K_{sym} ((N-Z)/A)^2 +$

Experiments to be Performed at Very Low Momentum Transfer – Some Selected Examples

- Investigation of Nuclear Matter Distributions:
 - \Rightarrow halo, skin structure
 - \Rightarrow probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - ⇒ in combination with electron scattering (ELISe project @ FAIR): separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering \Rightarrow <u>at low q</u>: high sensitivity to nuclear periphery

- Investigation of the Giant Monopole Resonance:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering <u>at low q</u>

- Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process

⇒ electron capture rates in the presupernova evolution (core collaps) method: (3 He,t), (d, 2 He) charge exchange reactions <u>at low q</u>

Kinematical Conditions for Light-Ion Induced Direct Reactions in Inverse Kinematics

- required beam energies: E ≈ 200 ... 740 MeV/u (except for transfer reactions)
- required targets: ^{1,2}H, ^{3,4}He
- most important information in region of low momentum transfer
 - ⇒ <u>low recoil</u> energies of recoil particles
 - \Rightarrow need thin targets for sufficient angular and energy resolution

Advantage of Storage Rings for Direct Reactions in Inverse Kinematics

- low threshold and high resolution due to: beam cooling, thin target (10¹⁴-10¹⁵ cm⁻²)
- gain of luminosity due to: continuous beam accumulation and recirculation
- low background due to: pure, windowless ^{1,2}H₂, ^{3,4}He, etc. targets
- experiments with isomeric beams

Experiments at very low momentum transfer can only be performed at EXL (except with active targets, but with substantial lower luminosity)

External Target Versus Internal Target

The EXL Recoil and Gamma Array

Si DSSD $\Rightarrow \Delta E, x, y$ 300 µm thick, spatial resolution better than 500 µm in x and y, $\Delta E = 30$ keV (FWHM)

Thin Si DSSD \Rightarrow tracking <100 µm thick, spatial resolution better than 100 µm in x and y, $\Delta E = 30 \text{ keV} (FWHM)$

Si(Li) \Rightarrow E 9 mm thick, large area 100 x 100 mm², $\Delta E = 50 \text{ keV}$ (FWHM)

CsI crystals \Rightarrow E, γ High efficiency, high resolution, 20cm thick

II.2. Recent Experiments and Future Perspectives

Proposal E105: Start up of part of the EXL physics program:

Feasibility Studies and First Experiments with RIB's at the ESR Storage Ring

Intermediate Solution to Overcome the Limitations of the MSV (First Phase of FAIR):

Task Force established

Proposal E105: Feasibility Studies and First Experiments with RIB's at the ESR Storage Ring

specially designed scattering chamber for the ESR:

reactions with ⁵⁸Ni:

proof of principles and feasibility studies:

- UHV capability of detector setup
- background conditions in ESR environment at the internal target
- Iow energy threshold
- beam and target performance

reactions with ⁵⁶Ni:

⁵⁶Ni: doubly magic nucleus!!

- (p,p) reactions: nuclear matter distribution
- (α,α`) reactions: giant resonances (GMR) EOS parameters (nucl. compressibility)
- (³He,t) reactions: Gamow-Teller matrix elements, important for astrophys.

Theorectical Predictions

needed: large solid angle detectors with low threshold and large dynamic range

Setup at the ESR Storage Ring

UHV Capability of the EXL Silicon Array: Concept: using DSSD's as high vacuum barrier

• Differential pumping proposed to separate (N)ESR vacuum from EXL instrumentation (cabling, FEE, other detectors)

Experimental Concept

Experimental Concept for the E105 Experiment

Experimental Concept for the E105 Experiment

Auxilliary vacuum side

Ultra-high vacuum side

Experimental Setup at the ESR

Scattering Chamber mounted at the Internal Target of the ESR

challenge: UHV capable and bakeable DSSD and Si(Li) detectors

Preparation of the Stored Radioactive ⁵⁶Ni Beam

FRS: In-Flight Separator & High-Resolution Spectrometer

Preparation of the Stored Radioactive ⁵⁶Ni Beam

fragmentation of 600 MeV/u ⁵⁸Ni beam

injection to ESR: <u>7 x 10⁴</u> ⁵⁶ Ni per injection

stochastic cooling, bunching and stacking (60 injections): $4.8 \times 10^{6} {}^{56}\text{Ni} \text{ in the ring}$

luminosity:

FRS:

H₂ target: 2 x 10¹³ cm⁻²

$$\Rightarrow \frac{L = 2 \times 10^{26} \text{ cm}^{-2} \text{ sec}^{-1}}{(\text{reduced by aperture})}$$

 σ = 3.78 mm x_0 = 0.58 mm

25. 10. 2012:

First Nuclear Reaction Experiment with Stored Radioactive Beam!!!!

⁵⁶Ni(p,p), E = 400 MeV/u Response of Individual Detectors

⁵⁶Ni(p,p), E = 400 MeV/u Benefit of the 1mm Aperture

⁵⁶Ni(p,p), E = 400 MeV/u Angular Distribution

⁵⁶Ni(p,p), E = 400 MeV/u Angular Distribution

⁵⁶Ni(p,p), E = 400 MeV/u Angular Distribution Cross Section fitted using the Glauber Theory

M. v. Schmid et al., to be published

Nuclear Matter Distribution of ⁵⁶Ni

comparison with

theoretical predictions:

reference	Rmatter[fm]
present work	3.51 (10)
H. Lenske et al. Phys. Lett. B 647 (2007) 82	3.66
K. Oyamatsu et al. Progr.Theor. Phys. 109 (2003) 631	3.54

M. v. Schmid et al., to be published

Nuclear Matter Radii in Ni Isotopes

⁵⁶Ni(p,p), E = 400 MeV/u Angular Distribution Cross Section fitted using the Glauber Theory

to be performed: analysis with Sum-of Gaussians density parametrization ⇒ more model independent results

Comparison with External Target Experiment

VOLUME 73, NUMBER 13

PHYSICAL REVIEW LETTERS

26 September 1994

Proton Inelastic Scattering on ⁵⁶Ni in Inverse Kinematics

G. Kraus, P. Egelhof, C. Fischer, H. Geissel, A. Himmler, F. Nickel, G. Münzenberg, W. Schwab, and A. Weiss Gesellschaft für Schwerionenforschung, D-64220 Darmstadt, Germany

> J. Friese, A. Gillitzer, H. J. Körner, and M. Peter Technische Universität München, D-85748 Garching, Germany

W.F. Henning and J.P. Schiffer Argonne National Laboratory, Argonne, Illinois 60439

J. V. Kratz University of Mainz, D-55099 Mainz, Germany

L. Chulkov, M. Golovkov, and A. Ogloblin I. V. Kurchatov Institute, Moscow, Russia

B. A. Brown Michigan State University, East Lansing, Michigan 4882 (Received 19 May 1994)

same ⁵⁶Ni intensity as for ESR experiment

 ${}^{58}Ni(\alpha,\alpha)$, E = 100 MeV/u

challenge: detect and identify very low energy recoils

comparison with theoretical prediction:

[3] G. Colò et al, Comput. Phys. Commun. 184 (2013)

J. C. Zamora et al., to be published

Investigation of the Isoscalar Dipole Resonance in ⁵⁸Ni

Centroid [MeV]		
33.9(5)	present data	
34.1(3)	PRC 73, 014314 (2006)	
$30.8^{+1.7}_{-1.1}$	Phys. Lett. B 637, 43 (2006)	

RMS-width	[MeV]
-----------	-------

- 7.1(6) present data
- 8.3(2) PRC 73, 014314 (2006)

short term perspectives:

• (α, α) on ⁵⁶Ni \Rightarrow investigate ISGMR and ISGDR \Rightarrow investigate the compressibility of nuclear matter

short term perspectives:

• (α, α) on ⁵⁶Ni \Rightarrow investigate ISGMR and ISGDR

needs upgrade of detector setup and readout (ASICS)

- (³He,t) on ⁵⁶Ni ⇒ investigate Gamow Teller strength needs upgrade of internal target
- transfer reactions at Cryring (GSI) and TSR@ISOLDE (CERN)

long term perspectives (EXL @ FAIR):

 still first priority: EXL at the NESR (full performance of EXL)

long term perspectives (EXL @ FAIR):

 for first phase of FAIR: transfer line from SUPER-FRS / CR to the ESR

The E105 Collaboration

S. Bagachi¹, S. Bönig², M. Castlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵, H. Geissel⁴, R. Gernhäuser⁶, M.N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar–Nayestanaki¹, O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴, Yu.A. Litvinov⁴, M. Mahjour-Shafiei¹, M. Mutterer⁴, D. Nagae⁸, M.A. Najafi¹, C. Nociforo⁴, F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴, B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka⁹, H. Weick⁴, J.S. Winfield⁴, D. Winters⁴, P.J. Woods¹⁰, T. Yamaguchi¹¹, K. Yue^{4,7}, J.C. Zamora², J. Zenihiro⁹

¹ KVI, Groningen

- ² Technische Universität Darmstadt
- ³ ATOMKI, Debrecen
- ⁴ GSI, Darmstadt
- ⁵ loffe Physico-Technical Institute, St.Petersburg
- ⁶ Technische Universität München

- ⁷ Institute of Modern Physics, Lanzhou
- ⁸ University of Tsukuba
- ⁹ RIKEN Nishina Center
- ¹⁰ The University of Edinburgh
- ¹¹ Saitama University

III. Direct Reactions with Active Targets

- high detection efficiency (rel. thick target)
- \Rightarrow well suited as alternative technique to EXL for:
 - short lifetimes (T \leq 1 sec)
 - low RIB intensities ($\leq 10^4 \text{ sec}^{-1}$)

III.1. Experimental Concept: The TPC-Ionization Chamber IKAR as Active Target

(provided by PNPI St. Petersburg) detection principle:

H₂-target = detector for recoil protons (from elastic scattering)

<u>but</u>: method limited to $Z \le 6!$

Detection Principle of IKAR

III.2. Small Angle Elastic Proton Scattering - a Tool to Study the Radial Shape of Exotic Nuclei

The <u>radial shape and size of nuclei</u> is a <u>basic nuclear property</u> ! \Rightarrow of high interest for nuclear structure physics

<u>observables:</u> nuclear charge distribution: $ρ_{ch}(r)$, $< r_{ch}^2 > 1/2$ ⇒ leptonic probes nuclear matter distribution: $ρ_m(r)$, $< r_m^2 > 1/2$ ⇒ hadronic probes

method: intermediate energy elastic proton scattering

- ⇒ well established method for determination of nuclear matter distributions (of stable nuclei)
- \Rightarrow what about exotic nuclei?

Elastic Proton Scattering at Intermediate Energies around 1 GeV/u

well established method to investigate nuclear matter distributions of stable nuclei (see G. Alkhazov et al., Phys. Rep. 42 (1978) 89)

with radioactive beams \Rightarrow application to exotic nuclei

Halo-Nuclei – a New Phenomenon of the Structure of Nuclei

Density Distribution of Nuclear Matter

extremely neutron-rich nuclei: neutron halo

stable nuclei:

neutrons and protons equally distributed

Intermediate Energy Elastic Proton Scattering - a Tool to Study the Radial Shape of Halo Nuclei

aim: quantitative information on the nuclear matter distributions

method: intermediate energy (700 – 1000 MeV) elastic proton scattering

of special interest: light isotopes with halo-structure: ⁶He, ⁸He, ¹¹Li, ¹⁴Be, ⁸B, ¹⁷C(?)

for low momentum transfer:

high sensitivity on the halo structure

- ⇒ determination of matter radii
- ⇒ determination of the radial shape of the nuclear matter distribution

Sensitivity of Elastic Proton Scattering on the Radial Shape of the Nuclear Matter Distribution

curvature of log (d σ /dt) → halo structure

The Present Radioactive Beam Facility at GSI

FRS: In-Flight Separator & High-Resolution Spectrometer

Investigation of Nuclear Matter Density Distributions of Halo Nuclei by Elastic Proton Scattering

Experimental Setup: Active Target IKAR and Aladin Magnet

The IKAR Experimental Setup

Investigation of Nuclear Matter Density Distributions of Halo Nuclei by Elastic Proton Scattering at Low Momentum Transfer

S. R. Neumaier et al., Nucl. Phys. A 712 (2002) 247
G. D. Alkhazov et al., Nucl. Phys. A 712 (2002) 269
P. Egelhof et al., Eur. Phys. J. A 15 (2002) 27
A. Dobrovolsky et al., Nucl. Phys. A766 (2006) 1

all experimental data are well described by Glauber calculations
Concept of the Data Analysis

- Glauber multiple-scattering theory for calculation of cross sections:
 - use measured free pp, pn-cross sections as input (in medium effects negligible)
 - fold with nucleon density distribution
 - take into account multiple scattering (all terms!) (small for region of nuclear halo!)
- variation of the nucleon density distribution:
 - a) phenomenological parametrizations (point matter densities):
 - G: 1 Gaussian
 - SF: Symmetrized Fermi
 - GG: 2 Gaussians
 - GO: Gaussian + Harmonic Oscillator
 - b) "model independent" analysis:

SOG: Sum Of Gaussians

(standard method for electron scattering data:

I. Sick, Nucl. Phys. A 218 (1974) 509)

Investigation of Nuclear Matter Density Distributions of Halo Nuclei by Elastic Proton Scattering at Low Momentum Transfer

nuclear matter distributions:

nuclear matter radii:

nucleus	R _{matter} , fm	R _{core} , fm	R _{halo} , fm
⁴ He	1.49 (3)		
⁸ He	2.53(8)	1.55 (15)	3.22 (14)
⁹ Li	2.44 (6)		
¹¹ Li	3.71 (20)	2.53 (3)	6.85 (58)

- extended neutron distribution in ⁸He and ¹¹Li obtained
- size of core, halo and total matter distribution determined with high accuracy
- the picture of a ⁹Li (⁴He) core + 2 (4) valence neutron-structure is confirmed for ¹¹Li and ⁸He

Determination of Neutron Radii and Neutron Skin Sizes

- needs input on proton (charge) distributions
 - \Rightarrow use data from laser spectroscopy (isotope shift measurements):
 - for ⁶He: L.-B. Wang et al., PRL 93, 142501 (2004)
 - for ^{8,9,11}Li: R. Sanchez et al., PRL 96, 033002 (2006) M. Puchalski et al., PRL 97, 1330016 (2006)
- neutron radius:

$$R_n^{2} = \frac{1}{N_n} * \left(A R_m^{2} - N_p R_p^{2} \right)$$

• neutron skin size:

$$\delta_{np} = R_n - R_p$$

Summary of all Data on Nuclear Radii

nucleus	R _m , fm	R _{core} , fm	R _{halo} , fm	R _p *, fm	R _n , fm	$\delta_{np}^{}$, fm
⁶ He	2.45 (10)	1.88 (12)	3.31 (28)	1.91 (2)	2.60 (7)	0.69 (7)
⁸ Li	2.50 (6)			2.15 (3)	2.69 (9)	0.54 (10)
⁹ Li	2.44 (6)			2.06 (4)	2.61 (9)	0.55 (10)
¹¹ Li	3.71 (20)	2.53 (3)	6.85 (58)	2.33(4)	3.75 (15)	1.42 (16)

* R_p from laser spectroscopy, unfolded from proton charge radius

Recent Results on Halo Structures in Exotic Be, B, and C Isotopes

• two experiments with primary ¹²C and ¹⁸O beams were successfully performed

one-neutron halo

candidates for halo nuclei

Elastic Proton Scattering from ¹⁴Be

deduced nuclear matter distribution:

differential cross section:

- ¹⁴Be exhibits a pronounced core-halo structure
- the picture of a ¹²Be-core + 2 valence neutron structure is confirmed
- the present data favour a relatively large s-wave component (see I. Thompson et. al, Phys. Rev. C53 (1996) 708)

Elastic Proton Scattering from ¹²Be

deduced nuclear matter distribution:

differential cross section:

- ¹²Be exhibits an extended matter distribution
- the contribution of (sd) intruder states is confirmed (see I. Thompson et al., Phys. Rev. C53 (1996) 703)

Comparison of the ¹⁴Be core with the free ¹²Be

the free ¹²Be nucleus exhibits a different structure as compared to the core in ¹⁴Be
 ⇒ may be explained by different shell occupation of last 2 neutrons (p or sd)

Elastic Proton Scattering from ¹⁷C

deduced nuclear matter distribution:

 10^{0} 10^{7} ĠG matter experiment data GG core GG GO matter GH 10⁶ 10^{-2} GO core SG GH p ¹⁷C, E = 700 MeV/u dσ/dt, mb/(GeV/c)² 01 04 04 SG 10^{-4} ρ(r), fm⁻³ ¹⁷C 10⁻⁶ 10^{-8} preliminary ! preliminary ! 10² 10⁻¹⁰ 8 10 12 0.01 2 6 0 0.02 0.03 0.04 0 4 0.05 -t, $(GeV/c)^2$ r. fm S. Tang et. al, results for ¹⁷C: R_{matter} $= 2.70 \pm 0.02 \pm 0.10$ fm to be published

- for ¹⁷C no evidence for an extended matter distribution (or halo structure) is observed
- indication for dominant d-wafe contribution

differential cross section:

- in agreement with A. Ozawa et al., Nucl. Phys. A691 (2001)599: $R_m = 2.72$ (0,04) fm
- partly in disagreement with C. Wu et al., Nucl. Phys. A739(2004)3

Elastic Proton Scattering from ⁸B

differential cross section:

deduced nuclear matter distribution:

A. Inglesi et. al,

to be published

• for the first time a proton halo was investigated

- the halo structure of ⁸B was confirmed
 - the deduced matter radius $R_m = 2.60 \pm 0.04 \pm 0.20$ fm is in agreement with previous results and theoretical predictions ($R_m = 2.4 2.6$ fm)
- relevance for the astrophysical S(E) factor for the ⁷Be(p,γ)⁸B reaction ?
 ⇒ to be investigated !!!

The IKAR-Collaboration

F. Aksouh, G.D. Alkhazov, M.N. Andronenko, L. Chulkov, A.V. Dobrovolsky, P. Egelhof, H. Geissel, M. Gorska, S. Ilieva, A. Inglessi, A.V. Khanzadeev, O. Kiselev, G.A. Korolev, C. L. Le, Y. Litvinov, G. Münzenberg, M. Mutterer, S.R. Neumaier, C. Nociforo, C. Scheidenberger, L. Sergeev, D.M. Seliverstov, H. Simon, S. Tang, N.A. Timofeev, A.A. Vorobyov, V. Volkov, H. Weick, V.I. Yatsoura, A. Zhdanov

> Gesellschaft für Schwerionenforschung, Darmstadt, Germany Petersburg Nuclear Physics Institute, Gatchina, Russia Kurchatov Institute, Moscow, Russia Institut für Kernchemie, Universität Mainz, Germany Institut für Kernphysik, TU Darmstadt, Darmstadt, Germany

The IKAR Collaboration

Future Perspectives @ FAIR: R3B: Reactions with Relativistic Radioactive Beams

A New Active Target for R³B @ FAIR

- Modified version of IKAR chamber
- Beam shielding anode \varnothing 2 cm
- Gas H₂, D₂, ³He, ⁴He, CH₄, Ar
- Pressure up to 25 bar

Effective target length – 40 cm Effective target thickness – $4*10^{22}$ cm-Luminosity (I = 10^4 s⁻¹) – $4*10^{26}$ cm⁻²s⁻¹ $E_p(max) = 15$ MeV, $t_{max} = 0.03$ (GeV/c)² (H₂, 25 bar) A TDR is presently prepared.

IV. Conclusions

- For the First Time (World Wide) a Nuclear Reaction Experiment with Stored Radioactive Beams was successfully performed.
- A number of Important Physics Questions can be only addressed with the EXL Technique which is up to date World Wide unique.
- The Active Target Technique is well suited for addressing very short lived nuclei, not accessible by EXL.
- Elastic Proton Scattering at Intermediate Energies is a powerful tool to study nuclear matter distributions in nuclei. The combination with data on the charge distribution allows to investigate the Size of Neutron Skins.
- The Future Facility NuSTAR@ FAIR will allow to reach Unexplored Regions in the Chart of Nuclei, where New and Exciting Phenomena are expected.
- EXL@FAIR and ACTAR@FAIR have a Large Potential for Nuclear Structure and Nuclear Astrophysics.

External Target Versus Internal Target

IMP Lanzhou

VTT Helsinki

- **IPN Orsay, CEA Saclay**
- GSI Darmstadt, TU Darmstadt, Univ. Frankfurt, FZ Jülich, Univ. Giessen, Univ. Mainz, Univ. Munich
- (0) **INR Debrecen**
 - SINP Kolkata, BARC Mumbai
 - **KVI Groningen**
- **INFN/Univ. Milano**
 - Univ. Teheran
 - Univ. Osaka

N

+ + + +

Spokesperson: N. Kalantar (KVI) Deputy: P. Egelhof (GSI) GSI contact: H. Weick (GSI) 18 countries, 34 institutes, ~150 participants

The EXL Collaboration

- JINR Dubna, PNPI Gatchina, KRI St. Petersburg, loffe Inst. St. Petersburg, Kurchatov Inst. Moscow **CSIC Madrid, Univ. Madrid**
 - Univ. Lund, Mid Sweden Univ., Univ. Uppsala, Chalmers Inst. Göteborg
 - Univ. Basel

Univ. Birmingham, CLRC Daresbury, Univ. Surrey, Univ. York, Univ. Liverpool, Univ. Edinburgh Tbilisi State University, Ilia Chavchavadze State University, Tbilisi, Georgia

Investigation of Gamow-Teller Transitions by Charge Exchange Reactions

GT strength can be extracted from charge exchange reactions, i.e. (³He,t), (d,²He), etc. for $E \ge 100 \text{ MeV/u: } d\sigma/d\Omega dE (0^{\circ}) \approx S(E_x) \cdot B(GT)$

⇒ important for several astrophysical scenarios:

 weak interaction rates for N = Z waiting point nuclei in the rp-process (⁷²Kr, ⁷⁶Sn, ⁸⁰Zn, ⁸⁴Mo, ⁸⁸Ru, ⁹²Pd, etc.)

electron capture rates in the presupernova evolution (core collaps)
 <u>early phase:</u>

all radioactive isotopes within ⁵⁵⁻⁶⁰Co, ⁵⁶⁻⁶¹Ni, ⁵⁴⁻⁵⁸Mn, ⁵⁴⁻⁵⁹Fe

later phase:

 e^- + (N,Z) \Leftrightarrow (N+1, Z-1) + v_e in equilibrium \Rightarrow neutron-rich Kr, Ge isotopes

Specifications of the Silicon Detectors for EXL

- low threshold \leq 40 keV
 - $(\Rightarrow$ constraints on thickness of entrance windows)
- high energy resolution ≤ 20 keV
- pitch size ≥ 0.5 mm
- active area 65 X 65 mm²
- large dynamic range: 100 keV to 50 MeV
- readout of energy, time, PSA??
- self triggering
- moderate count rates
- UHV (HV) compatibility (partly)

Pulse-Shape Discrimination with DSSD's

test with p, d, ⁴He from ¹²C + ¹²C @ 70 MeV TU Munich

M. von Schmid et al. NIM A629 (2011)197

Strip & Interstrip

Strip (stopped α 's)

PSD

DSSD strip-strip events show PSD comparable with single PIN diodes

System Integration

Specifications of the Silicon Detectors for EXL

Angular region	Θ _{lab} [deg]	Detector type	Active area [mm²]	Thickness [mm]	Distance from target [cm]	Pitch [mm]	Number of detectors	Number of channels
A	89 - 80	DSSD Si(Li)	87 x 87 87 x 87	0.3 9	59 60	0.1 -	20 20	34800 180
В	80 - 75	DSSD Si(Li) Si(Li) Si(Li)	50 x 87 50 x 87 50 x 87 50 x 87 50 x 87	0.3 9 9 9	50 52 54 56	0.1 - - -	20 20 20 20	27400 180 180 180
С	75 - 45	DSSD DSSD	87 x 87 87 x 87	0.1 0.3	50 60	0.1 0.1	60 60	104400 34800
D	45 - 10	DSSD DSSD Si(Li)	87 x 87 87 x 87 87 x 87	0.1 0.3 9	49 59 60	0.1 0.1	60 80 80	104400 139200 720
E	170 - 120	DSSD Si(Li)	50 x 50 50 x 50	0.3 5	25 26	0.5 -	60 60	6000 240
E'	120 - 91	DSSD Si(Li)	87 x 87 87 x 87	0.3 5	59 60	0.1 -	60 60	104400 540
Total		DSSD Si(Li)					420 280	555400 2220

RIB production Rates at FAIR

II.2. Recent Experiments and Future Perspectives

Proposal E105: Start up of part of the EXL physics program with ⁵⁶Ni

Spokespersons: N. Kalantar (KVI), P. Egelhof (GSI) GSI contact: H. Weick (GSI)

for the EXL collaboration

III.1. Experimental Concept: The TPC-Ionization Chamber IKAR as Active Target

(provided by PNPI St. Petersburg) detection principle:

H₂-target = detector for recoil protons (from elastic scattering)

<u>but</u>: method limited to $Z \le 6!$

Detection Principle of IKAR

Elastic Proton Scattering at Intermediate Energies around 1 GeV/u

well established method to investigate nuclear matter distributions of stable nuclei (see G. Alkhazov et al., Phys. Rep. 42 (1978) 89)

with radioactive beams \Rightarrow application to exotic nuclei

Halo-Nuclei – a New Phenomenon of the Structure of Nuclei

Density Distribution of Nuclear Matter

extremely neutron-rich nuclei: neutron halo

stable nuclei:

neutrons and protons equally distributed

Sensitivity of Elastic Proton Scattering on the Radial Shape of the Nuclear Matter Distribution

curvature of log (d σ /dt) → halo structure

Determination of Neutron Radii and Neutron Skin Sizes

- needs input on proton (charge) distributions
 - \Rightarrow use data from laser spectroscopy (isotope shift measurements):
 - for ⁶He: L.-B. Wang et al., PRL 93, 142501 (2004)
 - for ^{8,9,11}Li: R. Sanchez et al., PRL 96, 033002 (2006) M. Puchalski et al., PRL 97, 1330016 (2006)
- neutron radius:

$$R_n^{2} = \frac{1}{N_n} * \left(A R_m^{2} - N_p R_p^{2} \right)$$

• neutron skin size:

$$\delta_{np} = R_n - R_p$$

Summary of all Data on Nuclear Radii

nucleus	R _m , fm	R _{core} , fm	R _{halo} , fm	R _p *, fm	R _n , fm	$\delta_{np}^{}$, fm
⁶ He	2.45 (10)	1.88 (12)	3.31 (28)	1.91 (2)	2.60 (7)	0.69 (7)
⁸ Li	2.50 (6)			2.15 (3)	2.69 (9)	0.54 (10)
⁹ Li	2.44 (6)			2.06 (4)	2.61 (9)	0.55 (10)
¹¹ Li	3.71 (20)	2.53 (3)	6.85 (58)	2.33(4)	3.75 (15)	1.42 (16)

* R_p from laser spectroscopy, unfolded from proton charge radius

Application of an Active Target for $(\alpha, \alpha \gamma)$ (proposed by D. Savran)

PDR in inelastic α scattering experiments

Problems in (α, α') :

 Separation from other excitations, no selectivity to E1 in the excitation

Signature: Strong decay to the ground state

Coincident γ-decay detection:

Selection of decays to the ground state

 \Rightarrow Selectivity to E1

T.D. Poelhekken et al., Phys. Lett. B 278 (1992) 423

D. Savran et al., Nucl. Instr. and Meth. A 564 (2006) 267

Application of an Active Target for (α, α, γ) (proposed by D. Savran)

Existing chamber at PSI Geometrically fits into CALIFA

recent test run successful

CALIFA γ -detector