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A physicist, in 2015, cannot make
an ab initio, accurate prediction
from the physics of the strong

force regarding the systems
where this force is important:
the properties and behavior of
matter at and above nuclear
density.

This can be done for gravitation,
the weak force, and

electromagnetic forces.

This is a major hole in modern
physics.
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From Neutron Star Mass-Radius Relation p—
to the Equation of State = f(p)

+ Lindblom (1992) showed that each Dense Matter Equation of State maps to a unique
Mass-Radius relationship for neutron stars.

+ Ozel and Psaltis (2009) demonstrate how to perform the inverse problem: take the
mass-radius relationship, and produce an equation of state. Only ~5-7 such objects
are needed, but “with different masses”, to derive a new dense matter equation of

state.

* Thus, measurement of the neutron star mass-radius relationship would implicate a
unique dEOS.
F,x M(< R)

Short Course:
Gravity pulls inward
Pressure Pushes Outward
Result: R=f(M)

The Dense Matter Equation of State
is an important Strong Force Regime
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*  Each different proposed dEOS
produces a different mass- 2.0

radius relationship for >
neutron stars. = 15

w

e Thus, measure the mass- L
radius relationship of neutron = 1 g

stars, and you have a
measurement of the dEOS.

*  Precision requirement -- 5%
in mass and radius, separately. 0.0

* A larger uncertainty is useless 8 10 12 14 16
to nuclear physics. Radius (km)



Mass-Radius Relation from the
Equation of State

Measuring the Mass and Radius simultaneously is difficult.
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Precision Radius Measurements (<5%) may be they key to
measuring the dEOS.

Timing measurements -- which permit NS mass measurements --
are limited in precision by the stability of rotation in NS (very high)
and the precision of the comparison clocks (very high).

VERY LOW SYSTEMATIC UNCERTAINTIES
Result: Masses are measured to 0.0001%




Mass-Radius Relation from the
Equation of State

Measuring the Mass and Radius simultaneously is difficult.
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Three Observational Approaches to Measure the
Neutron Star Mass+Radius Relation

Front-side hotspot rotates through the line of sight

veioqel

* Millisecond X-ray Pulsar Phase-Resolved Spectroscopy
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* Type | X-ray Bursts (Radius Expansion)

* Quiescent Transient Low-Mass X-ray Binary Spectroscopy

Optical image
(in outburst)




Millisecond Pulsars: X-ray
Pulse Shape

Front-side hotspot rotates through the line of sight

vioae;

A/

e

The more compact
(higher M/R) the NS,
the more “washed
out” the pulse shape
is.
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Increasing compactness (M/R) and light bending

1
Pulse phase
Source: K. Gendreau (NASA/GSFC)

invisible surface

See Work by Bogdanov (2007, 2013), Psaltis et al (2014).

Neutron Star Interior

Composition ExploreR
(NICER)

® Will be mounted on
International Space Station (late

2016; NASA).

18

%2 contours
30 50

B\ 1 Msec NICER|
N exposure

® Part of Primary Science: Use
Pulsar-Phase Intensity Modelling
to constrain the neutron star
M/R for PSR J0437-4715.

i edny
N > o

Number of photons
(x106)
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® Combining this with phase

resolved spectroscopy, the ™
group claims they can place the =
shown constraint on the =4
neutron star mass and radius £ |
for PSR J0437-415. 10
05
Source: K. Genreau (NASA/GSFC) )
- ozt BASAC
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See Work by Bogdanov (2007, 2013), Psaltis et al (2014). Neutron star radius (km)



Figure 7 from Feryal Ozel 2013 Rep. Prog. Phys. 76 016901
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rmodel calculations, finding limitatiol Color Temperature at Infinity (keV)
~ theoretical uncertainties. Others collect these Suleimgnoy ot 2l (2010)
“uncertainties in a Color Correction Factor (a SO .
- model free parameter), with the idea that 25
~ statistical characterization of this CCF will
permit measurements. '

g
=

If these theoretical ambiguities can be

overcome, this will likely be the best way to

measure neutron star masses and radii, due
- the very high fluxes of type | X-ray bursts.
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Neutron star mass M / Mg,
—
n

12 16
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Quiescent Low Mass
X-ray Binaries (qLMXB)

Outburst

of the NS Aql X1
T 3

0

S e

Optical image
(in outburst)

Optical image
(in outburst)

600
Time (days)

Quiescence

* Transient LMXBs in quiescence are H atmosphere neutron stars, powered by a core
heated through equilibrium nuclear reactions in the crust.

Brown, Bildsten & RR (1998)

gLMXBs, in this scenario, have pure Hydrogen
atmospheres

* When accretion stops, the He (and
heavier elements, gravitationally
settle on a timescale of ~10s of
seconds (like rocks in water), leaving
the photosphere to be pure
Hydrogen (Alcock & lllarionov 1980,
Bildsten et al 1992).

Gravity

Brown, Bildsten & RR (1998)



Emergent Spectrum of a

Neutron Star Hydrogen Atmosphere

*H atmosphere calculated Spectra
are ab initio radiative transfer
calculations using the Eddington
equations.

* Rajagopal and Romani (1996); Zavlin et al (1996); Pons et al
(2002; Heinke et al (2006) -- NSATMOS; Gaensicke, Braje &
Romani (2001); Haakonsen et al (2012)

All comparisons show consistency within ~few % (e.g. Webb et al
2007, Haakonsen 2012).

“Vetted”: X-ray spectra of Zavlin, Heinke together have been
used in several dozen analyses by several different groups.

R\’
F = 47TUSBT§H,OO (F)
R
Ry =
12

-3
RR et al (1999,2000)

Non-Equilibrium Processes in the Outer Crust

lllllllfl*]llllllTl

Zavlin, Pavlov and -
Shibanov(1996) - NSA : -

————blackbody, :
IR IR AR I

-1
Log E [keV]

Beginning with
© cpm Reaction App M es/)/np)
1.5 56Fe 0.08 0.01
1.1 56Cr 0.09 0.01
7.8 56Tj 0.1 0.01
25 %Ca 0.1 0.01
6.1 56Ar 0.12 0.01 .
Non-Equilibrium Processes in the Inner Crust Beg I n S H e re
@ em Reactn X oo Ends Here
9.1 528 0.07 0.09
1.1 468 0.07 0.09
1.5 “Mg
34Ne+ 0.29 0.47
1.8 68Ca 0.39 0.05
2.1 62Ar 0.45 0.05
2.6 563 0.5 0.06
3.3 50G; 0.55 0.07
4.4 44Mg
36Ne+
68Ca 0.61 0.28
5.8 62Ar 0.7 0.02
7.0 603 0.73 0.02
9.0 54Gi 0.76 0.03
A e oo 1347 Mev per np
1.1 r 0.8

0.01 Brown, Bildsten & RR (1998)



How to Measure a Neutron Star Radius.
The Assumptions: The Systematic Uncertainties.

* H atmosphere neutron stars. Expected from a Hydrogen companion LMXB; can be supported
through optical observations of a H companion. Strongly justified on theoretical grounds.

- Low B-field (<10 G) neutron stars. This is true for ‘standard’ LMXBs as a class, but difficult to
prove on a case-by-case basis.

+ Emitting isotropically. Occurs naturally when powered by a hot core.

* Non-Rotating neutron stars. gLMXBs are observed to rotate at 100-600 Hz. This can be a
significant fraction of the speed of light. Doppler boosting and deviation from NS spheroidal geometry
are not included in emission models.

» Consider neutron star masses >0.5 solar mass, only.

If you don’t like these assumptions:
“We find the assumptions not strongly supported and therefore ignore this result.”
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Every photon i time tagged (~1 sec), with its energy
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The qLMXB Factories: Globular Clusters
* GCs : overproduce LMXBs by 1000x vs. field stars

*Many have accurate distances measured.

qLMXBs can be
identified by their
soft X-ray spectra,
and confirmed with
optical counterparts.

NGC 5139 (Omega Ten

v o, '. '

NGC D (kpc) +/-(%)
104 513

288 9.77 3
362 10 3
4590 11.22 3
5904 8.28 3
7099 9.46 2
6025 7.73 2
6341 8.79 3
6752 4.61 2

Carretta et al (2000)
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NGC 5139 (Omega Cen)

CXOU 132619.7—472910.8: Chandra ACIS-I

X-ray Spectrum is
inconsistent with
any other type of

known GC source

(pulsars, CVs,
coronal sources).
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Full confirmation as
LMXB requires
Hubble photometry N

R kT (1e20 cm
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Measuring the Radius of Neutron Stars from gLMXBs in

Globular Clusters

» The 2.0 solar mass neutron stars favor
hadronic dEOSs over quark and phase-
transition dEOSs. These have the property
of a quasi-constant neutron star radius.

» Analysis goal: Using all suitable gLMXB X-
ray data sets of targets (there are five)
provide the most reliable neutron star radius
measurement possible.

» Assume the radius of neutron stars is quasi-
constant (a constant, at astrophysically
important masses, within measurement
error).

+ Perform a Markoff-Chain-Monte-Carlo
(MCMC) and include all known uncertainties
and use conservative assumptions.

The Neutron Star Radius

WEFT —F—Ms |
W GM3

(/g I
2.5 a3 — _—/,A:,‘,) /
Wi ENG X,
WFFKIAM\\
2.0 o Ri
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9.1713 km
(90%conf.)

WFF1

<11 km (99% conf).

.,,s ,
M-R by J.
Lattimer

WFF1=
Wiring, Fiks
and Fabrocini
(1988)

Contains
uncertainties from:
Distance
All spectral
parameters
Calibration




New Result: Guillot & RR (2014)

* PAL1 (Prakash et al
1988), MSO (Muller &
Serot 1996) both
excluded with >99%
confidence. (Chisqr
analysis)

« CEFT1 is favored over
CEFT2,3 (Hebeler et al
2013). (Chisqr
analysis)

» Assuming it is
constant (independent
of mass), the
Bayesian constraint
is:

30

9.4+1.2km (96% conf) T CEFT3N
MSO

Rys (km)

Rys = 9.4+ 1.2 km (90% conf)

16




Calorimeter response curves

Simultaneous Mass and Radius Measurement

8 T T |

Requirement: 250k-300k P
counts with calorimeter (2.5 €V) a
energy resolution. L

I Error Ellipses
| | (R=10 km, M=1.4) |
\r H Field Source (5 ksec)

l " : Omega Cen (230 ksec) -
|

M13 (150 ksec)
M28 (155 ksec)
NGC 2808 (310 ksec)
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ATHENA+ has the Jcapablllty of measurlng the fn
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Energy
Resolution
(E/dE)

Collecting Area

Mission Status

(cm2) at 1 keV

Chandra Launched 1999.
(NASA-USA) 7l 10 Operating
nominally
Launched 1999.
XMM .
(ESA-Europe) 4650 10 Oper_atmg
nominally
Astro-H Lenre
(JAXA-Japan) 180 500 Dec 2015
Athena+ Planned Launch
(ESA-Europe) 20,000 667 2028

31

Distances will be measured using GAIA, before 2020.

+ Launched (to L2) 2013, now taking data. 5

years, all-sky-survey.

V # Op—arcsec Disst);/ace
(millions) (kpo)
10 10.34 | 7 4.2
15 20 22 | 1.4
20 |1000| 250 | 0.12

Estimate for # of gLMXBs within 1.4 kpc
= 2000/galaxy *(1.4 kpc/10 kpc)A2 = 40







