-Highlights of CMS physics during the EHC Run-1 53rd Intl Winter on Nuclear Physics Bormio 2015 28th January 2015 David d'Enterria (CERN)

CMS

Standard Model of particles & interactions

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: } \mathbf{U}_{\gamma}(1), \, \mathrm{SU}_{\mathsf{L}}(2), \, \mathrm{SU}_{\mathsf{c}}(3)] \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \, \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\mathrm{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v} \left[\left(\bar{\nu}_{L}, \bar{e}_{L} \right) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[\left(-\bar{e}_{L}, \bar{\nu}_{L} \right) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \quad [\text{Lepton masses}] \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\mathrm{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v} \left[\left(\bar{u}_{L}, \bar{d}_{L} \right) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[\left(-\bar{d}_{L}, \bar{u}_{L} \right) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \quad [\text{Quark masses}] \\ - \frac{\sqrt{2}}{v} \left[\left(\bar{u}_{L}, \bar{d}_{L} \right) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[\left(-\bar{d}_{L}, \bar{u}_{L} \right) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \quad [\text{Quark masses}] \\ + \overline{(D_{\mu}\phi)} D^{\mu} \phi - m_{h}^{2} [\bar{\phi} - v^{2}/2]^{2} / 2v^{2}. \qquad [\text{Higgs dynamics & mass]} \\ \bullet \text{Gauge-fermion dynamics via covariant derivatives:} \\ D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} = \left[\partial_{\mu} - \frac{ig_{1}}{2} B_{\mu} + \frac{ig_{2}}{2} \mathbf{W}_{\mu} \right] \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}, \quad D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} = \left[\partial_{\mu} + \frac{ig_{1}}{3} B_{\mu} + ig\mathbf{G}_{\mu} \right] u_{R}, \quad D_{\mu} d_{R} = \left[\partial_{\mu} - \frac{ig_{1}}{3} B_{\mu} + ig\mathbf{G}_{\mu} \right] d_{R}, \\ D_{\mu} \phi = \left[\partial_{\mu} + \frac{ig_{1}}{2} B_{\mu} + \frac{ig_{2}}{2} \mathbf{W}_{\mu} \right] \phi. \end{aligned}$$

• Gauge-boson field strength tensors:

 $B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}, \quad \mathbf{W}_{\mu\nu} = \partial_{\mu}\mathbf{W}_{\nu} - \partial_{\nu}\mathbf{W}_{\mu} + ig_2(\mathbf{W}_{\mu}\mathbf{W}_{\nu} - \mathbf{W}_{\nu}\mathbf{W}_{\mu})/2, \quad \mathbf{G}_{\mu\nu} = \partial_{\mu}\mathbf{G}_{\nu} - \partial_{\nu}\mathbf{G}_{\mu} + ig(\mathbf{G}_{\mu}\mathbf{G}_{\nu} - \mathbf{G}_{\nu}\mathbf{G}_{\mu}).$ O(20) parameters: gauge couplings, H mass&vev, H-f Yukawa coupl., CKM mix., CP phases

Intl. Winter Meet. Nucl. Phys. Bormio-2015

Standard Model of particles & interactions

SM: Renormalizable QFT whose internal consistence & predictive power have been experimentally confirmed to great precision:

"Issues" with the Standard Model (1)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu} \left(-\frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right) \quad [\text{Gauge interactions: } \mathbf{U}_{\mathsf{Y}}(1), \, \mathsf{SU}_{\mathsf{L}}(2), \, \mathsf{SU}_{\mathsf{c}}(3)] \\ + (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\text{h.c.}) \quad [\text{Lepton dynamics}] \\ \left(-\frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right] \left[\text{Lepton masses} \right] \\ + (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\text{h.c.}) \quad [\text{Quark dynamics}] \\ \left(-\frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right] \left[\text{Quark masses} \right] \\ + (\bar{D}_{\mu} \phi) D^{\mu} \phi - m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}. \quad [\text{Higgs dynamics \& mass]}$$

<u>Higgs</u>: Generation of masses* via BEH mechanism not confirmed (up to 2012)
 (*) Plus unitarization of WW scattering at high energies

"Issues" with the Standard Model (2)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathsf{Y}}(1)$, $\mathbf{SU}_{\mathsf{L}}(2)$, $\mathbf{SU}_{\mathsf{c}}(3)$]
 $+ (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\mathrm{h.c.})$ [Lepton dynamics]
 $-\frac{\sqrt{2}}{v} \left[\left(\bar{\nu}_{L}, \bar{e}_{L} \right) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \phi \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} - \frac{\sqrt{2}}{v} \left[\left(-\bar{e}_{L}, \bar{\nu}_{L} \right) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\mathrm{h.c.})$ [Quark dynamics]
 $-\frac{\sqrt{2}}{v} \left[\left(\bar{u}_{L}, \bar{d}_{L} \right) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \phi \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} - \frac{\sqrt{2}}{v} \left[\left(-\bar{d}_{L}, \bar{u}_{L} \right) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right]$ [Quark masses]
 $+ (\bar{D}_{\mu} \phi) D^{\mu} \phi - m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}.$ [Higgs dynamics & mass]

<u>Higgs</u>: Generation of masses via BEH mechanism not confirmed (up to 2012)
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance

"Issues" with the Standard Model (3)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathbf{Y}}(1)$, $\mathbf{SU}_{\mathbf{L}}(2)$, $\mathbf{SU}_{\mathbf{c}}(3)$]
 $+ (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (h.c.)$ [Lepton dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (h.c.)$ [Quark dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right]$ [Quark masses]
 $+ (\bar{D}_{\mu} \phi) D^{\mu} \phi \left[-\frac{m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2}/2v^{2}} \right]$ [Higgs dyn. & mass] + new particles/symmetries ?

<u>Higgs</u>: Generation of masses via BEH mechanism not confirmed (up to 2012)
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance
 <u>Fine-tuning</u>: Higgs mass virtual corrections «uncontrolled» up to Planck scale

"Issues" with the Standard Model (4)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathsf{Y}}(\mathsf{1})$, $\mathbf{SU}_{\mathsf{L}}(2)$, $\mathbf{SU}_{\mathsf{c}}(3)$]
 $+ (\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (\mathrm{h.c.})$ [Lepton dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^\nu \nu_R + \bar{\nu}_R \bar{M}^\nu \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (\mathrm{h.c.})$ [Quark dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$ [Quark masses]
 $+ \overline{(D_\mu \phi)} D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2 / 2v^2.$ [Higgs dyn. & mass] + new particles/symmetries ?

<u>Higgs</u>: Generation of masses via BEH mechanism not confirmed (up to 2012)
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance
 <u>Fine-tuning</u>: Higgs mass virtual corrections «uncontrolled» up to Planck scale
 <u>Dark matter</u>: SM describes only 4% of Universe (visible fermions+bosons)
 <u>Others</u>: v's masses, quark confinement, gauge-gravity unification, cosmological constant, dark energy,...

Tools: high-energy proton & ion collisions

Intl. Winter Meet. Nucl. Phys. Bormio-2015

CMS: the detector Total weight 14000 t 76k scintillating **ECAL** PbWO₄ crystals MUON 15 m Diameter **ENDCAPS** Length 28.7 m **HCAL** Scintillator/brass 473 Cathode Strip Chambers (CSC) Interleaved ~7k ch 432 Resistive Plate Chambers (RPC) **IRON YOKE** 3.8T Solenoid Preshower Si Strips ~16 m² ~137k ch YE1.3 Foward Cal Έn Steel + quartz YB1-Fibers ~2k ch Pixel Pixels & Tracker Tracker • Pixels (100x150 μm²) **ECAL** ~ 1 m² ~66M ch **HCAL** •Si Strips (80-180 µm) ~200 m² ~9.6M ch Muons **MUON BARREL** Solenoid coil 250 Drift Tubes (DT) and 480 Resistive Plate Chambers (RPC) 9

CMS: the people

~3300 scientists & engineers (including ~900 students) from 193 institutes in 40 countries

Intl. Winter Meet. Nucl. Phys. Bormio-2015

CMS: the physics objects

Intl. Winter Meet. Nucl. Phys. Bormio-2015

LHC Run-1: March 2010 – Feb. 2013

August 2008

David d'Enterria (CERN)

CMS: integrated luminosities (2010-13)

CMS Integrated Luminosity, pp

CMS: L1 & high-level triggers

Level-1 & HLT menus reduce # of p-p interactions from: $2 \cdot 10^7$ Hz (input) down to ~350 Hz (recorded), ~300 Hz ("parked" for later analysis)

 $B_e \rightarrow \mu^+ \mu^$ low p_ double muon high p_ double muon 103 10² 10 10⁻¹ 10² 10 dimuon mass [GeV]

trigger paths

Example: dimuon mass distribution from several double-µ trigger paths: calibration, $B_{s}(\mu\mu)$, quarkonia, DY/Z

J/w

2011 Run, L = 1.1 fb⁻¹

CMS \s = 7 TeV

CMS: p-p pileup & triggering

Highly-flexible HLT system allows CMS to keep a constant-rate cross section with varying pile-up conditions without sacrificing physics:

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV 45 45 <µ> = 21 Recorded Luminosity (pb^{-1} /0.04) 40 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 20 15 5 20 25 30 35 00 Mean number of interactions per crossing Total HLT 200 "core" 180 "parked" 160 **Cross Section** 140 120 100 80 60 HH PU=14 PU=30 40 20 instantaneous luminosity [Hz/r 0 2.5 3.5 5.5 6.5 3.0 6.0

CMS: publications & preliminary results

360 papers submitted + few hundreds preliminary notes as of Jan'15

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

CMS: publications & preliminary results

360 papers submitted + few hundreds preliminary notes as of Jan'15

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

Quantum Chromodynamics

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}) - \frac{1}{2}tr(\mathbf{G}_{\mu\nu}\mathbf{G}^{\mu\nu}) \qquad \text{[Gauge interactions: } SU_{c}(3)\text{]} \\ + (\bar{\nu}_{L}, \bar{e}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix} + \bar{e}_{R}\sigma^{\mu}iD_{\mu}e_{R} + \bar{\nu}_{R}\sigma^{\mu}iD_{\mu}\nu_{R} + (\text{h.c.}) \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_{L}, \bar{e}_{L}\right)\phi M^{e}e_{R} + \bar{e}_{R}\bar{M}^{e}\bar{\phi}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{e}_{L}, \bar{\nu}_{L}\right)\phi^{*}M^{\nu}\nu_{R} + \bar{\nu}_{R}\bar{M}^{\nu}\phi^{T}\begin{pmatrix}-e_{L}\\\nu_{L}\end{pmatrix}\right] \\ + (\bar{u}_{L}, \bar{d}_{L})\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix} + \bar{u}_{R}\sigma^{\mu}iD_{\mu}u_{R} + \bar{d}_{R}\sigma^{\mu}iD_{\mu}d_{R} + (\text{h.c.}) \qquad \text{[Quark dynamics]} \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{u}_{L}, \bar{d}_{L}\right)\phi M^{d}d_{R} + \bar{d}_{R}\bar{M}^{d}\bar{\phi}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{d}_{L}, \bar{u}_{L}\right)\phi^{*}M^{u}u_{R} + \bar{u}_{R}\bar{M}^{u}\phi^{T}\begin{pmatrix}-d_{L}\\u_{L}\end{pmatrix}\right] \\ + (\overline{D_{\mu}\phi})D^{\mu}\phi - m_{h}^{2}[\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}.$$

• Gauge-fermion dynamics via covariant derivatives:

$$\begin{split} D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} &= \left[\partial_{\mu} - \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} \right] \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \quad D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} &= \left[\partial_{\mu} + \frac{ig_1}{6} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} + ig \mathbf{G}_{\mu} \right] \begin{pmatrix} u_L \\ d_L \end{pmatrix} \\ D_{\mu} \nu_R &= \partial_{\mu} \nu_R, \quad D_{\mu} e_R = \left[\partial_{\mu} - ig_1 B_{\mu} \right] e_R, \quad D_{\mu} u_R = \left[\partial_{\mu} + \frac{i2g_1}{3} B_{\mu} + ig \mathbf{G}_{\mu} \right] u_R \quad D_{\mu} d_R = \left[\partial_{\mu} - \frac{ig_1}{3} B_{\mu} + ig \mathbf{G}_{\mu} \right] d_R, \\ D_{\mu} \phi &= \left[\partial_{\mu} + \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} \right] \phi. \end{split}$$

• Gauge-boson field strength tensors:

 $B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}, \quad \mathbf{W}_{\mu\nu} = \partial_{\mu}\mathbf{W}_{\nu} - \partial_{\nu}\mathbf{W}_{\mu} + ig_2(\mathbf{W}_{\mu}\mathbf{W}_{\nu} - \mathbf{W}_{\nu}\mathbf{W}_{\mu})/2, \quad \mathbf{G}_{\mu\nu} = \partial_{\mu}\mathbf{G}_{\nu} - \partial_{\nu}\mathbf{G}_{\mu} + ig(\mathbf{G}_{\mu}\mathbf{G}_{\nu} - \mathbf{G}_{\nu}\mathbf{G}_{\mu}).$

David d'Enterria (CERN)

QCD: Inelastic p-p cross section

- Only ~60% of total p-p x-section at LHC directly computable with QCD Lagrangian (perturbative parton scatterings) ...
- Diffractive (15%) +elastic (25%) x-sections require: Data + Regge-Gribov approaches (QM constraints: Froissart bound, optical th., dispersion relations)

QCD: Inelastic p-p cross section

Total inel. x-section σ_{CMS}~ 73 mb
 Visible inel. x-section σ_{CMS}~ 60 mb
 measured in CMS via:
 (i) pileup-events counting,
 (ii) hadronic activity in single-sided triggers

PLB 722 (2013) 5

Most hadronic models over(under)estimate high(low)-mass diffraction.

■ Mixed p-Fe UHECRs at GZK-cutoff after including LHC data (E_{lab} ~ 10¹⁷ eV):

David d'Enterria (CERN)

QCD: x-sections of light-quark & gluons jets

CMS-FSQ-12-031

QCD: Strong coupling from jets x-sections

Ratio of 3-jets of 2-jets, 3-jet mass, and incl.jets x-sections constrain α_s up to so-far unprobed scales Q ~ 1.4 TeV:

Intl. Winter Meet. Nucl. Phys. Bormio-2015

David d'Enterria (CERN)

"Collective" QCD: "ridge" of correlated hadrons

Observation of long-range (over Δη~8 !) near-side hadron correlations "ridge" in "central" (high multiplicity) collisions:

QCD plasma: $q,g,Q\overline{Q}$ suppression in Pb-Pb

Yields of strongly-interacting particles suppressed in Pb-Pb compared to p-p. Weakly probes (γ,W,Z) unmodified by medium:
PLB715(12)66, EPJC 72(12)1945

Electroweak sector (LHC)

$$\mathcal{L} = \left[-\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \right]$$

$$= \left[-\frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) + \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) +$$

• Gauge-fermion dynamics via covariant derivatives:

$$\begin{split} D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} &= \left[\partial_{\mu} - \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} \right] \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \quad D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} &= \left[\partial_{\mu} + \frac{ig_1}{6} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} \right] \cdot ig \mathbf{G}_{\mu} \right] \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \\ D_{\mu} \nu_R &= \partial_{\mu} \nu_R, \quad D_{\mu} e_R = \left[\partial_{\mu} - ig_1 B_{\mu} \right] e_R, \quad D_{\mu} u_R = \left[\partial_{\mu} + \frac{i2g_1}{3} B_{\mu} \right] \cdot ig \mathbf{G}_{\mu} \right] u_R, \quad D_{\mu} d_R = \left[\partial_{\mu} - \frac{ig_1}{3} B_{\mu} \right] \cdot ig \mathbf{G}_{\mu} d_R, \\ D_{\mu} \phi &= \left[\partial_{\mu} + \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} \mathbf{W}_{\mu} \right] \phi. \end{split}$$

• Gauge-boson field strength tensors:

 $B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}, \quad \mathbf{W}_{\mu\nu} = \partial_{\mu}\mathbf{W}_{\nu} - \partial_{\nu}\mathbf{W}_{\mu} + ig_2(\mathbf{W}_{\mu}\mathbf{W}_{\nu} - \mathbf{W}_{\nu}\mathbf{W}_{\mu})/2, \quad \mathbf{G}_{\mu\nu} = \partial_{\mu}\mathbf{G}_{\nu} - \partial_{\nu}\mathbf{G}_{\mu} + ig(\mathbf{G}_{\mu}\mathbf{G}_{\nu} - \mathbf{G}_{\nu}\mathbf{G}_{\mu}).$

EW: Cross sections summary

Many stringent tests of EWK sector at the TeV scale:

■ Very good agreement with NLO (or approx. NNLO) predictions at 7,8 TeV ■ First-ever measured: t-W, tt-Z, $\gamma\gamma \rightarrow$ WW, vector-boson-fusion Z

EW: W,Z "standard candles" for PDFs

Differential Z,W x-sections in agreement w/ NNLO at 7,8 TeV: PDF constraints

EW: $\gamma\gamma \rightarrow$ WW & anomalous QGCs

Exclusive opposite-sign μ -e events: 2 evts in 5 fb⁻¹ at 7 TeV:

JHEP 07 (2013) 116

No high- p_{τ} evts = Strong constraints on anomalous quartic gauge couplings:

Higgs sector

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$

$$+ (\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} iD_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} iD_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} iD_{\mu} \nu_R + (h.c.)$$

$$- \frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi \mathbf{M}^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^{\nu} \nu_R + \bar{\nu}_R \bar{M}^{\nu} \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$$

$$+ (\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} iD_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} iD_{\mu} u_R + \bar{d}_R \sigma^{\mu} iD_{\mu} d_R + (h.c.)$$

$$- \frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$$

$$+ (\bar{D}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2.$$

$$+ (\bar{U}_\mu \phi) D^\mu \phi - m_h$$

29/49

Intl. Winter Meet. Nucl. Phys. Bormio-2015

SM Higgs boson: LHC production & decays

VBF & associated prod.: harder H, more jets

Discovery of Higgs boson: $\gamma\gamma$, ZZ channels

Discovery of Higgs boson: "all" channels

Signal strength for all channels fully consistent with the SM Higgs:

Properties of the Higgs boson

Higgs mass & top-quark mass

Top-quark mass

Common likelihood fit to jet-energy-scale & m_{top}

JHEP12(2012)105

7 different methods used at 7,8 TeV Good consistency among all:

25

20

15

10

5

174

175 m,[GeV]

CMS average: m_{top} = 173.49 ± 0.36 ± 0.91 GeV Dominant syst. uncertainties: EXP: 0.36 GeV (JES) TH: 0.45 GeV (color reconnection)

(Universe meta-stable at 2σ ?)

David d'Enterria (CERN)

"Issues" with the Standard Model (2)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathsf{Y}}(1)$, $\mathbf{SU}_{\mathsf{L}}(2)$, $\mathbf{SU}_{\mathsf{c}}(3)$]
 $+ (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (\mathrm{h.c.})$ [Lepton dynamics]
 $-\frac{\sqrt{2}}{v} \left[\left(\bar{\nu}_{L}, \bar{e}_{L} \right) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \phi \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} - \frac{\sqrt{2}}{v} \left[\left(-\bar{e}_{L}, \bar{\nu}_{L} \right) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (\mathrm{h.c.})$ [Quark dynamics]
 $-\frac{\sqrt{2}}{v} \left[\left(\bar{u}_{L}, \bar{d}_{L} \right) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \phi \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} - \frac{\sqrt{2}}{v} \left[\left(-\bar{d}_{L}, \bar{u}_{L} \right) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right]$ [Quark masses]
 $+ \overline{(D_{\mu}\phi)} D^{\mu}\phi - m_{h}^{2} [\bar{\phi}\phi - v^{2}/2]^{2} / 2v^{2}.$ [Higgs dynamics & mass]

<u>Higgs</u>: Generation of masses via BEH mechanism now confirmed (2012!)
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance.

Origin of matter-antimatter asymmetry?

- Differences between particles-antiparticles (CP-violation in SM) way too small (10⁻¹⁶) to explain matter-antimatter imbalance in Universe.
 New particles/CP-phases needed to explain baryogenesis
- Indirect search of New Physics via virtual particles in loops:
 - Detailed B-mesons studies:
 - Rare decay rates
 - Branching ratios
 - Asymmetries in decays
 - Oscillation frequencies
 - Lifetimes

 $BR(B_{s}, B_{0} \rightarrow \mu\mu) \sim 4.10^{-9}, 1.10^{-10}$

David d'Enterria (CERN)

Observation of B_s \rightarrow µµ

"Issues" with the Standard Model (3)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathsf{Y}}(1)$, $\mathbf{SU}_{\mathsf{L}}(2)$, $\mathbf{SU}_{\mathsf{c}}(3)$]
 $+ (\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (\mathrm{h.c.})$ [Lepton dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^\nu \nu_R + \bar{\nu}_R \bar{M}^\nu \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (\mathrm{h.c.})$ [Quark dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$ [Quark masses]
 $+ (\bar{D}_{\mu} \phi) D^{\mu} \phi \left[-\frac{m_h^2 [\bar{\phi} \phi - v^2/2]^2/2v^2}{v} \right]$ [Higgs dyn. & mass] + new particles/symmetries ?

<u>Higgs</u>: Generation of masses via BEH mechanism now confirmed (2012!)
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance
 <u>Fine-tuning</u>: Higgs mass runs up «uncontrolled» up to Planck scale

BSM searches: SM fine-tuning problem

- Higgs boson is the only SM particle with mass:
 - $m_{\rm H}$ not "protected" by any internal symmetry
 - Scalar m_{H} has radiative corrections up to next phys. scale $m_{h}^{2} = m_{tree}^{2} + (\Delta m_{H}^{2})_{top} + (\Delta m_{H}^{2})_{gauge} + (\Delta m_{H}^{2})_{higgs}$
 - m_{H} from symmetry at Planck scale: fine-tuned to 10⁻¹⁶!
- 3 general theoretical solutions:
 - (1) Supersymmetry SUSY: → SM superpartners
 Extra "svirtual" contributions stabilize Higgs potential.
 - (2) Higgs not elementary (Golds. boson of new gauge group): Technicolor, composite-Higgs, ..., (little-Higgs), ...
 - \rightarrow techni-mesons/baryons, heavy- ρ , ..., (heavy-top, Z'), ...
 - (3) Quantum gravity sets in at ~TeV:
 Effects from hidden dims (0.1 mm to 10⁻¹⁹ m). → KK-towers, radion, mini-BH, ...
- All solutions imply <u>new particles at TeV scale</u>

н

н

н

W.B

н

Н

Constrained SUSY searches

• cMSSM or mSUGRA = minimal SUSY SM extension with least # of params $(m_0, m_{1/2}, \tan\beta, A, sign\mu)$, defined at GUT-scale & evolved down in energy.

Many searches w/ multiple observables (mostly with MET). Spartner masses pushed to increasingly heavier masses. No signal of «simple» SUSY so far ...

Summary of CMS SUSY Results* in SMS framework

ICHEP 2014

"Issues" with the Standard Model (4)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathsf{Y}}(\mathsf{1})$, $\mathbf{SU}_{\mathsf{L}}(2)$, $\mathbf{SU}_{\mathsf{c}}(3)$]
 $+ (\bar{\nu}_L, \bar{e}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (\mathrm{h.c.})$ [Lepton dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{\nu}_L, \bar{e}_L) \phi M^e e_R + \bar{e}_R \bar{M}^e \bar{\phi} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_L, \bar{\nu}_L) \phi^* M^\nu \nu_R + \bar{\nu}_R \bar{M}^\nu \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_L, \bar{d}_L) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (\mathrm{h.c.})$ [Quark dynamics]
 $- \frac{\sqrt{2}}{v} \left[(\bar{u}_L, \bar{d}_L) \phi M^d d_R + \bar{d}_R \bar{M}^d \bar{\phi} \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_L, \bar{u}_L) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right]$ [Quark masses]
 $+ \overline{(D_\mu \phi)} D^\mu \phi - m_h^2 [\bar{\phi} \phi - v^2/2]^2 / 2v^2$. [Higgs dyn. & mass] + new particles/symmetries ?

<u>Higgs</u>: Generation of masses via BEH mechanism now confirmed (2012!)
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance
 <u>Fine-tuning</u>: Higgs mass runs up «uncontrolled» up to Planck scale
 <u>Dark matter</u>: SM describes only 4% of Universe (visible fermions-bosons)
 <u>Others</u>: v's masses, gauge-gravity unification, cosmological const., dark energy,...

BSM searches: Dark matter = new heavy particle?

Dark matter evidences:

- Galactic rotation curves
- Collision of cluster galaxies
- CMB background T fluctuations
- Large-scale structure universe

Properties:

- Sensitive to gravitation, stable, massive, early Universe relic
- \rightarrow Weakly Interacting Massive Particle (WIMP) ?

m_{_{DM}} \sim 10~GeV - 1~TeV,~\sigma_{_{DM-SM}} \sim \sigma_{_{weak}},~\Omega_{_{DM}} \sim O(10\%)

- Beyond-SM candidate DM particles:
 - Lightest SUSY Particle (LSP): neutralino, ...
 - Extra-Dims: lightest Kaluza-Klein tower, ...
 - Heavy R-handed or sterile neutrinos.
 - Axions.
 - Unknown hidden sector.

Intl. Winter Meet. Nucl. Phys. Bormio-2015

Bullet cluster

Dark matter: Collider searches

DM produced in p-p final-state observable via large missing transverse energy (MET) from:

→ Lightest Particle (χ^0) in RP-conserving SUSY:

Prominent WIMP candidate. Decay cascade with large MET, many jets & leptons

→ Generic DM-pair searches:

Large MET plus initial-state QCD or QED radiation:

→ Higgs decay to DM-pair:

Intl. Winter Meet. Nucl. Phys. Bormio-2015

David d'Enterria (CERN)

Dark matter: Collider searches (generic DM pair)

- (1) Search mono-jet,mono-photon excess above SM background: Z(vv)+j,γ (~70%), W(vl_{escape})+j,γ (~30%). Remove other EWK&QCD backgds: veto iso-leptons & Δφ cut
- (2) Interpret (no) excess within generic effective field theory (EFT) for contact SM-DM interaction, characterized by 2 parameters:

 $\Lambda = M_{\star} / \sqrt{g_{\chi} g_q}$: Scale of effective interaction

M_v: mass of DM particle (Dirac fermion)

for various types of DM-SM couplings, e.g.:

 $M_{\gamma N}$ = reduced mass of DM-nucleon system

Name	Initial state	Type	Operator	
D5	qq	vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\chiar q\gamma_\mu q$	(spin-independent: SI)
D8	qq	axial-vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\gamma^5\chiar q\gamma_\mu\gamma^5 q$	(spin-dependent: SD)

(3) Set limits in DM mass vs. interaction-strength for SI & SD couplings:

$$\sigma(\chi N \to \chi N) \sim \frac{g_q^2 g_\chi^2}{M_\star^4} \mu_{\chi N}^2$$

Intl. Winter Meet. Nucl. Phys. Bormio-2015

Dark matter searches: monojets/monophotons

MET, p_{τ}^{γ} distributions after cuts for SM backgrounds & DM signal:

CMS-PAS-EXO-12-048 JHEP09(2012)094 PRL 108 (2012)261803

Best limits for low DM mass! $M_{\chi} \sim 1 - 10 \text{ GeV}$ $\sigma_{\chi N} \sim 10^{-39} \text{ (SI)}$ $\sigma_{\chi N} \sim 10^{-41} \text{ (SD)}$

David d'Enterria (CERN)

Intl. Winter Meet. Nucl. Phys. Bormio-2015

Summary beyond-SM (non-SUSY) searches

Intl. Winter Meet. Nucl. Phys. Bormio-2015

47/49

David d'Enterria (CERN)

LHC Outlook

Run-2 [2015-2018]: p-p @ 13-14 TeV,L_{int} ~ 200 fb⁻¹ (Pb-Pb@5-5.5 TeV, p-Pb@8-8.8 TeV) Run-3 [2020-2022]: p-p @ 14 TeV, L_{int} ~ 300 fb⁻¹ (Pb-Pb @ 5.5 TeV, p-Pb @ 8.8 TeV) Run-4 [2026-2028] High-luminosity LHC: p-p @ 14 TeV, L_{int} = 3000 fb⁻¹

18 months + 3months BC (Beam Commissioning)

Intl. Winter Meet. Nucl. Phys. Bormio-2015

LS2

starting in 2018 (July)

Summary

David d'Enterria (CERN)

49/49

Back up slides

Goals of the Large Hadron Collider

- Solve 6 basic open questions in HEP with 7 experiments:
 - **1.** <u>Mass generation problem</u>: What is the origin of the SM elementary particle masses ? Higgs boson ? other mechanism ?
 - 2. <u>Hierarchy / fine-tuning</u> problem: What stabilizes m_{Higgs} up to m_{Planck} (10¹⁶ orders-of-magnitude!?) ? SUSY ? extra-D ? ... ?
 - **3.** <u>Dark matter problem</u>: $\sim 1/4$ universe = invisible matter. SUSY ? Other particles ?
 - **4.** <u>Flavour problem</u>: Origin of matter-antimatter asymmetry in the Universe ? Why so many types of matter particles ?
 - 5. <u>QCD</u> in non-perturbative regime: Why quark confinement ? Total hadronic x-sections ? Gauge-String duality (AdS/CFT) ?

6. Highest-energy cosmic-rays: Nature of CRs at 10²⁰ eV ? 🛶 🐺 🧖

David d'Enterria (CERN)

QCD: heavy-Q cross-sections (& $Q\overline{Q}$ polarization)

(luminosity)

 $(1900 \, \text{pb}^{-1})$

 $(6 \, \text{pb}^{-1})$

 (40 pb^{-1})

 $(40 \ pb^{-1})$

50

B Hadron Production Cross Section [µb]

Spring 2012

value ± stat. ± syst. ± lum. error

 $11.6 \pm 0.6 \pm 1.2 \pm 2.0$

 $28.1 \pm 2.4 \pm 2.0 \pm 3.1$

 $33.3 \pm 2.5 \pm 3.1 \pm 3.6$

 $6.9 \pm 0.4 \pm 0.7 \pm 0.3$

(qd)

σ(tĪ)

10²

10

CMS Preliminary

○ CDF
 □ D0

CMS combined 7 TeV (1.1 fb⁻¹)

CMS combined 8 TeV (2.8 fb⁻¹)

CMS Preliminary,√s=7 TeV

 $pp \rightarrow \Lambda_{h} X \rightarrow J/\psi \Lambda X$

 $pp \rightarrow B^+ X$

 $pp \rightarrow B^0 X$

HX frame. |v| < 0.6

Y(3S)

45

p_{_} [GeV]

P_T>5 GeV, lyl<2.4

P_T>5 GeV, lyl<2.2

 $pp \rightarrow B_{c} X \rightarrow J/\psi \phi X$

8<p_<50 GeV, lyl<2.4 (x1000)

Theory: MC@NLO / POWHEG

CTEQ6M PDF, $\mu = (m^2 + p_-^2)^{1/2}$, m, =4.75 GeV

PRL 110 (2013) 081802

P_T>10 GeV, lyl<2.0 (x10000)

Bottom & top x-sections in good agreement with NLO (approx. NNLO) predictions:

Although quarkonia polarization

→ CDF PRL 108, 151802 (2012), tot. uncert., 68.3% CL NLO NRQCD at √s = 1.96 TeV, PRD83, 114021 (2011)

NNLO* CSM at \sqrt{s} = 1.8 TeV. PRL101, 152001 (2008)

■ Quality of differential top x-sections can constrain gluon (N)NLO PDF:

Approx. NNLO QCD (pp)

Approx. NNLO QCD (pp)

Scale ⊗ PDF uncertainty

Scale uncertainty Scale \otimes PDF uncertainty

Scale uncertainty

still a puzzle ...

CDF pp √s = 1.96 TeV

1.5

0.5

-0.5

-1-

-1.5

 λ_{ϑ}

CMS pp $\sqrt{s} = 7$ TeV L = 4.9 fb⁻¹

— CMS, tot. uncert., 68.3% CL

15

EW: WW, ZZ and VBF-Z production

Discovery of Higgs boson: $\tau\tau$, bb channels

BEH mechanism proposed to give mass to W&Z bosons. Does it give mass to fermions? Does it couple to (down-type) fermions?

Higgs searches in other channels

Intl. Winter Meet. Nucl. Phys. Bormio-2015

55/49

David d'Enterria (CERN)

Higgs discovery/searches in other channels

About 30 Higgs production-decay channels available:

	gluon fusion g t H g t	vector boson fusion (VBF) q W,Z ^L 22 H W,Z,U ^N q	associated prod. with W/Z q W,Z W,Z q H	associated prod. with tt g g t t t H g composition t t	
Channel	ggF	VBF	VH	ttH	Dataset 7+8 TeV (fb ⁻¹)
Н→үү					5.1+19.6
H→ZZ→4l					5.1+19.6
H→WW→lvlv					4.9+19.5
Η→ττ					4.9+19.6
H→bb					5.0+19 <mark>.</mark> 0
Н→µµ					
$H \rightarrow invisible$					5.0+19.6
H→Zγ					

Released In progress

Discovery of Higgs boson: mass, spin-parity

ZZ leptons kinematics sensitive to resonance spin-parity (H prod. & decay):

Studied pseudo-scalar, spin-1 and spin-2 models excluded at 95% CL or higher

Intl. Winter Meet. Nucl. Phys. Bormio-2015

Less constrained searches: natural-SUSY

 Natural SUSY: m_H regularized by m_{stop}, squarks can be heavy, gluinos less.
 ~10% fine-tuning: squarks>TeV, stops<0.6 TeV, gluinos<1.4 TeV Gluinos decays into 3rd generation:

 6.00 ± 2.40 (2.23)

 1.37 ± 1.19 (1.12)

 $0.0 \pm 0.66 (0.66)$

 3.83 ± 1.84 (1.75)

 2.74 ± 2.02 (1.86)

 $0.0 \pm 0.42 (0.42)$

 $1.92 \pm 0.95 (0.84)$

 0.57 ± 0.58 (0.52)

 $0.0 \pm 0.22 (0.22)$

 $1.89 \pm 1.03 (0.94)$

 $0.85 \pm 0.80 \ (0.70)$

 $0.0 \pm 0.08 (0.08)$

 $\begin{array}{c} P_2 \\ \tilde{g} \\ P_1 \\ \tilde{g} \\ P_1 \\ \tilde{g} \\ t \end{array} \begin{array}{c} t \\ \tilde{\chi}_1^0 \\ \tilde{\chi}_1^0 \\ t \end{array}$

Muons

Electr.

Muons

 $N_{\rm b}=2$

N N

Nb Electr. [250,350]

[350,450]

>450

[250,350]

[350,450]

>450

[250,350]

[350,450]

>450

[250,350]

[350,450]

>450

141

24

9

112

28

9

28

13

2

45

7

0

4 b-jets, 4W, MET

Intl. Winter Meet. Nucl. Phys. Bormio-2015

BSM searches: High-mass resonances

«Simple» generic procedure:

(i) Reconstruct pairs of high- p_{T} objects: jets, leptons, bosons, ...

(ii) Look at inv. mass tails for deviations from smooth SM backgrounds.(iii) Interpret (lack of) excess within (simplified) BSM models: Set limits for NP

David d'Enterria (CERN)

Intl. Winter Meet. Nucl. Phys. Bormio-2015

BSM searches: Extra-Dimensions via high-mass γγ

(spin-2 G* s-wave decay into diphoton)

- Warped ED (RS):
 - G* resonance (Kaluza-Klein modes)
 - 2 parameters:
 - M_1 (1st excitation)
 - k/M_{Pl} (dimensionless coupling to SM fields)
- Large ED (AAD):
 - Non-resonant enhancement at high m_{yy}
 - 2 parameters:
 - n_{ED} (num. extra-dims),
 - M_s (effective Planck scale)

PRL108 (2012) 111801