An introduction to nuclear astrophysics

Pierre Capel

25 January 2015

Introduction : a bit of history

Where do we come from?

Where was produced the matter that surrounds us?

The answer came from astrophysics...

In 1920 A. Eddington : stars are nuclear powered In 1929 R. Atkinson and F. Houtermans : fusion of light elements produces energy

e.g. fusion of 4 protons into ⁴He

$$4 \text{ p} \rightarrow {}^{4}\text{He} + 2\text{e}^{+} + 2\nu_{\text{e}} + 26.73 \text{ MeV}$$

In 1938-39, H. Bethe and C. Critchfield : pp chain and CNO cycles (H. Bethe got NP in 1967)

In 1957, seminal paper of Burbidge, Burbidge, Fowler and Hoyle on nucleosynthesis in stars [Rev. Mod. Phys. **29**, 257]

Introduction : nucleosynthesis in a nutshell

By fusion of light elements we can reach the Fe-Ni region because reactions are excenergetic and Coulomb repulsion is small

Beyond, processes based on n or p capture lead to heavy nuclei : *s*, *r*, *p*, *rp* processes...

Abundances of elements

Abundance measured relative to Si fixed to 10^6 .

- 2 Reaction rate and Gamow window
- Life and death of a star
- 4 Equation of State for nuclear matter
- 5 *s*, *r*, *p*, *rp* processes

pp chain

$$p + p \rightarrow {}_{1}^{2}H + e^{+} + v_{e} \text{ or } p + e^{-} + p \rightarrow {}_{1}^{2}H + v_{e}$$

$${}_{1}^{2}H + p \rightarrow {}_{2}^{3}He + \gamma$$

$$(85\%) \qquad (15\%)$$

$${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + 2p \qquad {}_{2}^{3}He + {}_{2}^{4}He \rightarrow {}_{4}^{7}Be + \gamma$$

$$(15\%) \qquad (0.02\%)$$

$${}_{4}^{7}Be + e^{-} \rightarrow {}_{3}^{7}Li + v_{e} \qquad {}_{4}^{7}Be + p \rightarrow {}_{5}^{8}B + \gamma$$

$$(15\%) \qquad (0.02\%)$$

$${}_{4}^{7}Be + e^{-} \rightarrow {}_{3}^{7}Li + v_{e} \qquad {}_{4}^{7}Be + p \rightarrow {}_{5}^{8}B + \gamma$$

$${}_{4}^{7}Be + p \rightarrow {}_{5}^{8}B + \gamma$$

$${}_{4}^{7}Be \rightarrow {}_{2}^{4}He + {}_{2}^{4}He \qquad {}_{6}^{8}Be \rightarrow {}_{4}^{4}He + {}_{2}^{4}He \qquad {}_{6}^{8}Be \rightarrow {}_{2}^{4}He + {}_{2}^{4}He \qquad {}_{6}^{8}Be \rightarrow {}_{2}^{4}He + {}_{2}^{4}He \qquad {}_{6}^{9}Dill$$

Summary : $4p \rightarrow \frac{4}{2}He + 2e^+ + 2\nu_e + 25MeV$

CNO cycle(s)

If the star contains C, N or O they can be used as catalyst to synthesise ⁴He from 4 p e.g. CNO C cycle :

$${}^{12}C + p \rightarrow {}^{13}N + \gamma$$

$${}^{13}N \rightarrow {}^{13}C + e^+ + \nu_e$$

$${}^{13}C + p \rightarrow {}^{14}N + \gamma$$

$${}^{14}N + p \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^+ + \nu_e$$

$${}^{15}N + p \rightarrow {}^{12}C + \alpha$$

Summary : $4p \rightarrow {}^{4}_{2}He + 2e^{+} + 2\nu_{e} + 25\text{MeV}$

CNO C cycle

Other cycles

Other cycles are possible

• CNO N cycle using ¹⁴N as catalyst :

$${}^{14}N + p \rightarrow {}^{15}O + \gamma$$

$${}^{15}O \rightarrow {}^{15}N + e^+ + \nu_e$$

$${}^{15}N + p \rightarrow {}^{16}O + \gamma$$

$${}^{16}O + p \rightarrow {}^{17}F + \gamma$$

$${}^{17}F \rightarrow {}^{17}O + e^+ + \nu_e$$

$${}^{17}O + p \rightarrow {}^{14}N + \alpha$$

NeNaMg cycles

• . . .

pp chain and CNO cycle

- 2 Reaction rate and Gamow window
- 3 Life and death of a star
- Equation of State for nuclear matter
- 5 s, r, p, rp processes
- 6 Summary

Reaction rate

We consider the radiative-capture reaction : $1 + 2 \rightarrow 3 + \gamma$ The reaction rate is the number of reactions occurring per unit time and volume

 $r = N_1 N_2 \sigma v$

The velocity v is distributed according to Maxwell-Boltzmann

$$\phi(\mathbf{v}) \propto e^{-E/kT}$$

$$\Rightarrow \langle \sigma v \rangle = 4\pi \int \phi(\mathbf{v}) \sigma(v) v^3 dv$$

$$\propto \int e^{-E/kT} \sigma(E) E dE$$

$\sigma(E)$ at low energy

Due to Coulomb barrier σ plummets at low *E* because reaction takes place only through tunneling

Astrophysical S factor

The rapid drop explained by the Gamow factor $e^{-2\pi\eta}$,

$$\eta = \frac{Z_1 Z_2 e^2}{4\pi\epsilon_0 \hbar v}$$

is Sommerfeld parameter

$$\Rightarrow \sigma(E) = \frac{S(E)}{E} e^{-2\pi\eta}$$

The astrophysical S factor varies smoothly with E

Gamow peak

$$\langle \sigma v \rangle \propto \int e^{-E/kT} \sigma(E) E dE$$

= $\int e^{-E/kT} e^{-2\pi\eta} S(E) dE$

 \Rightarrow *S* must be known only in the Gamow peak

$$g(E) = e^{-E/kT} e^{-2\pi\eta}$$

Example

For the reaction ${}^{3}\text{He}(\alpha, \gamma)$ ${}^{7}\text{Be in the sun}$ $Z_{1} = 2, A_{1} = 3$ $Z_{2} = 2, A_{2} = 4$ $T = 0.015 T_{9}$ Gamow peak at $E_{0} \simeq 20 \text{ keV}$

 \Rightarrow difficult to measure due to background Solutions

- Rely on theory to extrapolate down to astrophysical energies
- Go to an underground laboratory to reduce background e.g. LUNA collaboration [see C. Gustavino's poster on Monday]
- Use indirect techniques, e.g. Coulomb breakup

He and other fusions

When enough ⁴He has built up, if temperature and pressure are high enough, He fusion starts

But ⁸Be is unbound : ⁸Be \rightarrow ⁴He + ⁴He This A = 8 gap is bridged by the triple- α process

$$3\alpha \rightarrow {}^{8}\text{Be}^{*} + \alpha \rightarrow {}^{12}\text{C}^{*}$$

which occurs through the Hoyle state : $J^{\pi} = 0^+$ resonance in ¹²C predicted by F. Hoyle and observed by W. Fowler (NP in 1983)

At a later stage, C may capture α to form O or fuse with itself to form Ne, Na or Mg \Rightarrow Onion structure of star...

The onion star

What happens next?

Depending on the mass of the star :

- $M \lesssim 8 M_{\odot}$:
 - ends with C-O core (M ~ M_☉) or O-Ne-Mg core (M ~ 8M_☉)
 - H outer layer is expelled \rightarrow planetary nebula
 - core collapses gravitationally
 - \rightarrow white dwarf ($M \sim M_{\odot}$ and $R \sim R_{\oplus}$)

Planetary nebula : Cat's eye nebula

What happens next?

- Massive star ($M > 8M_{\odot}$)
 - C burning → Fe-Ni core
 - Gravity strikes back : gravitational collapse of the core \rightarrow neutron star ($M \sim M_{\odot}$ and $R \sim 10$ km; $\rho \sim \rho_0$) or black hole...
 - outer layers expelled : supernova (type II)

Type II SN : Crab nebula

- pp chain and CNO cycle
- 2 Reaction rate and Gamow window
- 3 Life and death of a star
- 4 Equation of State for nuclear matter
- 5 s, r, p, rp processes

Equation of State

To understand the formation of neutron stars, need to understand the nuclear matter But no need for microscopic calculations \Rightarrow (nuclear) Equation of State (EoS)

Equation of State

To understand the formation of neutron stars, need to understand the nuclear matter But no need for microscopic calculations \Rightarrow (nuclear) Equation of State (EoS) State of a perfect gas given by *P*, *V*, *T*, *N* : *PV* = *N* k *T*

For nuclear matter, the state variables are

- Z : proton number
- N : neutron number

or in infinite matter $\alpha = (N-Z)/A,$ the n-p asymmetry ρ the density

Equation of State

To understand the formation of neutron stars, need to understand the nuclear matter But no need for microscopic calculations \Rightarrow (nuclear) Equation of State (EoS) State of a perfect gas given by *P*, *V*, *T*, *N* : *PV* = *N* k *T*

For nuclear matter, the state variables are

- Z : proton number
- N : neutron number

or in infinite matter $\alpha = (N-Z)/A,$ the n-p asymmetry ρ the density

EoS obtained from the energy of the system per nucleon ϵ

Nuclear EoS Back to liquid-drop formula (Bethe Weizsäcker)

$$B(Z,N) = a_{\nu}A - a_{s}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{A}\frac{(A-2Z)^{2}}{A} + \delta(A,Z)$$

$$\epsilon \equiv -\frac{B(Z,N)}{A} \xrightarrow[V \to \infty]{} -a_{\nu} + a_{A}\alpha^{2} \quad \text{with } \alpha = (N-Z)/A$$

Liquid drop assumes constant density $\rho = \rho_0 \simeq 0.16 \text{ fm}^{-3}$

Nuclear EoS Back to liquid-drop formula (Bethe Weizsäcker)

$$B(Z,N) = a_{\nu}A - a_{s}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{A}\frac{(A-2Z)^{2}}{A} + \delta(A,Z)$$

$$\epsilon \equiv -\frac{B(Z,N)}{A} \xrightarrow[V \to \infty]{} -a_{\nu} + a_{A}\alpha^{2} \quad \text{with } \alpha = (N-Z)/A$$

Liquid drop assumes constant density $\rho=\rho_0\simeq 0.16~{\rm fm^{-3}}$ We need density dependence

$$\epsilon(\rho, \alpha) = \epsilon(\rho, \alpha = 0) + S(\rho)\alpha^2 + \dots$$

where *S* is the symmetry energy

Symmetry energy

0

0.0

0.5

S characterises the increase in energy from N=Z Taylor expanded around $\rho=\rho_0$:

1.5

2.0

1.0

 ρ/ρ_0

Constraints

- S can be constrained from nuclear experiments (laboratory) :
 - neutron skin thickness (balance between surface tension and asymmetry term)

[cf. M. Ferretti Bondy's poster on Monday afternoon and M. Thiel's talk on Tuesday afternoon]

- Giant Monopole Resonance (breathing mode)
- Giant Dipole Resonance (n to p oscillations)
- heavy-ion collisions (n to p ratio in emitted fragments)

Constraints

from astrophysical observations

- Mass and radii of neutron stars (existing 2 M_o) [cf. R. Rutledge's talk on Monday morning]
 - MSZ MPA1 2.5 MSO **АР**3 PAL1 AP4 ENG 2.0 SOM3 Mass (M_e) SOM1 1.5 PAL6 GS1 -1.0 11748-24461716Hz 0.5 $R_{\infty} \, \mathrm{km}^{-1} = 10$ 0.0 8 10 14 16 Radius (km)

[J. Lattimer Ann. Rev. Nucl. Part. Sci. 62, 485 (2012)]

Constraints

from nuclear-structure calculation

- EFT prediction of EoS
 - [cf. A. Schwenk's talk on Tuesday morning]

[K. Hebeler et al. Astrophys. J. 773, 11 (2013)]

[J. Lattimer Ann. Rev. Nucl. Part. Sci. 62, 485 (2012)]

- 1 pp chain and CNO cycle
- 2 Reaction rate and Gamow window
- 3 Life and death of a star
- Equation of State for nuclear matter
- 5 *s*, *r*, *p*, *rp* processes

How do we get heavier elements? Increasing Coulomb barrier suppress fusion Once Fe synthesised no more fusion

To explain formation of heavier elements Burbidge, Burbidge, Fowler and Hoyle (B^2FH) suggest in 1957 successive captures of n by seed nuclei : *s* and *r* processes

s process

The *s* process is a *slow* process of n capture by stable nuclei slow means slower than β decay, i.e. requires small n flux e.g. He burning stage of AGB stars

Synthesises elements close to stability \Rightarrow does not explain

- isotopes away from stability
- heavy elements (U, Th...)

r process

The *r* process is a *rapid* process of n capture by stable nuclei rapid means faster than β decay, i.e. requires high n flux e.g. core-collapse supernovæ

Synthesises elements far away from stability \Rightarrow requires

- masses of radioactive isotopes
- location of nuclear shells

p and rp processes

s and *r* processes synthesise only n-rich nuclei How to explain the presence of p-rich nuclei?

p and rp processes are similar processes with successive p captures

p process :

Slow capture of protons Synthesises p-rich nuclei close to stability Possible site : O-Ne layer in supernova

rp process

rapid p-capture reactions

synthesises elements away from stability cf *r* process

Possible site : X-ray burst accretion by neutron star of H- and He-rich material from companion star \Rightarrow type I supernova

[Schatz and Rehm NPA 777, 601 (2006)]

Type I SN : 21 January 2014

Summary

Nuclei are synthesised in stellar environments during various processes

- pp chain, CNO cycles, He burning,...
- *s* and *r* processes (n capture)
- p and rp processes (p capture)

[Smith and Rehm Annu. Rev. Nucl. Part. Sci. 51, 91 (2001)]

Stardust

Abundances of elements and production mechanisms

We are all stardust...

LUNA accelerator facility at the Gran Sasso Facility

Located below the Gran Sasso mountain in the Apennines

LUNA result for ${}^{3}\text{He}({}^{3}\text{He}, 2p){}^{4}\text{He}$ LUNA can reach the Gamow peak in some cases

³He(³He,2p)⁴He 20 Astrophysical S-Exctor (McV barn) LUNA (1998) 12 Kranaz et al. (1987) Dwarakanath et al. (1971) 16 LUNA (1998) Bare Nuclei Fit LUNA (1998) Shielded Nuclei Fit 14 12 10 6 2 o 10² 10 Center Mass Energy (keV)

pp chain vs. CNO cycles

The type of cycle depends on temperature and pressure

