A novel dual-mode tracking device for online dose monitoring in hadron therapy

53rd International Winter Meeting on Nuclear Physics Bormio 26-30 January 2015

Tumor treatment with radiation/particle

Hadrontherapy protons, carbon ions...

Main difference is shape of dose release (dose=dE/dm)

Radiotherapy vs Hadrontherapy

Radiotherapy

- Used for ~60% of patiens
 (also together with surgery)
- "Easy" but implies large doses to healty tissues
- Problems with radioresistent tumors and close to critical organs

Hadrontherapy

- Localized energy distribution spares healthy tissues
- Great efficiency in killing cells
- Needs more sophisticated facilities

Spread Out Bragg Peak (more beams combined)

Cecilia Voena

Radiotherapy vs Hadrontherapy

- Combination of many radiation fields allows improving the performances for localized tumors and preserve healty tissues
- The combination of few proton fields is extremely powerful in preserving healty tissues

Proton vs Carbon beams

- Protons suffer more multiple scattering but are less affected by fragmentation
- Carbon ions have reduced multiple scattering but more fragmentation. More efficient in killing cells (higher ionization density), more effective in hypoxic tumors.
 Drawback: need bigger facilities

Particle Theraphy in Europe

Dose monitoring in particle therapy

- Together with improving precision of hadrontherapy in tumor irradiation comes the necessity of new dose release monitoring technique:
- cannot exploit trasmitted beam as in radiotherapy
- can exploit secondary particles produced in the interactions of the beam within the patient
- stringent requirements due to space constraints in treatment room
- should provide feedback "on-line"

Dose monitoring in particle therapy

Point production is correlated with Bragg peak!

β⁺ emitters results in 2 back-to-back photons with E=511 keV

prompt photons emitted in nuclear de-excitation E<10 MeV

charged particles(p) produced in nuclear fragmentation E<200MeV

γ from β^+ emitters

- β⁺ produced in de-excitation of isotopes (¹¹C,¹⁵O..)
- Can use PET (Positron Emission Tomography) technique to detect the two photons

The activity emission shape is correlated with dose ditribution

- Spatial constraints in treatment room prevent standard PET
- Offline PET can be used, but metabolic wash out deteriorates resolution
- In-beam solutions under R&D

Prompt Photons

- Advantage: more abundant than other secondaries
- Disadvantages:
 - High background due to neutrons
 - Not easy back-pointing γ direction, can take profit by SPECT technique but energy range (1-10MeV) not favorable. R&D in progress

A.Ferrari and FLUKA collaboration (73 MeV/u C ion)

Flux and spectrum measured at different energy and angle e.g: 200MeV/u ¹²C beam (GSI, Germany)

$$\begin{split} \Phi^{\gamma}(E > 2MeV @ 60^{\circ}) &= (6.59 \pm 0.22_{stat} \pm 1.07_{syst}) \times 10^{-3} sr^{-1} \\ \Phi^{\gamma}(E > 2MeV @ 90^{\circ}) &= (7.39 \pm 0.38_{stat} \pm 1.27_{syst}) \times 10^{-3} sr^{-1} \\ \Phi^{\gamma}(E > 2MeV @ 120^{\circ}) &= (5.02 \pm 0.24_{stat} \pm 1.34_{syst}) \times 10^{-3} sr^{-1} \end{split}$$

<u>Under preparation: "Precise measurement of prompt photon</u> <u>emission from 220 MeV/u carbon ion beam irradiation"</u>

Cecilia Voena

Charged particles

- Protons, deutons, tritium...
- Advantages:

Detection efficiency very high and can be easily backtracked

 Disadvantages: there is an escape threshold (50-100MeV) they are not so many especially for proton beams

GSI measurement

$$\begin{split} \Phi^{p}(\Omega_{LYSO})_{\theta=60^{o}} &= (8.78 \pm 0.07_{stat} \pm 0.64_{syst}) \times 10^{-3} sr^{-1} \\ \Phi^{d}(\Omega_{LYSO})_{\theta=60^{o}} &= (3.71 \pm 0.04_{stat} \pm 0.37_{syst}) \times 10^{-3} sr^{-1} \\ \Phi^{t}(\Omega_{LYSO})_{\theta=60^{o}} &= (0.91 \pm 0.01_{stat} \pm 0.21_{syst}) \times 10^{-3} sr^{-1} \\ \Phi^{p}(\Omega_{LYSO})_{\theta=90^{o}} &= (1.83 \pm 0.02_{stat} \pm 0.14_{syst}) \times 10^{-3} sr^{-1} \\ \Phi^{d}(\Omega_{LYSO})_{\theta=90^{o}} &= (0.78 \pm 0.01_{stat} \pm 0.09_{syst}) \times 10^{-3} sr^{-1} \\ \Phi^{t}(\Omega_{LYSO})_{\theta=90^{o}} &= (0.128 \pm 0.005_{stat} \pm 0.028_{syst}) \times 10^{-3} sr^{-1} \end{split}$$

L.Piersanti et al. <u>"Measurement of charged</u> <u>particles yields from PMMA irradiated by</u> <u>220 MeV/ u ¹²C beam</u>" **PMB 59 (2014) 1857-1872**

The dose profiler project

- Dual-mode detector for measurement of both charged particles and prompt photons
- Part of INSIDE project which foresees also a PET detector
- Designed to be installed in CNAO treatment rooms
 Dose profiler

at 60° to maximize flux

PET-heads

The dose profiler design

- 6 fiber planes X+Y BFC-12 scintillator 0.5mm thick with 2cm pitch, area of 19x19cm², readout with SiPM
- 2 pairs of plastic scintillators (electron absorber) 6mm thick (each) with SiPM readout

The dose profiler design

 4x4 LYSO crystals matrices, 16x16 pixel (3mmx3mmx2cm) read out by multianode PMTs

Dose profiler principle

- Charged particles cross all layers
- Prompt photons back-traced by reconstructing Compton interaction

Dose profiler realization status

Complete simulation (FLUKA) and reconstruction software have been developed to optimize design and estimate perfomances

Charged particles reconstruction

Simulation: protons of different energies and depths

E= 90-250 MeV depth = 25cm or 30cm from dose profiler

Reconstruction efficiency

Charged particles reconstruction

Spatial resolution on point of origin (single proton)

Simulation: protons of different energies and depths

E= 90-250 MeV depth = 25cm or 30cm from dose profiler

Preliminary Extrapolating to a realistic treatement (for a single slice, dose= 2Gy/fraction) the expected global resolution is ~0.4mm

Cecilia Voena

Prompt photon reconstruction

Particle "identification"

Exploit different energy release in the calorimeter

Conclusions

- Particle therapy is very effective in curing localized tumors (expecially radio-resistent tumors) preserving surrounding healty tissues
- On-line dose monitoring is curcial to improve performances:
- Secondary particles coming out from the patient can be exploited
- A dual-mode dose-profiler is under construction to detect prompt photons and charged particles (part of INSIDE project that includes also 2 PET heads)
- Test in treatment room at CNAO forseen end of 2016

Backup

Secondary particles: measurements

The **fluxes of secondary particles are largely unknown:** MonteCarlo simulation not reliable => need of measurements

• PET Photons

Prompt Photons

• Fragmentation

(charged particles)

flux and profile for different energies:

- 80 MeV/u ¹²C beam
- 102,125,144 MeV/u ⁴He beam
 flux and spectrum for different energies:
- 80, 220 MeV/u ¹²C beam
- 50-300 MeV/u ¹⁶O beam 60°, 90°,120°
- 50-300 MeV/u ⁴He beam

flux and spectrum for different energies:

- 80, 220 MeV/u ¹²C beam 60°, 90°
- 50-300 MeV/u ¹⁶O beam 0°,5°,10°20°,30°
- 50-300 MeV/u ⁴He beam

The INSIDE Project

fondazione CNAO

Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori

Centro Fermi project

INnovative Solutions for In-beam DosimEtry in Hadrontherapy

24^[OBJ]

