W-boson production measurements with ALICE in p-Pb collisions at 5.02 $\, {\rm TeV}$

Kgotlaesele Johnson Senosi for the ALICE collaboration

Department of Nuclear Physics iThemba LABS - Cape Town & Department of Physics University of Cape Town

53rd International Winter Meeting on Nuclear Physics

BORMIO, Januray 26-30, 2015

1

Outline

- 1 Why and How
- 2 ALICE setup
- 3 Data samples

4 Analysis strategy

- \circ Signal (W) and ${\rm Z}/\gamma^*$ templates
- Heavy-flavour background
- Signal extraction: global fits
- Systematics uncertainties

5 Results

- \circ Cross sections
- \circ Comparison to pQCD calculations
- \circ Yields as a function of event activity

6 Summary

Why

- $\bullet~\mathrm{W}$ is an electroweak probe produced in hard interactions
- Dominant production process: quark-antiquark annihilation

$${f u}ar {f d} o {f W}^+ {f d} ar {f u} o {f W}^-$$

In proton-proton (pp) collisions:

• Sensitive to parton distributions functions (PDFs)

In proton-lead (p-Pb) collisions:

- · Sensitive to modification of parton distributions inside the nucleus
- Test binary scaling of hard processes
- Probes the (anti-)shadowing Bjorken-x region in the rapidity ranges $2.03 < y_{\rm cms} < 3.53$ and $-4.46 < y_{\rm cms} < -2.96$

In lead-lead (Pb-Pb) collisions:

- Not sensitive to strong interaction \Rightarrow reference for medium-induced effects
- Test binary scaling of hard processes

How

• Measured in single muon decay: no modification by the QCD medium

- + $p_{
 m T}$ distribution is a Jacobean peak with maximum at $p_{
 m T}~\sim M_{
 m W}/2$
- + W boson dominates the single-muon p_{T} spectrum at $p_{\mathrm{T}}~>$ 30 GeV/c
- Single-muon decays of Z/γ^* and QCD (muons from heavy-flavour decays) are the main background sources Eur. Phys. J.C(2007)149

+ W-boson signal is extracted by fits to the single-muon p_{T} distribution

ALICE setup

 ALICE setup indicating detectors used for multiplicity (event activity) determination and muon reconstruction _____

Data samples

- + p-Pb collisions at $\sqrt{\textit{s}_{\rm NN}}$ = 5.02 TeV ($\rm E_p=4$ TeV and $\rm E_{Pb}$ = 1.58 ATeV)
- Two beam configurations with a rapidity shift ($\triangle y = 0.465$) in the proton direction Forward (p-Pb) Backward (Pb-p)

 $2.03 < y_{\rm cms} < 3.53$

 $-4.46 < y_{\rm cms} < -2.96$

 \Rightarrow y_{cms} covered by the muon spectrometer

- Statistics
 - High $p_{
 m T}$ muon triggered events (V0A & V0C & muon with $p_{
 m T}~\gtrsim$ 4 GeV/c)

	Integrated Luminosity $({ m nb}^{-1})$	
Forward	4.9	
Backward	5.8	

- Muon track selection:
 - Geometrical acceptance cuts
 - Matching of the tracking and trigger tracks to reduce background from punch-through hadrons
 - Correlation of momentum (*p*) and Distance of Closest Approach (DCA) to the interaction point to reduce tracks from beam-gas collisions and particles produced in the absorber

Analysis strategy

Background sources:

- $8 < p_{\rm T} < 40~{\rm GeV}/c$: heavy-flavour decay muon background is dominant
- $p_{\rm T}~>50~{\rm GeV}/c$: ${\rm Z}/\gamma^*$ is the main source of background

• W^{\pm} signal is extracted by fitting the single-muon p_{T} spectrum with:

$$f(p_{\mathrm{T}}) = N_{\mu \leftarrow \mathrm{QCD}} \cdot f_{\mu \leftarrow \mathrm{QCD}} + N_{\mu \leftarrow \mathrm{W}} \cdot f_{\mu \leftarrow \mathrm{W}} + N_{\mu \leftarrow \mathrm{Z}/\gamma^*} f_{\mu \leftarrow \mathrm{Z}/\gamma^*}$$

where:

 $\begin{array}{ll} f_{\mu\leftarrow QCD} &= \mbox{functions or templates of muons from heavy-flavour decays} \\ f_{\mu\leftarrow W}, f_{\mu\leftarrow Z/\gamma^*} &= \mbox{POWHEG based Monte Carlo (MC) templates [JHEP 0807(2008)060]} \\ N_{\mu\leftarrow QCD}, N_{\mu\leftarrow W} &= \mbox{free normalization parameters} \\ N_{\mu\leftarrow Z/\gamma^*} &= \mbox{fixed to } N_{\mu\leftarrow W}, \mbox{ using ratios of cross-sections from MC } \frac{\sigma_{\mu\leftarrow Z/\gamma^*}}{\sigma_{\mu\leftarrow W}} \end{array}$

• Extracted signal is corrected for Acceptance×Efficiency (A imes arepsilon) to obtain the yield

Signal (W) and ${\rm Z}/\gamma^*$ templates

Simulation configuration:

- W and Z/γ^* events generated using POWHEG1 (default) with CTEQ6m2 PDFs in pp and pn collisions
- Forced to decay to μ^\pm

Generators and their roles:

♦ POWHEG:

• Generate hard events at Next to Leading order, no showering (no radiative corrections) and no shadowing

♦ **PYTHIA6.4**³:

- Used to include shadowing parameterized by EPS09⁴ (p and n considered inside the Pb)
- Used only for systematic determination

Combine pp and pn with

$$\frac{1}{N_{\rm pPb}} \cdot \frac{dN_{\rm pPb}}{dp_{\rm T}} = \frac{Z}{A} \cdot \frac{dN_{\rm pp}}{dp_{\rm T}} + \frac{A-Z}{A} \cdot \frac{dN_{\rm pn}}{dp_{\rm T}}$$

to obtain the templates, where

A = 208 (mass number of the Pb nucleus) Z = 82 (atomic number of the Pb nucleus) ¹JHEP 0807(2008)060

Heavy-flavour background

- ♦ Fixed Order Next-to-Leading-Log based template (FONLL) [JHEP 1210 (2012) 137]:
 - Muons from B and D mesons in pp collisions at $\sqrt{s} = 5.02$ TeV http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html
 - CTEQ6.6 parton distribution functions is used
 - Small effects of nuclear modification of the PDFs at high $p_{\rm T}$ Nucl. Phys. A931 (2014) 546-551
- **\diamond** Phenomenological functions used by other LHC experiments:
 - ATLAS function [ATLAS-COM-CONF-2011-088]:

$$f_{bkg}(p_{\mathrm{T}}) = a \cdot \exp\left(-b \cdot p_{\mathrm{T}}\right) + c \cdot rac{\exp(-d \cdot \sqrt{p_{\mathrm{T}}})}{p_{\mathrm{T}}^{2.5}}$$

• 2^{nd} term of the ATLAS function:

$$f_{bkg}(p_{\mathrm{T}}) = c \cdot rac{\exp(-d \cdot \sqrt{p_{\mathrm{T}}})}{p_{\mathrm{T}}^{2.5}}$$

Signal extraction: global fits

Kgotlaesele Johnson Senosi (UCT& iThemba LABS)

W-boson production

Systematics uncertainties

- \diamond $N_{\mu \leftarrow W}$ is a weighted average over a large number of fit trials, varying:
 - The p_{T} range where the fit is performed
 - QCD or Heavy-flavour decay muons background description
 - Fraction of ${\rm Z}/\gamma^*$ to ${\rm W}$ decay muons: \Rightarrow obtained using PYTHIA and POWHEG
 - Alignment effects \Rightarrow vary the position of detector elements
- \diamond The statistical error is given by propagating the error on each trial
- \diamond Systematic error is estimated assuming $\textit{N}_{\mu \leftarrow \mathrm{W}}$ is extracted from a uniform distribution
 - Signal extraction \Rightarrow vary between \sim 6 % and \sim 10 %
 - Acceptance×Efficiency: A × ε
 ⇒ estimated with two generators: about 1%
 - Alignment effects
 - \Rightarrow systematics from detector configuration found to be < 1%
 - Tracking/trigger efficiencies
 - \Rightarrow tracking 2%, trigger 1% and track and trigger matching 0.5%
 - \Rightarrow propagate to $\mathrm{N}_{\mu\leftarrow\mathrm{W}}$ \Rightarrow conservative uncertainty of 2.5% considered

\diamond These systematics hold for all event activity (multiplicity) bins

Computing the cross section

• Cross-section is computed as:

$$\sigma_{\mu \leftarrow \mathrm{W}} = \frac{N_{\mu \leftarrow \mathrm{W}}}{\mathrm{A} \times \varepsilon} \times \frac{1}{\mathrm{L_{int}}}$$

where the integrated luminosity is:

$$\mathrm{L_{int}} = \frac{\textit{N}_{\mathrm{MB}}}{\sigma_{\mathrm{MB}}} = \frac{\textit{N}_{\mathrm{MSH}} \times \textit{F}_{\mathrm{norm}}}{\sigma_{\mathrm{MB}}}$$

and $\mathbf{A}\times\varepsilon$ – acceptance and efficiency factor

- High p_{T} muon triggered (MSH) data sample
- Number of MSH events ($N_{\rm MSH}$) must be normalized to the number of minimum-bias (MB) events $N_{\rm MB}$ to obtain the integrated luminosity:
- \diamond The normalization factor $\textit{F}_{\rm norm}$ is the fraction of MSH events in the MB triggered data:
 - Computed with two methods

 $Method \ 1: \ uses \ offline \ information \ from \ trigger \ inputs$

Method 2: uses online information from trigger counters (scalers)

- Takes into account pile-up
- \Rightarrow Systematic difference between these methods is $\sim 1\%$

 $\diamond~\sigma_{\rm MB}$ = 2.09 $\pm~$ 0.07 b and $\sigma_{\rm MB}$ = 2.12 $\pm~$ 0.06 b for p–Pb and Pb–p, respectively JINST 9 (2014) 11, P11003

Cross sections

- Cross section of $\mu \leftarrow W$ is measured in two rapidity intervals, $2.03 < y^{\mu}_{cms} < 3.53$ and $-4.46 < y^{\mu}_{cms} < -2.96$
- Isospin effects are visible at backward rapidity
- \Rightarrow more d-quarks than u-quarks in Pb compared to p, thus $\sigma_{W^-}\sim\sigma_{W^+}$ at forward rapidity and $\sigma_{W^-}>\sigma_{W^+}$ at backward rapidity

Cross sections vs pQCD at NLO calculations

- Cross section of $\mu \leftarrow W$ is measured in two rapidity intervals, $2.03 < y^{\mu}_{cms} < 3.53$ and $-4.46 < y^{\mu}_{cms} < -2.96$
- pQCD at NLO with CT10 (PDFs) predictions by H. Paukkunen et al¹ are in agreement with measurements within uncertainties

¹JHEP 1103 (2011) 071

Kgotlaesele Johnson Senosi (UCT& iThemba LABS)

Cross sections vs pQCD at NLO calculations with nuclear PDF

- Cross section of $\mu \leftarrow W$ is measured in two rapidity intervals, $2.03 < y^{\mu}_{cms} < 3.53$ and $-4.46 < y^{\mu}_{cms} < -2.96$
- pQCD at NLO with CT10 (PDFs) and EPS09 (nPDFs) predictions by H. Paukkunen et al $^{\rm 1}$ are compared with measurements
- With nPDFs the theory is in better agreement with the measured $\sigma_{\mu^+ \leftarrow W^+}$ and $\sigma_{\mu^- \leftarrow W^-}$ at forward rapidity within uncertainty

¹JHEP 1103 (2011) 071

Kgotlaesele Johnson Senosi (UCT& iThemba LABS)

$\langle \textit{N}_{\rm coll} \rangle$ scaling

- $N_{\rm coll}$ is the number of binary nucleon-nucleon collisions
- Since ${\rm W}$ production is a hard process it is expected to scale with $\textit{N}_{\rm coll}$
- The average number of binary collisions $\langle N_{\rm coll}\rangle$ is expected to be correlated with event activity/multiplicity
- \diamond Different multiplicity estimators with different approaches were used to extract $\langle N_{\rm coll} \rangle$:
 - Glauber Model+Negative Binomial Distribution fits to amplitude of \Rightarrow the signal in the VZERO detectors on either side of the interaction point (V0A and V0C)

 \Rightarrow the number of clusters in the first layer of the SPD detector (CL1)

• Hybrid method:

 \Rightarrow Zero Degree Calorimeters on both sides of the interaction point (ZNA and ZDC): scaling $\langle N_{\rm part} \rangle$ in minimum-bias collisions by the ratio between the average multiplicity density measured at mid-rapidity in a given zero degree calorimeter energy event class and the one measured in minimum bias collisions

Systematic uncertainty on the normalisation to $\langle N_{\rm coll}\rangle$ range from 8% to 21% depending on a multiplicity bin

ALICE Collaboration, Particle production and centrality in p-Pb, arXiv:1412.6828 [nucl-ex]

$\mathrm{Yield}/\langle \mathit{N}_\mathrm{coll}\rangle$

- Yield/ $\langle N_{\rm coll} \rangle$: test the binary scaling of hard processes
- In order to increase statistics $\mu^+ \leftarrow \mathrm{W}^+$ and $\mu^- \leftarrow \mathrm{W}^-$ were combined
- $\mu \leftarrow W$ yield per binary collision is independent of event activity within systematics

Summary

• Production of $\mu^- \leftarrow W^-$ and $\mu^+ \leftarrow W^+$ was measured in two rapidity ranges in p-Pb collisions at $\sqrt{s_{\rm NN}}{=}5.02~{\rm TeV}$

Cross section:

- Theoretical predictions (pQCD NLO with CT10 PDFs) are in agreement with the measured cross sections with uncertainties
- Theoretical predictions including nPDFs provides a better agreement with the measured cross sections

Yield normalized to $\langle N_{\rm coll} \rangle$:

- Estimated with 3 multiplicity estimators
- Independent of the collision multiplicity within systematics

Backup

Method 1:

 \Rightarrow offline method which uses trigger inputs

$$F_{\rm norm}^{\rm MSH} = \frac{N_{\rm MB} \times F_{\rm pile-up}}{N_{\rm (MB\&\&0MSL)}} \times \frac{N_{\rm MSL}}{N_{\rm (MSL\&\&0MSH)}}$$

where $F_{\rm pile-up} = \mu/(1 - e^{-\mu})$ and μ is the mean value of the Poisson distribution which describes the probability to have N collisions, MSL is muon single low ($p_{\rm T} \gtrsim 0.5 \text{ GeV}/c$)

Method 2:

 \Rightarrow which uses L0b counters.

$$\label{eq:F_norm} \textit{F}_{\rm norm}^{\rm MSH} = \frac{\rm L0b_{\rm MB} \times purity_{\rm MB} \times \textit{F}_{\rm pile-up}}{\rm L0b_{\rm MSH} \times \textit{PS}_{\rm MSH}}$$

where $\rm MB$ is minimum-bias and $\rm PS_{MSH}$ is the fraction of $\rm MSH$ which passes physics selection.

Signal extraction: Global fits

• Fit range $12 < p_{\rm T} < 80~{\rm GeV}/c$, $\aleph_{\mu \leftarrow {\rm W}}$ extracted by integrating from $10 < p_{\rm T} < 80~{\rm GeV}/c$

 $\langle N_{coll} \rangle$

$$\langle N_{\rm coll} \rangle = \langle N_{\rm part} \rangle_{\rm MB} \times \Big(\frac{\langle dN/d\eta \rangle_{\rm i}}{\langle dN/d\eta \rangle_{\rm MB}} \Big)_{-1 < \eta < 0} - 1$$

Summary of the systematics

- \diamond Systematics on the generator based on POWHEG and PYTHIA
 - PYTHIA also used to take into account shadowing effects
- \diamond Other systematics:
 - variation of the input PDFs
 - ${\rm Z}/\gamma^{*}$ to ${\rm W}^{\pm}$ fraction

both negligible

◊ Summary of the systematics:

Signal extraction	
(includes alignment, fit stability/shape, etc.)	from $\sim 6\%$ to $\sim 10\%$
Acc.×Eff.	
 track./trig. efficiencies 	2.5%
– alignment	< 1 %
Normalisation to MB	
– F _{norm}	1%
$-\sigma_{\mathrm{MB}}$	3.2% (forward) 3% (backward)