

What's new at LHCb (LHCb Overview)

Matthew Kenzie (CERN) on behalf of the LHCb Collaboration

53rd International Winter Meeting on Nuclear Physics Bormio, Italy

January 29, 2015

1. Overview

1 Overview

- 2 LHCb Experiment
- 3 Rare Decays
- 4 CKM matrix
- 5 Selected others

6 The Future

1. Overview

Overview

LHCb Experiment		[arXiv:1412.6352]
Rare Decays		
▶ $B_0^0 \to \mu^+ \mu^-$ (combination with CMS) ▶ $B^0 \to K^{*0} e^+ e^-$. ▶ Lepton universality with $B^+ \to K^+ \ell^+ \ell^-$ (R_K)	3 fb ⁻¹ 3 fb ⁻¹ 3 fb ⁻¹	[arXiv:1411.4413] [arXiv:1501.03038] [PRL 113, 151601 (2014)]
$\blacktriangleright B^{0} \to K^{*0} \mu^{+} \mu^{-} (P'_{5})$	1 fb ⁻¹	[PRL 111, 191802 (2013)]
• $B_s^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ and $B^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$	3 fb ⁻¹	[arXiv:1412.6433]
CKM matrix and CP violation		
 β angle measurements γ angle measurements and combination Mixing induced CP violation (φ_s) - B⁰_s → J/ψ φ Semileptonic CP asymmetry in B mixing (A^s_{SL}, A^d_{SL}) 	1 fb ⁻¹ 1-3 fb ⁻¹ 3 fb ⁻¹ 3 fb ⁻¹	[PLB 721 (2013) 24-31] [arXiv:1411.4600] [arXiv:1411.3104] [arXiv:1409.8586]
 Selected others 		
 Lumi measurement Search for long lived to jet pairs Measurement of B⁺_c lifetime 	3 fb ⁻¹ 0.6 fb ⁻¹ 3 fb ⁻¹	[2014 JINST 9 P12005] [arXiv:1412.3021] [PLB 742 (2015) 29-37]
The future		
 Prospects for Run2 LHCb Upgrade 		[CDS LHCb Reports]

2. LHCb Experiment

Overview

2 LHCb Experiment

3 Rare Decays

4 CKM matrix

Selected others

6 The Future

Matthew Kenzie (CERN)

LHCb Overview (Bormio 2015)

2. LHCb Experiment

The LHCb Detector

- A single arm forward spectrometer unique pseudorapidity (η) range ►
- *pp* collisions in Run 1:
 - ▶ 2011: $\sqrt{s} = 7$ TeV, $L=1 \text{ fb}^{-1}$ ▶ 2012: $\sqrt{s} = 8$ TeV, $L=2 \text{ fb}^{-1}$
- High $b\overline{b}$ and $c\overline{c}$ production cross section:
 - $\sigma(pp \rightarrow b\overline{b}) = 286\mu b$ at 7 TeV
 - $\sigma(pp \to c\overline{c}) \approx 20$ times larger
- Recent detector performance paper using data from 2010-2012 [arXiv:1412.6352]

The LHCb Experiment II

- Detector sub-systems:
 - Tracking system
 - ▶ IP resolution $\approx 20 \mu m$
 - \triangleright p resolution $\approx 0.5\%$
 - \blacktriangleright τ resolution \approx 45 fs
 - RICH sub-detectors
 - Good $K \pi$ separation for momentum range 2
 - Calorimeters
 - ldentification of γ , e, π^{0}
 - Muon detectors
 - Identification of μ
 - All complimented with a sophisticated trigger system
 - Allows high readout rate
 - High efficiency for a broad range of physics topics
 - Considerable improvement in the HLT for 2015 and beyond (more later)
- Integrated luminosity
 - ▶ $\sqrt{s} = 7$ TeV L = 1 fb⁻¹ 2011 ▶ $\sqrt{s} = 8$ TeV L = 2 fb⁻¹ 2012 ▶ $\sqrt{s} = 13$ TeV L = 7 8 fb⁻¹ 2015-2017
- Instaneous luminosity (levelled)
 - Can cope with anything $\approx 1 4 \times 10^{32}$ cm²s⁻¹ before detector occupuncies become very high

2. LHCb Experiment

LHCb Physics

- Many aspects to LHCb physics program
- Mostly indirect searches for new physics
 - Rare decays
 - CP violation
 - Historically indirect approach gives success
 - Z⁰ inferred a decade before direct observation
 - t quark inferred 3 decades before direct observation
- Measurement of SM CKM parameters
 - γ, β, φ_s
 - Can also offer hints of new physics
- Spectroscopy
- Charm physics
- QCD measurements
- EW measurements
- Exotica searches

Matthew Kenzie (CERN)

At the institute of particle physics

Overview

2 LHCb Experiment

4 CKM matrix

5 Selected others

6 The Future

Matthew Kenzie (CERN)

$|B^0_s ightarrow \mu^+ \mu^-$ and $B^0 ightarrow \mu^+ \mu^-$

- Theoretically well understood
- Predicted BRs:

•
$$B_s^0 \to \mu^+ \mu^- = (3.65 \pm 0.23) \times 10^{-9}$$

- $B^0 \to \mu^+ \mu^- = (1.06 \pm 0.09) \times 10^{-10}$
- [arXiv:1311.0903]
- Highly sensitive to new physics
- LHCb result based on full Run 1 luminosity (3 fb⁻¹)
- Recent combination with CMS (25 fb⁻¹) submitted to Nature - [arXiv:1411.4413]

 μ^+

10/37

$B^0_s ightarrow \mu^+ \mu^-$, $B^0 ightarrow \mu^+ \mu^-$ combination with CMS

Matthew Kenzie (CERN)

LHCb Overview (Bormio 2015)

$B_{s(d)} \rightarrow \mu^+ \mu^-$ implications

- Provides strong constraints on many new physics models
 - particularly at large $\tan \beta$

FCNC decays $B^0 \rightarrow K^{*0} \ell^+ \ell^-$

- Sensitive to NP contributions in the loops
- Express differential decay rate with angular observables which are form factor independent
- ► Decay of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ at LHCb with 1 fb⁻¹ (3 fb⁻¹ update coming soon)
- Recently published result of $B^0 \rightarrow K^{*0}e^+e^-$ in low q^2 region

12/37

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Complicated angular fit
- Use observables with small form factor uncertainties

$$\begin{array}{l} \frac{1}{d\Gamma/dq^2} \frac{d\Psi}{d\cos\theta_i d\cos\theta_k} \frac{d\Phi}{dq^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_k + F_L \cos^2\theta_k + \frac{1}{4} (1 - F_L) \sin^2\theta_k \cos 2\theta_\ell \\ - & F_L \cos^2\theta_k \cos 2\theta_\ell + S_1 \sin^2\theta_k \sin^2\theta_\ell \cos 2\phi \\ + & S_1 \sin^2\theta_k \sin 2\theta_\ell \cos \phi + S_2 \sin^2\theta_k \sin \theta_\ell \sin \phi \\ + & S_1 \sin^2\theta_k \cos \theta_\ell + S_2 \sin 2\theta_k \sin \theta_\ell \sin \phi \\ + & S_1 \sin^2\theta_k \sin 2\theta_\ell \sin \phi_\ell \sin 2\phi \end{array} \right], \\ P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_i (1 - F_i)}} \end{array}$$

 Discrepany with SM, local significance of 3.7σ, in 3rd bin of P'₅

- After LEE correction this goes down to $\approx 3\sigma$
- Possibly NP contribution to EW penguin?
- Are the theory errors reliable?
- Result with 1 fb⁻¹ of data [PRL 111, 191802 (2013)]
- Update with full Run 1 data coming soon

13/37

$B^0 ightarrow K^{*0} e^+ e^-$

- Similar concept to $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
- Measure angular observables in low q^2 region: $0.002 < q^2 < 1.120 \text{ GeV}^2/c^4$
- Using full 3 fb⁻¹ of Run 1 data
- Results are consistent with SM predictions

Lepton universality in $B^+ \to K^+ \ell^+ \ell^-$

In the SM expect that:

$$R_{K} = rac{\mathcal{B}(B^+ o K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ o K^+ e^+ e^-)} = 1 \pm \mathcal{O}(10^{-3})$$

- Sensitive to lepton flavour violating NP
- Electrons are difficult for LHCb

- Use double ratios with $B^+ \to K^+ J/\psi (\to \ell^+ \ell^-)$ to cancel systematics
 - \blacktriangleright assumes lepton universality for the J/ ψ
 - [PRL 113, 151601 (2014)]

Find R_K compatible with SM at 1% level

$$R_{\rm K} = 0.745^{+0.090}_{-0.074} \,\,{\rm (stat)} \pm 0.036 \,\,{\rm (syst)}$$

$B_{s(d)} \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

- ▶ New result using 3 fb⁻¹ of data [arXiv:1412.6433] submitted to Phys. Lett. B
- First observation of the decay $B_s^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ at 7.3 σ
- ▶ First evidence of the decay $B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ at 4.8 σ
- ▶ Use the $B \rightarrow J/\psi K^*$ decay for normalisation
- ▶ Veto non-resonant $\mu^+~\mu^-$ and require $0.5 < m(\pi^+\pi^-) < 1.3~{
 m GeV}/c^2$

Overview

- 2 LHCb Experiment
- 3 Rare Decays
- 4 CKM matrix
- 5 Selected others

6 The Future

"CP violation in B and D systems at LHCb"

- More details in Marta Calvi's talk later today
- A brief description and selected highlights here

Quark mixing and the CKM matrix

Quark mixing in the SM described by the CKM matrix

CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- ho \sim 1, \sim 0.2, \sim 0.04, \sim 0.004 0.008
- Further from diagnoal, the weaker the couplings (hierachy)
- Unitarity requires that VV[†] = 1
- Imposes 6 conditions (off diagonals of $VV^{\dagger} = 0$) unitarity triangles

"B⁰ unitarity triangle"

 $V_{ud} \, V_{ub}^* + \, V_{cd} \, V_{cb}^* + \, V_{td} \, V_{tb}^* = 0$

" B_s^0 unitarity triangle" (much more squeezed)

$$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$$

The B^0 unitarity triangle

CKM picture now well verified - any discrepancies could be of great importance

The B^0 unitarity triangle

CKM picture now well verified - any discrepancies could be of great importance

Measuring angle β

► Interference between mixing (via $B\overline{B}$ oscillation) and decay (to $J/\psi \ K_s^0$) gives a CP violating phase:

 $\phi = \phi_M - 2\phi_D = 2\beta$

• Measure decay asymmetry to get $sin(2\beta)$

$$\mathcal{A}(t) = \frac{\Gamma(\bar{B}^{\mathbf{0}}(t) \to J/\psi \, K_{\mathrm{S}}^{\mathbf{0}}) - \Gamma(B^{\mathbf{0}}(t) \to J/\psi \, K_{\mathrm{S}}^{\mathbf{0}})}{\Gamma(\bar{B}^{\mathbf{0}}(t) \to J/\psi \, K_{\mathrm{S}}^{\mathbf{0}}) + \Gamma(B^{\mathbf{0}}(t) \to J/\psi \, K_{\mathrm{S}}^{\mathbf{0}})}$$

- Current analysis with 1 fb⁻¹- [PLB 721 (2013) 24-31]
 - Result: $sin(2\beta) = 0.73 \pm 0.07 \pm 0.04$
 - 3 fb⁻¹ coming soon (precision comparable with B factories)

World average (HFAG Winter 2014) $sin(2\beta) = 0.68 \pm 0.02$

Measuring angle γ from trees

- \blacktriangleright Use interference between tree decays of $B^\pm\to DK^\pm$ and $D\pi^\pm$ which lead to the same final state
 - Inteference between "suppressed" and "favoured" decays
 - Combine results of many modes with different methodologies:

Method	Decay	Reference
GGSZ	$D ightarrow K^{0}_{ m S} \pi^{\pm} \pi^{\mp}$, $D ightarrow K^{0}_{ m S} K^{\pm} K^{\mp}$	[arXiv:1408.2748]
K 3π	$D \rightarrow \pi^{\pm} K^{\mp} \pi^{\pm} \pi^{\mp}, D \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp}$	[arXiv:1203.3662]
ADS	$D ightarrow \pi^{\pm} K^{\mp}$	[arXiv:1203.3662]
GLW	$D ightarrow K^\pm K^\mp$, $D ightarrow \pi^\pm \pi^\mp$	[arXiv:1203.3662]

LHCb combination of angle γ from trees

- World average (direct measurement): $\gamma = (73.2^{+6.3}_{-7.0})^{\circ}$
- Uncertainty $< 10^{\circ}$ is better than combined *B* factories
- Many Run 1 modes still to be published with 3 fb⁻¹
- Continued improvement expected with larger statistics of Run 2 and beyond:
 - Hope to get near $\sim 3^{\circ}$ precision (current indirect precision)

24/37

Matthew Kenzie (CERN)

Measuring angle γ from loops

- ▶ Make use of decays: $B^0 \to K^+ K^-$, $B^0 \to \pi^+ \pi^-$, $B^+ \to \pi^+ \pi^0$, $B^0 \to \pi^0 \pi^0$
- Result compatible with γ from trees $\gamma = (63.5^{+7.2}_{-6.7})^{\circ}$ [arXiv:1408.4368]

25/37

CP violation in the B_s^0 system

- ▶ Interference between decay $(B_s^0 \rightarrow J/\psi \phi)$ and mixing (via $B\overline{B}$ oscillation)
- CP violating phase $\phi_s = -2\beta_s$ in SM
 - Very small and precisely predicted in SM
 - Early Tevatron results were tantalising
- LHCb (and also ATLAS/CMS) have clarified this picture
 - ► $B_s^0 \rightarrow J/\psi \phi$ analysis with $\sim 20 \times$ precision of Tevatron
 - Augmented with complementary analysis of $B_s^0 \rightarrow J/\psi \pi^+\pi^-$
- Final LHCb Run1 results recently made public -

[arXiv:1411.3104]

HFAG combination of ϕ_s and $\Delta\Gamma_s$

- SM wins out again!
- Still, these observable are very sensitive to non-SM contributions
- Improved precision is a long term aim
- \blacktriangleright World average $\phi_s = -0.015 \pm 0.035$ [arXiv:1412.7515]
 - Precision dominated by LHCb

27/37

Semileptonic *CP* asymmetry in $B\overline{B}$ mixing

- ▶ Reconstruct $B^0 \to D^- \mu^+$ and $B^0 \to D^{*-} \mu^+$ where $D^- \to K^+ \pi^- \pi^-$ and $D^{*-} \to \overline{D} \pi^-$
- ▶ Measure asymmetry between the number of $D^{(*)-}\mu^+$ and $D^{*+}\mu^-$ decays
- ▶ Result consistent with SM $a_{sl}^d = (-0.02 \pm 0.19 \pm 0.30)\%$ [arXiv:1409.8586]

Overview

2 LHCb Experiment

3 Rare Decays

4 CKM matrix

5 Selected others

6 The Future

Matthew Kenzie (CERN)

LHCb Overview (Bormio 2015)

Luminosity measurement

- Precise luminosity measurement required to reduce uncertainty as much as possible when measuring cross sections and yields
- LHCb now has the most precise lumi measurement at a bunched hadron collider
- ▶ Luminosity uncertainty now at 1.1% level for Run 1 data
 - [2014 JINST 9 P12005]

Cross section (mb)

- Introduced two-dimensional description of the beam density profile
- Use of both "van der Meer scan" and "beam gas imaging" methods

Search for long-lived particles decaying to jet pairs

- \blacktriangleright Search for long lived particles with 25 $< m_{\rm jj} <$ 50 GeV/ c^2 and 1 < t < 200 ps
 - Pair-produced from SM-like Higgs
- Using just first 0.62 fb⁻¹ of data at $\sqrt{s} = 7$ TeV [arXiv:1412.3021]
- See no excess above background
- Exclude some hidden valley scenarios

Measurement of the B_c^+ lifetime using $B_c^+ \rightarrow J/\psi \pi^+$

- Study the time evolution of $B_c^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ decays [PLB 742 (2015) 29-37]
- ► Measure the partial width difference (ratio of decay times) of the two to extrapolate the B⁺_c lifetime
- \blacktriangleright Indepdent of the complimentary measurement with the semileptonic $B_c^+\to J\!/\!\psi\,\mu^+\nu_\mu X$ decay

Overview

- 2 LHCb Experiment
- 3 Rare Decays
- 4 CKM matrix
- 5 Selected others

Preparing for Run 2

- Run 2 now only a few months away!
- Nominal running at $\sqrt{s} = 13$ TeV
 - $b\overline{b}$ cross section increased by ~ 1.6
 - Expect total integrated luminosity of \sim 6 8 fb⁻¹
- Considerable improvements to trigger system will facilitate new challenges
- Improvements
 - Systematics from size of control samples
 - Detector induced asymmetries
 - PID calibration
 - Lifetime biasing cuts in trigger
- Objectives
 - There are many!
 - Improved precision in CKM paramters
 - ▶ Improved knowledge of rare processes e.g. $B_{s(d)} \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow K^{*0} \ell^+ \ell^-$
 - More spectroscopy
 - New ideas!
- Full explotation of Run 1 data still ongoing

34/37

And beyond

- ► Huge improvements planned for 2019 and beyond with the LHCb upgrade
- Operational lumi will increase to $2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
 - Aim to collect 50 fb⁻¹ in total
- Upgrade all detector subsystems:

 $\begin{array}{lll} \label{eq:VELO} VELO & 41M 55 \mu m \times 55 \mu m \mbox{ Si pixels very close to beam} \\ \mbox{PID} & Upgrades to RICH1, Calorimeters and Muon system} \\ \mbox{Tracking} & \mbox{Si based upstream tracker and scintillating fibre downstream tracking system} \end{array}$

- Limitations of current L0 hardware trigger will be completely removed
- Will read out the full detector at 40 MHz!
- Full software trigger running on large CPU farm
- > All upgrade projects have been approved by CERN research board
 - Final R&D ongoing

Matthew Kenzie (CERN)

LHCb Overview (Bormio 2015)

LHCb Upgrade expected performance - CERN-LHCC-2012-007

Туре	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	(50 fb ⁻¹)	uncertainty
B _s ⁰ mixing	$2\beta_{S} (B_{S}^{0} \rightarrow J/\psi \phi)$	0.035	0.025	0.008	\sim 0.003
	$2\beta_S (B_S^0 \rightarrow J/\psi f_0(980))$	0.17	0.045	0.014	\sim 0.01
	$A_{\rm fs}(B_{\rm s}^0)$	6.4×10^{-3}	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_{\rm s}^{\rm eff}(B_{\rm s}^{\rm 0} \rightarrow \phi \phi)$	-	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\rm eff}(B^0 \to \phi K^0_S)$	0.17	0.30	0.05	0.02
Right-handed	$2\beta_{S}^{\text{eff}}(B_{S}^{0} \rightarrow \phi \gamma)$	-	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_S \to \phi \gamma) / \tau_{B^0_S}$	-	5 %	1 %	0.2 %
Electroweak	$S_3(B^0 \rightarrow K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB} (B^0 \rightarrow K^{*0} \mu^+ \mu^-)$	25 %	6 %	2 %	7 %
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25	0.08	0.025	\sim 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25 %	8 %	2.5 %	\sim 10 %
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	1.5×10^{-9}	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_S \to \mu^+ \mu^-)$	-	\sim 100 %	\sim 35 %	\sim 5 %
Unitarity	$\gamma (B \rightarrow D^{(*)} \kappa^{(*)})$	\sim 10–12 $^{\circ}$	4°	0.9 ⁰	negligible
triangle	$\gamma (B_S^0 \rightarrow D_S K)$	-	11°	2.0 ⁰	negligible
angles	$\beta (B^0 \rightarrow J/\psi K_S^0)$	0.80	0.60	0.20	negligible
Charm	Α _Γ	2.3×10^{-3}	0.40×10^{-3}	0.07×10^{-3}	-
CP violation	ΔA _{QP}	2.1×10^{-3}	0.65×10^{-3}	0.12×10^{-3}	-

Summary

- LHCb has performed incredibly well Run 1
- Have produced a wide variety of informative results with 3 fb⁻¹
 - First observations of new decays
 - Observations of new particles
 - Precision physics measurements of many parameters of interest (β, γ)
- So far results in CPV consistent with SM CKM matrix
- Some interesting deviations in rare decays
 - ▶ P'_5 in $B \rightarrow K^* \mu^+ \mu^-$
 - Lepton universality in $B^0 \rightarrow K^{*0} \ell^+ \ell^-$
 - Need more data to confirm or deny
- ▶ Much more still to come from Run 1 and much of it in the near future
- Exciting prospects in Run 2 (and beyond) to add new measurements and improve existing ones with more statistics

Thanks for your attention!

WE CAN SEE HERE THAT THE AGREEMENT WITH THEORY IS EXCELLENT

