53rd International Winter Meeting on Nuclear Physics

3® PRE-CONFERENCE SCHOOL

Lecturer: P. Capel, L. Fabbietti, W. Kűhn, C. Sfienti

53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Bormio (Italy) WHY THIS CONFERENCE?

53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Bormio (Italy) THE MANY FACETS OF THE NUCLEAR REALM

53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Bormio (Italy) THE MANY FACETS OF THE NUCLEAR REALM

Specialization

53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Bormio (Italy) BORMIO IS THE OPPORTUNITY!

GAIN in scientific insight

53rd International Winter Meeting on Nuclear Physics

SCHEDULE

9:00 - 10:45 Hadron Physics: selected topics (CS) 10:45 - 11:15 Break 11:15 - 13:00 Nuclear Structure and Astrophysics: selected topics (PC) 13:00 - 14:00 Lunch 14:00 - 15:45 Heavy Ion Reactions: selected topics (LF) 15:45 - 16:15 Break 16:15 - 18:00 Flavor Physics: selected topics (WK)

This conference is sponsered by:

Hadron Physics: Selected Topics

MONDAY, 26th January 2015

→ M0	ORNING SESSION 09:00-12:20
9:00	Concettina Sfienti and Laura Fabbietti
	Welcome
09:10	Robert Rutledge
	The Neutron Star Mass-Radius Relationship and the Dense Matter Equation of State
09:50	Frank Maas
	Newest Results and Future Perspectives of the Parity Violation Experiments
10:20	Coffee-break
11:00	Maura Graziani
	The latest results from the Alpha Magnetic Spectrometer on the International Space Station
11:40	Soeren Lange
	Status and Physics of Belle II

→ P	OSTER SESSION	17:00-19:00
17:00	oss section measurements of the elastic ectron - deuteron scattering at MAMI Yvonne Kohl	
17:03	Study of direct photon production at PANDA Anna Skachkova experiment.	
17:06	5 Search for intermediate states in the rare earth nucleus ¹⁵⁰ Sm	
17:11	Simulation of Hadronic Triangular Flow in Relativistic Heavy Ion Collisions	Jana Crkovska
17:14	Neutron skin studies in heavy nuclei with coherent $\pi^{\scriptscriptstyle 0}$ photo-production	Maria Isabel Ferretti Bondy
17:17	Bose-EinsteinCorrelationsofChargedMesons in the SELEX Experiment	Grigory Nigmatkulov
17:20	Exploring Λ production in low-energy p-p reactions at HADES	Rafal Lalik
17:23	Non-Photonic Electrons in STAR Experiment	Katarina Gajdosova
17:26	Shear viscosity η to electric conductivity $\sigma_{_{el}}$ ratio for the Quark-Gluon Plasma	Armando Puglisi
17:29	lsospin breaking effects in the leading hadronic contribution to the muon g-2	Jan Haas

TUESDAY, 27th January 2015

- MORNING SESSION 09:00-12:30
 09:00 Achim Schwenk From neutron-rich nuclei to matter in astrophysics
 09:40 Peter Braun-Munziger
- Relativistic nuclear collisions from RHIC to the LHC, the quark-gluon plasma, and QCD
- 10:20 Coffee break
- 10:50 Haik Simon Status of the ELISE Project
- 11:30 Jelena Ninkovic New Developments in Silicon Detectors
- 12:00 Peter Egelhof Direct Reactions with Exotic Beams at Low Momentum Transfer: Inverstigations with Stored Beams and with Active Targets
- → AFTERNOON SESSION
- 17:00-19:00
- 17:00 Iowani Zimba First observation of E1 transitions from the octupole band to the excited 0₂ +Pairing Isomer band in the rare earth nucleus ¹⁵⁴Dy
- 17:20 Alexander Austregesilo Precision Hadron Spectroscopy at COMPASS
- 17:40 Matteo Cardinali Fast Frontend Electronics for high luminosity particle detectors
- 18:00 Giovanni Bencivenni The Resistive-WELL detector: a compact spark-protected single amplification-stage MPGD
- 18:20 Michaela Thiel From deep inside to outer space: exploring neutron skins
- 18:40 Salvatore Plumari Anisotropicflows and shearviscosity of the Quark-Gluon plasma within a transport approach.

17:32	LUNA 400 and LUNA-MV: present and future of Nuclear Astrophysics at LNGS	Carlo Gustavino
17:35	Measurement of the Analysing Power in Proton-Proton Elastic Scattering at Small Angles	Zara Bagdasarian
17:38	Two-photon exchange corrections in elastic electron-proton scattering	Oleksandar Tomalak

WEDNESDAY, 28th January 2015

→ мс	DRNING SESSION	09:00-12:20
09:00	David D'Enterria	
	Overview of the CMS Results	
09:40	Wolfgang Gradl	
	BESIII: the lastest data harvest	
10:20	Coffee break	
10:50	Lyn Evans	
	Beyond the LHC Accelerator	
11:20	Alessandro Grelli	
	Charm physics at hadron colliders and beyond	
11:50	Bernhard Ketzer	
an de la company	Latest results from COMPASS	
→ AF	TERNOON SESSION	17:00-19:00
17:00	Francesca Balestra	
	Measurements of Carbon ion fragmentation on a th target by the FIRST collaboration at GSI.	in Carbon
17:20	Claudia Behnke	
	Reconstruction of neutral mesons with the HADES of	letector
17:40	Barbara Trzeciak	
	STAR's latest results on quarkonia production	
18:00	Ruben Pampa Condori	
	Experiments with a double solenoid system: Measure the 6He+p Resonant Scattering	rements of
18:20	Dolezal Zdenek	
	ATLAS studies of spectroscopy and B-decays	
18:40	Martin Schaeter	
	Structure of light hypernuclei in the framework of Fe Molecular Dynamics	ermionic

Hadron Physics: Selected Topics

THURSDAY, 29th January 2015

FRIDAY, 30th January 2015

→ M0	ORNING SESSION	09:00-12:20
09:00	Jean-Come Lanfranchi Dark Matter Search with CREST	
09:40	9:40 Michael Block	
	Super Heavy Elements	
10:20	Coffee-break	
10:50	Germano Bonomi	
	Muons: civil applications	
11:20	Christian Fischer	
	Hadron physics from Dyson-Schwinger equations	
11:50	Davide Trezzi Looking the Universe from Deep Underground	
→ AF	TERNOON SESSION	17:00-19:00
17:00	17:00 Kgotlaesele Johnson Senosi	
	Measurements of W boson production in p-Pb collis at the LHC with ALICE	sions
17:20	7:20 Matthias Holl	
	Quasi-Free Scattering from Relativistic Carbon and (Isotopes	Oxygen
17:40	10 Elisabetta Prencipe	
	Hadrons with c-s quark content: past, present and f	uture
18:00	Daniele Cortinovis	
	EndoTOFPET-US: an endoscopic Positron Emission T detector for a novel multimodal medical imaging to	omography ool
18:20	Lena Heijkenskjöld	
	Hadronic decays of the omega meson measured w COSY	ith WASA-at-
18:40	Tomas Kosek	
	Recent Results on Hard Probes of the Quark-Gluon I the ATLAS Experiment at the LHC	Plasma with

→ M(ORNING SESSION	09:00-12:30
09:00	Juergen Krosberg	
	Overview of the ATLAS Results	
09:40	LHCb Collaboration	
	Whats new at the LHCb?	
10:20	Coffee break	
10:50	10:50 Stephen Lars Olsen	
	A New Hadron Spectroscopy	
11:30	Dariusz Miskowiec	
	QCD-matter studies with ALICE at the LHC	
12:00	Torsten Dahms	
	Low-mass dileptons: A thermometer for the hottest s universe	tuff in the
→ AFTERNOON SESSION 17:00-19:10		
17:00	Cecilia Voena	
	A novel dual-mode tracking device for online dose monitoring in hadron therapy	
17:20	Johannes Rausch	
	Singly Cabibbo Suppressed Charm Decay : CP Violation, Branching Ratio Measurement, and Partial Wave Analysis	
17:40	Ruediger Haake	
	Centrality dependence of charged jets in p-Pb collision with the ALICE detector	ons measured
18:00	0 Leonard Koch	
	Concept of the K ^o _s rescue system for the Belle II PXD	
18:20	LHCb Collaboration	
	Flavour Physics at LHCb	
18:40	Luciano Moretto	
	The Little Hagedorn That Could	

1⁻⁻ J/ψ ψ(25) +(1020) 1000 2000 3000 4000 5000

HAPRONS IN QCP

EX1: CHARMONIUM

EXP. TECHNIQUE:PWA

...THE BASIC ...

WHAT YOU SHOULD ALREADY KNOW ...

The building blocks

i.e. first slide in almost all talks, before you switch off!

Constituent Quark Model

1964 The model was proposed independently by Gell-Mann and Zweig Three fundamental building blocks 1960's $(p,n,\lambda) \Rightarrow$ 1970's (u,d,s)

mesons are bound states of a of quark and anti-quark:

$$\pi^{+} = u\overline{d} \qquad \pi^{0} = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d}) \quad \pi^{-} = d\overline{u}$$
$$K^{+} = u\overline{s} \qquad K^{0} = d\overline{s} \quad \overline{K}^{0} = s\overline{d} \quad K^{-} = s\overline{u}$$

<u>baryons</u> are bound state of 3 quarks:

$$p = uud \quad n = udd \quad \Lambda = uds$$
$$\overline{p} = \overline{u}\overline{u}\overline{d} \quad \overline{n} = \overline{u}\overline{d}\overline{d} \quad \overline{\Lambda} = \overline{u}\overline{d}\overline{s}$$

COLOR necessary for antisymmetric wave function

COLOR SINGLETS

Lagrangian of QCD

- There are 3 color charges
- Gluons carry color
- → Self-interactions of gluons
- The strong coupling varies
- small at high energies asymptotic freedom
- very large at low energies confinement

$$\alpha_{QCD}(Q^2 = M_Z^2) \approx 0.12$$

"JF THE LORD ALMIGHTY HAD CONSULTED ME BEFORE EMBARKING UPON CREATION,

WOULD HAVE RECOMMENDED SOMETHING SIMPLER."

King Alphonse X. of Castille and Léon (1221-1284), on having the Ptolemaic system of epicycles explained to him

Coupling Constant

Large

 $e^+e^- \rightarrow Hadrons$

$e^+e^- \rightarrow Hadrons$

and construct:

Confirmed Color hypothesis
Production thresholds for Quark-flavours production

Below charm threshold

charme egisalrons

b-quark threshold resign

How to study hadrons?

Build them together in a controlled manner

e⁺e⁻ collider can produce vector mesons (other particles in decays) [BES-III/BELLE]
 hadron beams have high production cross sections but little control [PANDA]
 Observe them as existing particles

γ / lepton beams are excellent probes (mostly of the nucleon) [MAMI-JLAB]
 Study their interaction among each others

Investigation structure of matter through:

SPECTROSCOPY

SCATTERING

Strong Interaction

QCP ALSO ALLOWS

Totalitarian principle: Everything not forbidden is compulsory

Prediction from Q

QCD is complex

- At high Q (small distance): Expansion in powers of α_s
 - → Perturbation theory
- At low Q (long distance): Non-perturbative regime, approximations difficult

Methods for low energy QCD

- Phenomenological models
- → Potential models, quark model
- Effective degrees of freedom
- Chiral perturbation theory Approximate Symmetries of QCD
- Discrete space-time
- → Lattice QCD

Phenomenological Models

Asymptotic behaviour of QCD

- Non-relativistic potential
- Confinement region (large r):

$$V_{QCD} \xrightarrow{r \to \infty} kr$$
 Spring-like

Region of asymptotic freedom (small r):

$$V_{QCD} \longrightarrow \frac{4}{3} \frac{\alpha_s}{r}$$
 Coulomb-like

Bound states in QCD

- Example: QQ states
 - Resonances in the QCD potential
 - Spectrum like positronium

Spectroscopy

0 1 fm C

Pifferent quantum numbers S(L≈O) and P(L≈1) states	S_1 \downarrow L S_2 \downarrow \downarrow \downarrow
otation	$S = S_1 + S_2$
$\Psi(1S) \equiv J/\Psi$	J≈L+S
$\Psi(2S) \equiv \Psi'$	P=(-1) ^{L+1}
$\Psi(1P) \equiv \chi_c$	C≈(-1) ^{L+5}

 Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.

 Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.

A CLASSICAL EXAMPLE

degree of freedom = mass m

symmetries = translations parallel to the earth's surface and rotations about an axis normal to it.

$$V(h) = mgR\sum_{i=0}^{\infty} (-1)^{i-1} \left(\frac{h}{R}\right)^i,$$

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD
- High Energies ($Q \rightarrow \infty$): Quarks and Gluons are relevant \rightarrow perturbative QCD, Expansion in 1/Q

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD
- High Energies ($Q \rightarrow \infty$): Quarks and Gluons are relevant \rightarrow perturbative QCD, Expansion in 1/Q
- Very slow hadrons $(Q \rightarrow 0)$: Pions and Kaons are relevant \rightarrow approximate symmetries, Expansion in Q^{4}

April 2012

▼ t decays (N³LO)
 ☑ Lattice QCD (NNLO)

△ DIS jets (NLO)

• Z pole fit (N³LO) \overline{N} \overline{D} \rightarrow jets (NLO)

Heavy Quarkonia (NLO)
 e⁺e⁻ jets & shapes (res. NNLO)

a (Q)

0.4

0.3

- Usually Effective Theories replace the Quarks and Gluons by the the degrees of freedom which are "relevant" at this scale.
- Effective Theories are systematic expansion of QCD
- High Energies ($Q \rightarrow \infty$): Quarks and Gluons are relevant \rightarrow perturbative QCD, Expansion in 1/Q
- Very slow hadrons ($Q \rightarrow 0$): Pions and Kaons are relevant \rightarrow approximate symmetries, Expansion in $Q^{0.1}$
- Heavy Quarks ($m_Q \rightarrow \infty$): Light Quarks and Gluons are relevant \rightarrow Use approximate symmetries, Expansion in $1/m_Q$

Positronium

Charmonium

³D₃ (~ 3800)

fm

...the positronium of QCD

Positronium (lives ≈100 ns, discovered 1951 by Martin Deutsch, MIT)

- quasi stable system of electron and positron (exotic atom)
- decays to n photons (more than 1, spin argument 2 vs 3)
- compares closely to hydrogen atom: energy levels (Bohr)

$$E_n = \frac{-m^* q_e^4}{8h^2 \varepsilon_0^2} \frac{1}{n^2}$$

$$h - \text{Planck's constant}$$

$$\varepsilon_0 - \text{electric constant}$$

$$q_e - \text{electron charge}$$

difference to hydrogen: reduced mass (m*)

$$m^* = \frac{m_e m_p}{m_e + m_p} = \frac{m_e}{2}$$

plugging in the numbers we find

$$E_n = \frac{-m_e q_e^4}{16h^2 \varepsilon_0^2} \frac{1}{n^2} = \frac{-6.8 \text{ eV}}{n^2}$$

Aims

- Analogous to known two-particle bound systems (ie: hydrogen, positronium)
- Charmonium potential models (phenomenological):
 - non-relativistic (charm quarks are "heavy" compared to binding energy)
 - strong force potential via one gluon exchange (similar to Coulomb force)
 - quark confinement (increases linearly with separation)
- Typical representation:

$$V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + br + \dots$$

Experiment: Systematic determination of particle properties

Mass

Lifetime or width of resonance

• Quantum number J^{PC}

Theory: Calculation of spectra
Knowing interaction allows prediction

Charmonium is a powerful tool for understandin

Final aim: Understand composition and dynamics of matterIn QCD we are still far away from precision of QED

Phys. Rev. D 17, 3090 (1978) Phys. Rev. D 32, 189 (1985) Phys. Rev. D 72, 054026 (2005)

...in the beginning

- November Revolution: simultaneous (SLAC/BNL) discovery of the J/ ψ in 1974
- Bound state of c-cbar quarks: "charmonium"
- First evidence of the charm quark
 - Strong confirmation of the quark model
- Discovery of $\psi(2S) \rightarrow J/\psi(e^+e^-) \pi^+\pi^-$ soon followed

- Annihilation:
 - Generally suppressed for bound state
 - Decay to leptons is a clean experimental signal
- Strong interaction:
 - Dominant above ~3.72 GeV (D mesons)
 - Suppressed below this mass threshold
- Radiative:
 - EM radiative transition emitting photon
 - Emit gluons producing light quarks
- Features:
 - Suppression of strong decays leads to (relatively) long lifetimes, narrow widths
 - Radiative decays are competitive; often most accessible transitions

The ABC's of Charmonium

- J^{PC} quantum numbers
- $\vec{S} = \vec{S}_1 + \vec{S}_2$ $\vec{J} = \vec{L} + \vec{S}$ $\overset{\text{S=1}}{\longleftarrow} \text{ triplet of state}$ $\overset{\text{S=0}}{\Rightarrow} \text{ singlet}$

 $P = (-1)^{L+1} \quad \longleftarrow \quad \text{Parity} \quad (x,y,z) \leftrightarrow (-x,-y,-z)$ $C = (-1)^{L+S} \quad \longleftarrow \quad \text{C-Parity} \quad \text{quark} \leftrightarrow \text{antiquark}$

 \overline{S}_1

€

€

charmonium - the 'easy' case'

one set of hadrons that are particularly simple are the charmonium mesons

- each box represents an observed particle
- particles fall in groups 'gross structure'
- splitting within a group 'fine structure'
- reminds us of quantum mechanics of atoms
- a reasonable description of the spectrum of charmonium comes from solving a Schrödinger equation assuming a potential between a charm quark and an anti-charm quark

 $m_n = 2m_c + E_n$

$$-\frac{1}{m_c}\nabla^2\psi + V(r)\psi = E_n\psi$$

laffarcan Lab

The easy case

New Charmonium States

Renaissance in Charmonium Spectroscopy:

Belle, BaBar, CLEO, CDF and D0 find new states above DD

- Many of these states are problematic: mass not predicted, width too small, decay pattern unusual
- Challenge for better understanding and high precision data

	1411	
State	Experiments	Nature/Remarks
X(3872)	Belle, BaBar, CDF, D0	D ⁰ D ⁰ * molecule, 4-quark state
X(3943)	Belle	maybe η" _c
Y(3940)	Belle	maybe ²³ P ₁
Z(3930)	Belle	maybe χ [·] _{c2}
Y(4260)	BaBar, Belle, CLEO-c	Hybrid, $\omega \chi_{c1}$ -molecule, 4q state
Y(4350)	BaBar, Belle	?
Z [±] (4430)	Belle	No charged $c\bar{c}$, molecule or 4q state
Y(4660)	Belle	?

New Charmonium States Connecting the XYZ at BESIII

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (IV) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (V) BESIII has also observed a transition to the X(3872).
- (VI) We are building connections.

R. Mitchell Bormio 2014

Example: Consider the reaction $\bar{p}p \rightarrow K^+K^-\pi^0$

What *really* happened...

Double Slit as analogue

Result $\neq \sum$ (Single slits)

→ Interference! Light behaves as a wave.

Which slit did one photon cross? Both! © You only have interference in case you can't distinguish between the paths.

Double Slit as <u>Logue</u>

Optics	PWA
slit	resonance
position	mass
size	width

...as in optics one can't say for one event which resonance was produced

Interference pattern changes with number and parameter of resonances

→ PWA: fit a model describing resonances to the data

Example: Consider the reaction $\bar{p}p \rightarrow K^+K^-\pi^0$

What *really* happened...

etc.

out what happens in between

Partial Wave Analysis

$$\psi(r, heta,\phi) \longrightarrow e^{ikz} + f(heta,\phi) rac{e^{ikr}}{r}$$

 $f(\theta, \phi) = \text{scattering amplitude}$

$$rac{d\sigma}{d\Omega} = |f(heta,\phi)|^2$$

$$f(heta,\phi)=rac{-m}{2\pi\hbar^2}\int dec{r}e^{ec{q}\cdotec{r}/\hbar}V(ec{r})$$
 Fourier transform of potential (First Born approximation)

Partial Wave Analysis

The cross section can be written as:

$$egin{aligned} rac{d\sigma}{d\Omega} &= rac{1}{k^2} \left| \sum_{l=0}^\infty (2l+1) rac{\eta_l e^{2i\delta_l} - 1}{2i} P_l(\cos heta)
ight|^2 = |f(heta)|^2 \ &= rac{1}{k^2} \left| \sum_{l=0}^\infty (2l+1) T_l P_l(\cos heta)
ight|^2 \ & ext{ with } & egin{aligned} T_l &= rac{\eta_l e^{2i\delta_l} - 1}{2i} & T ext{-matrix} \end{aligned}$$

A complete set of phase shifts contains all information about the underlying dynamics.

Typically the analysis is carried out by looking at phase differences between a purported state and a well-known "reference" state.

Partial Wave Analysis

• $e^+e^- \rightarrow \pi\pi$

S. Paul Hirschegg (2014)

Baryon Octet

 Ξ^{0}

0

 Σ^+ \mathbf{I}_3

 uu_s^u

THE STRANGE NUCLEAR REALM

THE ALCHEMIST BY JOSEPH WRIGHT OF DERBY (1771)

ALCHEMY EITHER STICK AN HYPERON INTO A NUCLEUS

MAGE COURTESY: JEFFERSON LAB

OR BOIL AND COMPRESS NUCLEAR MATTER

THE STRANGE NUCLEAR REALM

LRP Nuclear Science Advisory Committee(2008)

Complexity

O Hyperons are NOT Pauli-blocked

Tagged Nuclear PhysicsHigher Density

Hyperons are NOT Pauli-blocked
Requires the knowledge of YN, YY, ...

Hyperons are NOT Pauli-blocked Requires the knowledge of YN, YY, ...

J. Haidenbauer Few Body Systems (2012)

Hyperons live only for a fraction of a ns

- **1** Hyperons are NOT Pauli-blocked
- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy... a two-fold way

O Hyperons are NOT Pauli-blocked

- 2 Requires the knowledge of YN, YY, ...
- **3 Spectroscopy: DIRECT PRODUCTION**

O.Hashimoto, H.Tamura, PPNP 57 (2006) 564.

O Hyperons are NOT Pauli-blocked

2 Requires the knowledge of YN, YY, ...

3 Spectroscopy: DECAY

- **O** Hyperons are NOT Pauli-blocked
- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy: <u>DECAY</u>

K. Tanida et al., Phys. Rev. Lett. 86 (2001)

1 Hyperons are NOT Pauli-blocked

- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy

4 Lesson learned

Nuclear potential of Λ : $V_0^{\Lambda} = -30 MeV$ (c.f.U_N = -50 MeV)

O.Hashimoto, H.Tamura, PPNP 57 (2006) 564.

AN force is attractive (but weaker than NN)

Small spin-orbit force (~few percent of NN case)

Precision is the key issue