Centrality dependence of charged jets in p–Pb collisions measured with the ALICE detector

Rüdiger Haake (Westfälische Wilhelms-Universität) for the ALICE collaboration

(30.01.2015) 53rd International Winter Meeting on Nuclear Physics, Bormio

> Westfälische Wilhelms-Universität Münster

Motivation for p–Pb

- Study of cold nuclear matter effects
 - Initial state effects (Nuclear PDFs, ...)
 - Final state effects (Nuclear absorption, ...)
- Necessary for interpretation of heavy-ion collisions (cold nuclear matter effects vs. hot nuclear matter effects, QGP formation not expected)

- Track centrality evolution of nuclear matter effects allows more differential analysis
- Final state effects expected to be strongest in central collisions

- Experimental setup and charged jet reconstruction with the ALICE detector
- Centrality determination in p–Pb collisions
- Correction techniques
- Results

Experimental setup and charged jet reconstruction with the ALICE detector

The ALICE detector

Tracks mainly reconstructed with ITS+TPC

- Conceptually, a jet is the final state of collimated hadrons that fragmented from a hard scattered parton
- Jets can be used to shed light on the very early stage of a hadron collision

- There is no unambiguous jet definition
- The reconstructed *jet observable* is defined by the jet finding algorithm used to clusterize tracks and calorimeter clusters into jets

Jet reconstruction

- FastJet¹ is used for jet finding
 - anti- k_{τ} algorithm for signal jets
 - $-k_{T}$ algorithm for background correction
 - Resolution parameters R = 0.2 & R = 0.4
 - Transverse momentum calculated by using $p_{\rm T}$ particle recombination scheme
- Analyzed only jets fully contained in detector
- Background density and fluctuation correction applied
- Jet spectra corrected for detector effects

¹ Cacciari, Salam. Phys. Lett. B641(2006), arXiv:0512210 [hep-ph]

Centrality determination in p–Pb collision with ALICE

Centrality determination in p–Pb

- Centrality = measure for collision geometry
- Centrality determination approach in Pb–Pb
 - Glauber MC + NBD fit of multiplicity distribution
 - Strong correlation of multiplicity and N_{part} / impact parameter
- Same approach not applicable in p–Pb
 - Correlation much worse
 - Relatively high probability to measure high-multiplicity upward fluctuations of low-centrality events
- Additional bias: Jet-veto bias (veto on highmultiplicity events in peripheral collisions)

arXiv:1412.6828

Rüdiger Haake

- Much work done by ALICE on *hybrid approach* using ZDC (details see arXiv:1412.6828)
- Procedure:
 - 1. Event classification

Use deposited energy in ZDC neutron calorimeter (ZN) (monotonically connected to N_{part}) for "slicing" of the data sample Divide data sample into centrality classes Here: 0-20%, 20-40%, 40-60%, 60-80%

- Much work done by ALICE on *hybrid approach* using ZDC (details see arXiv:1412.6828)
- Procedure:
 - 1. Event classification
 - 2. Estimate number of binary collisions in one event

Two different assumptions utilized to calculate N_{coll} :

- $N_{coll, mult}$: charged particle multiplicity at midrapidity is proportional to N_{part}
- **N**_{coll, Pb-side}: charged particle multiplicity on the Pb-going side is proportional to N_{coll}

Both estimates are applicable for jet measurements and will be tested

$$\left. \begin{array}{l} \left. \begin{array}{l} N_{\rm coll}^{\rm mult}(c) = N_{\rm part}({\rm MB}) \cdot \left(\frac{\left< {\rm d}N/{\rm d}\eta \right>(c)}{\left< {\rm d}N/{\rm d}\eta \right>({\rm MB})} \right)_{-1 < \eta < 0} - 1 \\ \\ \left. \begin{array}{l} N_{\rm coll}^{\rm Pb-side}(c) = N_{\rm coll}({\rm MB}) \cdot \frac{\left< S \right>(c)}{\left< S \right>({\rm MB})} \\ \\ \\ \left< S \right>: \text{ mean multiplicity signal} \end{array} \right. \end{array} \right.$$

Note: Glauber fit principally possible for ZDC distribution but this relies on slow nucleon emission models

Centrality dependence of charged jets in p-Pb

11

Correction techniques

Background density correction

Default background approach¹

- clusterize k_τ jets
 (susceptible to background)
- take median of the p_{T} densities

$$o = \text{median} \left\{ \frac{p_{\mathrm{T},i}}{A_i} \right\}_i \cdot C$$
$$(A_i : \text{jet area})$$

neglect those k_{τ} jets overlapping with signal jets

• correct for event occupancy (how dense or sparse the event is)

$$C = \frac{\text{Area of } k_{\rm T} \text{ jets containing tracks}}{\text{Acceptance}}$$

¹ As in arXiv:1207.2392 [hep-ex]

Background fluctuations

 Background fluctuates within one event

- Estimated by
 - Randomly placing cone with radius *R* into acceptance
 - summing up p_⊤ in cone and subtracting background

R: Radius of the jet finder

$$\delta p_{\rm T} = \sum_{\rm RC} p_{\rm T} - \rho A$$
, with $A = \pi R^2$

- Finite detector resolution (p_{τ} resolution, tracking efficiency...)
- Detector effects estimated by calculating response matrix
 - Create full detector simulation (PYTHIA jets + Geant3 transport)
 - Run jet finder on particle level (output from PYTHIA) and on detector level (simulated output from detector)
 - Match particle-level and detector-level jets by geometrical criterion

Results

Centrality-dependent charged jet production cross sections measured up to 120 GeV/*c*

17

- The nuclear modification factor Q_{pPb} is a measure for the influence of the nuclear environment in the collision (Q_{pPb} is centrality-biased R_{pPb})
- Definition:

$$Q_{\rm pPb} = \frac{\text{p-Pb yield}}{\text{pp x-section}} \cdot \frac{1}{T_{\rm pPb}}$$

 $T_{\rm pPb}$: Nuclear overlap function obtained from Glauber MC calculation

• Direct measure for suppression/enhancement of jets

Jet cross section ratio

- Simplest measure for changes in radial jet structure, i.e. jet narrowing/ broadening (note: only indirectly sensitive to large changes)
- Definition:

Ratio =
$$\frac{\text{Jets with } R_1}{\text{Jets with } R_2}$$
, $R_1 < R_2$ Ratio \ll 1 = little collimation
Ratio \sim 1 = strong collimation

Nuclear modification factor Q_{pPb}

N_{coll} from Pb-side

- Centrality-dependent charged jet nuclear modification factor measured up to 100 GeV/c. Scaled with N_{coll} from Pb-side estimator
- Within the uncertainties, neither significant centrality dependence nor nuclear modification is observed

Nuclear modification factor Q_{pPb}

N_{coll} from multiplicity

- Centrality-dependent charged jet nuclear modification factor measured up to 100 GeV/c. Scaled with N_{coll} from multiplicity estimator
- Within the uncertainties, neither significant centrality dependence nor nuclear modification is observed

No significant centrality dependence of the jet cross section ratio \rightarrow no strong changes in the radial jet structure (as already expected from Pb–Pb)

- Centrality approach based on arXiv:1412.6828
- Nuclear modification factors Q_{pPb} show no significant effect for both applied N_{coll} estimators
 - \rightarrow no strong centrality dependence
- Jet cross section ratios agree within uncertainties for the considered centrality bins
 - \rightarrow no change of jet collimation observed

Thank you for your attention

Backup

Comparison of jet and charged hadron spectra at the LHC

Charged particle *R*_{pPb} puzzle

Charged particle *R*_{pPb}

ALI-DER-77092

- CMS and later ATLAS observed interesting results for charged particle
 - $R_{pPb} \rightarrow$ Enhancement at high p_T
- Unfortunately, the rise starts at the end of ALICE p_{τ} coverage. Eventually, the ALICE result agrees within uncertainties

What about the jets?

Centrality dependence of charged jets in p-Pb

26

ALI-PREL-80555

How do the different jet and particle R_{pPb} from ATLAS and CMS fit together?

- One should keep in mind: Jets are not "higher p_{τ} particles"
- Although the spectra are often interpreted as extension of particle spectra to high $p_{\rm T}$, they are more susceptible to differences in the hadronization like jet broadening etc.

____^{__}___

Example: quark/gluon jets

- A gluon jet fragments softer than a quark jet
- The transverse momentum of the initially scattered parton is distributed into more particles for those jets
- For the jet finder, those jets are very similar to quark jets but the particle spectrum is softer

50 GeV/c quark jet

50 GeV/c gluon jet

29

- → If there were more quark jets in p–Pb collisions, the particle R_{pPb} could show an enhancement at higher p_{T} which would not exist in the jet R_{pPb}
- **Note:** This is just to show that it is *possible* to explain different R_{pPb} 's for jets and particles

pp reference for Q_{pPb}

General approach: (mb c/GeV **10**⁻³ pp 7 TeV ch. jets R = 0.4 ALICE prelim pp 2.76 TeV ch. jet R = 0.4 5 TeV pp measurements not ALICE prelim pp 5.02 TeV ch. jet R = 0.4 available ب 10⁴ <u>م</u>ل 10⁴ reference via scaling of 7 TeV data • Measured 7 TeV pp jets are scaled down to 5.02 TeV 10⁻⁵ • Scaling done bin-by-bin with: $p = \frac{\text{yield}(5.023 \text{ TeV})}{\text{yield}(7 \text{ TeV})}$ 10⁻⁶ Yields taken from NLO pQCD calculations, including pPb boost 10^{-7} 40 60 80 100 20 Additionally tested: Bin-by-bin $p_{\text{Tiot}}^{\text{ch}}$ (GeV/c) power-law extrapolations using 2.76 and 7 TeV jets ALI-DER-54695

Preliminary minimum bias results

These are the first preliminary results on charged jets in pPb from July 2013

- Note that several fine details changed in the final results though the physics message stays the same
- Especially the preliminary jet yield ratio suffers from low statistics since the preliminary used only ½ of the data
- Final results publication is in collaboration review and will be published very soon

Charged particle Q_{pPb} shows qualitatively the same behavior