LUNA400 and LUNA-MV: present and future of Nuclear Astrophysics at Gran Sasso

C. Gustavino INFN-Roma

D(p, γ)³He ¹³C(α ,n)¹⁶O ¹²C(p, γ)¹³N ¹³C(p, γ)¹⁴N ⁶Li(p, γ)⁷Be LUNA-MV: ³He(⁴He, γ)⁷Be ¹²C(α , γ)¹⁶O ¹³C(α ,n) ¹⁶O

LUNA400 (2015-2018):

 $^{13}C(\alpha, n)^{16}O$ $^{13}C(\alpha, n)^{16}O$ $^{22}Ne(\alpha, n)^{25}Mg$ $^{12}C+^{12}C$ reactions $D(\alpha, \gamma)^{6}Li$ BBN S-process Stellar evolution Stellar evolution Nuclear Physics

pp chain and BBN He Burning S-process S-process Carbon burning BBN

- -Solar Neutrino mixing parameters
- -Temperature and metallicity of the Sun
- -Age of Universe
- -Evolution of stars
- -Isotopic abundances
- -Cosmology and Particle physics

Evolution of stars: Helium Burning

Carbon burning & type Ia supernovae

1

$${}^{2}C + {}^{12}C \rightarrow {}^{16}O + 2 {}^{4}He \\ \rightarrow {}^{20}Ne + {}^{4}He \\ \rightarrow {}^{23}Na + p^{+} \\ \rightarrow {}^{23}Mg + n \\ \rightarrow {}^{24}Mg + \gamma$$

S-process

Big Bang Nucleosynthesis: The $D(p,\gamma)^{3}$ He reactions

The error of computed deuterium abundance $(D/H)_{BBN}$ is mainly due to the $D(p,\gamma)^{3}He$ reaction, because of the paucity of data in the BBN energy region

	승규는 것 것 같아요. 영화 영화	Art and a start
Reaction	Rate Symbol	$\sigma_{^{2}\mathrm{H/H}} \cdot 10^{5}$
$p(n,\gamma)^2 \mathbf{H}$	R_1	± 0.002
$d(p,\gamma)^3$ He	R_2	± 0.062
$d(d,n)^3$ He	R_3	± 0.020
$d(d,p)^{3}\mathrm{H}$	R_4	± 0.013

Physics:

1) Cosmology: measurement of $\Omega_b h^2$. 2) Neutrino physics: measurement of N_{eff} . 3) Nuclear physics: comparison of data with theoretical "ab initio" predictions.

See also D. Trezzi talk

Other reactions?

Future LUNA program is in progress. Suggestions are Welcome!

Example of a cham 016+ He4 -> F19+ H' Si-ignition F'9 + H' > Ne20+hr O-ignition Ne20 + He4 -> Na23 + 1+ 1 Ne-ignition Na23 + H1 -> Mg24 + hr C-ignition Mg24 + Het -> Al27+ H' Al27+H2 -> Si28+ ~ go Si28+ He4 -> P21+ H1 He-ignition $\begin{array}{rcl} P^{31} + |+e^{4} & \rightarrow S^{34} + H' \\ S^{34} + |+e^{4} & \rightarrow Cl^{37} + H_{l} \end{array}$ **H-ignition** Clost Het > A 40 + HI A40 + He4 -> (a 43 + h $\log (\rho_c)$