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Introduction
Stable nuclei are qualitatively described by “simple” models
@ (semi-empirical) liquid-drop model
@ (basic) shell model
New techniques enable ab-initio methods (A-body models)
What happens far from stability ?
Experimentally, Radioactive-lon Beams (RIB) available since 80s

= study of structure far from stability
= discovery of exotic structures

@ halo nuclei
@ shell inversions
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@ Basic features in nuclear structure
@ Liquid-drop model
@ Shell model

@ Ab-initio nuclear models

© Superheavy nuclei

© Radioactive-lon Beams

© Oddities far from stability : halo nuclei

@ Experimental techniques
@ Active targets
@ Electron-ion collider

ﬂ Summary



Basic features in nuclear structure Liquid-drop model

Electron scattering

Nuclear charge distributions can be studied by electron scattering
At the Born approximation
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Basic features in nuclear structure Liquid-drop model

Charge distributions in (stable) nuclei
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e constant density p, out to the surface (saturation)
@ same skin thickness ¢

(Stable) nuclei look like liquid drops of radius R « A!/?
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model

Bethe-Weizsacker semi-empirical mass formula

B(Z,N) = a,A -

| | 1 | 1 1 1 | ! | | |

20 40 60 80 100 120 140 180 180 200 220 240
A



Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Bethe-Weizsacker semi-empirical mass formula

B(Z,N) = a,A — a,A*? -
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Bethe-Weizsacker semi-empirical mass formula
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model
Bethe-Weizsacker semi-empirical mass formula
Z(Z-1) (A —27)?
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model

Bethe-Weizsacker semi-empirical mass formula

B(Z,N) = a,A — a,A*> — ac
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Basic features in nuclear structure Liquid-drop model

Liquid-drop model

Bethe-Weizsacker semi-empirical mass formula
A - 27)?
( ) +0(A,2)

B(Z,N) = a,A — a,A*? —a

Exoenergetic reactions :

e fission of heavy nuclei

(nuclear power plants,
atomic bomb)

e fusion of light nuclei

(stars, thermonuclear

weapons)
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Basic features in nuclear structure Liquid-drop model

Variation from the semi-empirical mass formula

S. E. Mass Formula

- M(call (MeV)

M(exp)
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S. E. Mass Formula

More bound systems at Z or N = 2,8, 28,50, 82,126

magic numbers
= shell structure in nuclei as in atoms ?



Basic features in nuclear structure Shell model

Two-nucleon separation energy '
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Basic features in nuclear structure Shell model

Shell model

Developed in 1949 by M. Goeppert Mayer, H. Jensen and E. Wigner

As electrons in atoms,
nucleons in nuclei

feel a mean field

and arrange into shells

Spin-orbit coupling is crucial
to get right ordering of shells

Further splitting ~ Multiplicity —
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Basic features in nuclear structure Shell model

Nowadays
Can we go beyond these models ?

Can we build ab-initio models ?
i.e. based on first principles

@ nucleons as building blocks
@ realistic N-N interaction

What happens away from stability ?

@ Is nuclear density similar for radioactive nuclei ?
@ Are magic numbers conserved ?

@ Is there an island of stability for heavy nuclei ?
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Ab-initio nuclear models

@ Ab-initio nuclear models
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Ab-initio nuclear models

A-body Hamiltonian
Nuclear-structure calculations : A nucleons (Z protons+N neutrons)

Relative motion described by the A-body Hamiltonian
A A
H = Z T; + Z V,‘j
i=1 j>i=1
= solve the A-body Schrédinger equation

{E,} is the nucleus spectrum
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Realistic N-N interactions

V;; not (yet) deduced from QCD
= phenomenological potentials
fitted on N-N observables :

d binding energy,

N-N phaseshifts
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Realistic N-N interactions
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= phenomenological potentials ~  t ]
fitted on N-N observables : B | | ]
d binding energy, E I P
N-N phaseshifts z ! ! ]
Ex. : Argonne V18, CD-Bonn,... * . | ‘ | |
somn %
Reid93
-100 AV18
r [fm] ]
00I51I1I5I225

14/49



Ab-initio nuclear models

Light nuclei calculations
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Ab-initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV’J+ Z Vi + -+

Jj>i=1 k> j>i=1

But there is no such thlng as three-body force. ..
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Ab-initio nuclear models

Three-body force
Need three-body forces to get it right. .

H= ZT+ZV,J+ Z Vi + -

Jj>i=1 k> j>i=1
But there is no such thlng as three-body force. ..

They simulate the non-elementary character of nucleons
= include virtual A resonances, N...

Phenomenological 3-body interaction fitted on A > 2 levels : IL2
Alternatively, derived from EFT
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Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries

with resolution scale A that selects appropriate degrees of freedom :
nuclear physics is not built on quarks and gluons,
but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
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Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries
with resolution scale A that selects appropriate degrees of freedom :
nuclear physics is not built on quarks and gluons,
but on nucleons and mesons
EFT provides the nuclear force with a systematic expansion in Q/A
@ gives an estimate of theoretical uncertainty
e naturally includes many-body forces

[see A. Schwenk’s talk on Tuesday morning]
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Expansion of the EFT force
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Solving the Schrédinger equation
Y usually developed on a basis {|®y,)} :

W) = D (@ P,) D)

[v]
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Ab-initio nuclear models

Solving the Schrédinger equation

HY,) = E,|¥,)

¥ usually developed on a basis {|®y,)} :
W) = D (@ P,) D)

v]
Solving the Schrédinger equation reduces to matrix diagonalisation

(O|HIY,) = Z<<I>MIHI®[v]><®[V]I‘I’n>
[v]
= E, <q)[/1]|\Pn>
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Ab-initio nuclear models

No-core shell model
Slater determinants of 1-body mean-field wave functions ¢,

(€162 ... EalD@p)) = A by, (61) 1,(£2) - . - by, (E4)
But short-range correlations couple low and high momenta
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Ab-initio nuclear models

No-core shell model

Slater determinants of 1-body mean-field wave functions ¢,,
<§1§2 o é‘:Al(D[v]) =A ¢v1(§1) ¢v2('52) e ¢VA(§A)

But short-range correlations couple low and high momenta
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Ab-initio nuclear models

Similarity Renormalisation Group
Idea : apply a unitary transformation
|CI)[V]> = U|CD[V]>
© Hg = U'HU
@ keeps the same spectrum (unitary)

@ keeps the same on-shell properties
(phaseshifts)

e removes the short-range correlations
This has a costs : induces “unphysical” three-body forces
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Ab-initio nuclear models

SRG : example on “He
SRG lowers correlations
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(a) Vavis. (D) Vsrg.
[see A. Schwenk’s talk on Tuesday morning]
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Ab-initio nuclear models

SRG : example on “He
SRG lowers correlations = fastens convergence

(@) Vavis.
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[see A. Schwenk’s talk on Tuesday morning]
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Ab-initio nuclear models

What happens far from stability ?
Liquid-drop and shell models are fair models of stable nuclei

What happens away from stability ?
Are there superheavy nuclei ? [see M. Bloch’s talk on Tuesday]

In 80s Radioactive-lon Beams were developed
Enable study of nuclear structure [see P. Egelhof’s talk on Tuesday]

e are radioactive nuclei compact ?
@ are shells conserved far from stability ?

Study of reactions involving radioactive nuclei
useful for astrophysics
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Superheavy nuclei

© Superheavy nuclei
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Superheavy nuclei

Superheavy nuclei

Does the stability end with U ?

Or is there an island of stability ?

Is Z ~ 114 — 126 a new magic number ?

Search elements heavier than U has started in the 40’s
Pu produced by U+d and U+n (identified by Seaborg in 1941)

Nowadays, use “*Ca fusion on actinide target
Recently, element Z = 117 has been confirmed at GSI
using **Ca+2*Bk [PRL 112, 172501 (2014)]
Element identified by @ cascade
[see M. Bloch’s talk on Tuesday morning]
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Superheavy nuclei

Superheavy Elements — Current Status
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Radioactive-lon Beams

@ Radioactive-lon Beams
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Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes

28/49



Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus
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Radioactive-lon Beams

How ?
Idea : break a heavy nuclei into pieces to produce exotic isotopes
e ISOL : Fire a proton at a heavy nucleus
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Where ?
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ISOL : Isotope Separatlon On Line

len source
{

\_ Post-accelerator
' =

Sy _X Radioactive
ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)
= spallation/fragmentation produces exotic fragments
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ISOL : Isotope Separation On Line

Isotope separator

| = ‘+
p \\\A Radioactive
ion beam

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source
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ISOL : Isotope Separation On Line

lon source

‘__& Radioactive
ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source

Then selected using dipole magnet (A/Q)
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Radioactive-lon Beams

ISOL : Isotope Separation On Line

Prln:‘j
bs
i WSOL

o/|| lon source _
/ 2

.\_ Postacceleratar e

Radlicactive
=
7 ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source

Then selected using dipole magnet (A/Q)

Either used directly (mass measurement, radioactive decay...)
or post-accelerated for reactions (e.g. astrophysical energy)
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Radioactive-lon Beams

ISOL : Isotope Separation On Line

PFII’Y: L
bea 1 |
I Thick & hettarget S O
. lon source
< y
—

\. Post- acce\emmr =

“A Radioactive
ion beam

Isotope separator

high-energy/intensity primary beam of light nuclei (e.g. protons)
on thick target of heavy elements (Ta or UC,)

= spallation/fragmentation produces exotic fragments

Diffuse in the target and effuse to an ion source

Then selected using dipole magnet (A/Q)

Either used directly (mass measurement, radioactive decay...)
or post-accelerated for reactions (e.g. astrophysical energy)

Examples : TRIUMF, ISOLDE (CERN), SPIRAL (GANIL)
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Radioactive-lon Beams

World largest cyclotron
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Radioactive-lon Beams

World largest cyclotron




Radioactive-lon Beams

In-flight projectile fragmentation

s In-flight |

—p s Fragment
separator

Thin target

\Radioactive

@ ion beam
high-energy primary beam of heavy ions (e.g. '*O, ¥Ca, U...)

on thin target of light elements (Be or C)
= fragmentation/fission produces many exotic fragments at ® vpeam
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Radioactive-lon Beams

In-flight projectile fragmentation

s In-flight |

—p s Fragment
separator

Thin target
\Radioactive
ion beam

70/,@,2
high-energy primary beam of heavy ions (e.g. '*O, ¥Ca, U...)
on thin target of light elements (Be or C)
= fragmentation/fission produces many exotic fragments at ® vpeam
Sorted in fragment separator
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Radioactive-lon Beams

In-flight projectile fragmentation

oorind g _ In-flight |

| P=
—'V‘ < Fragment
separator

Thin target

\Radioactive

@ ', 4 lonbeam

high-energy primary beam of heavy ions (e.g. '*O, ¥Ca, U...)

on thin target of light elements (Be or C)

= fragmentation/fission produces many exotic fragments at ® vpeam

Sorted in fragment separator
Used for high-energy reactions (KO, breakup. . .)
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Radioactive-lon Beams

In-flight projectile fragmentation

vt y In-flight |

—‘,Ié‘" Fragment
separator

Thin target

7%;{\,

high-energy primary beam of heavy ions (e.g. '*0, ¥*Ca, U...)

on thin target of light elements (Be or C)

= fragmentation/fission produces many exotic fragments at ® vpeam
Sorted in fragment separator

Used for high-energy reactions (KO, breakup. . .)

Examples : NSCL (MSU), GSI, RIKEN, GANIL

\Radloactwe
4 lonbeam
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Existing GSI

Beschleunigeranlage

- Experimentierplatze

EH Experimentierhalle

ESR Experimentier-Speicherring
FRS Fragmentseparator

SIS Schwerionen-Synchrotron
TH Targethalle

UNILAC Linearbeschleuniger

Darmstadt

r 7l g
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Radioactive-lon Beams

Future : FAIR
Q
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Plasma Physics Production Target

Atomic Physics

35/49



Radioactive-lon Beams

P ti
roperties ISOL

@ Low beam energy
may require post-acceleration
@ Low beam intensity
e Not all elements produced
» Slow
» Chemically limited
e Good beam quality :
can use chemistry to select
fragments
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Radioactive-lon Beams

Properties
ISOL
@ Low beam energy
may require post-acceleration
@ Low beam intensity
e Not all elements produced
» Slow
> Chemically limited
e Good beam quality :
can use chemistry to select
fragments

In-flight
e High beam energy
Viragments ~ Vbeam
e High beam intensity

e Efficient production
» Fast
» Chemically independent
e Many fragments in beam
= needion ID

36/49



Radioactive-lon Beams

Choose according what you want to measure
80

- 100 kW, E/A = 400 MeV

70
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= Stable isotopes
= Fragmentation
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Oddities far from stability : halo nuclei

© Oddities far from stability : halo nuclei
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Oddities far from stability : halo nuclei

Halo structure
Seen as core + one or two neutrons at large distance

[P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987)]
Peculiar structure of nuclei due to small S, or S»,
= neutrons tunnel far from the core to form a halo

Halo only appears for low centrifugal barrier (low ¢)
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Oddities far from stability : halo nuclei

Halo nuclei

e Light, neutron-rich
nuclei

e small S, or S,,
o low-¢ orbital

One-neutron halo
lIBe = 1'Be + n
1SC = 14C +n

Two-neutron halo

W Noyau stable

@ Noyau riche en neutrons
6 4 [@ Noyau riche en protons
He="He+n+n [ Noyau halo dun neutron
1 9 [ Noyau halo de deux neutrons
Hp— H [ Noyau halo d’un proton
I=7LI+N+nNn

Proton halces are possible but less probable : B, !"F
Two-neutron halo nuclei are Borromean. ..

c+n+n is bound but not two-body subsystems

e.g. °He bound but not *He or 2n
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Oddities far from stability : halo nuclei

Borromean nuclei

Named after the Borromean rings. ..
[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]
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Experimental techniques

@ Experimental techniques
@ Active targets
@ Electron-ion collider
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Experimental techniques

Active target detectors
Intensity of RIB much lower than stable beams
= difficult to study reactions
= idea of active target = target and detector
[see P. Egelhof’s talk on Tuesday Morning]

Mylar field strips
window g
\ field wires positive ions
: \ B stainless
T Y TS i steel
front ‘ S _ chamber
pancl ~,
| drift path for
the electrons
| reaction
7| pattern at the
wires plane
3 actio
Frischgrid  \ planc pattern atthe
GASSIPLEX . F pads plane
boards proportional wires
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Experimental techniques Active targets

Applications

Using active targets various reactions can be performed
(inverse kinematics)

e elastic scattering — mater distribution
@ inelastic scattering — giant resonances, B(E2),...
e charge exchange — GT strengths
e transfer — single-particle structure, N correlations,. . .
@ knock-out — single-particle structure
[see P. Egelhof’s talk on Tuesday Morning]
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p(''Li, °Li)t @ 3AMeV measured at TRIUMF with MAYA
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P2 : 45% (15),)?

! Ty, et i = disentangle structure models

Differential cross section [mb/sr]

=
=

" 2p 40 69 89 1op | 1 1 1 1
0 45 90 135 180
Scattering angle in center of mass [degrees]

[I. Tanihata PRL 100, 192502 (2008)]

45/49



Electron scattering

Hadronic probes are not clean :
e Vun not well known
e N are not elementary

Electron scattering is much better [see H. Simon’s talk on Tuesday]
e Coulomb force is well known
@ point-like particle = excellent spatial resolution
e elastic scattering — charge distribution
@ inelastic scattering — spectrum, resonances,. ..
@ knockout — nucleon correlations

But requires a nuclear target. ..
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Experimental techniques Electron-ion collider

Electron scattering
Hadronic probes are not clean :

e Vun not well known
e N are not elementary
Electron scattering is much better [see H. Simon’s talk on Tuesday]
e Coulomb force is well known
@ point-like particle = excellent spatial resolution
e elastic scattering — charge distribution
@ inelastic scattering — spectrum, resonances,. ..
@ knockout — nucleon correlations
...or an e-ion collider : ELectron-lon Scattering experiment @ FAIR
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ELISe

[see H. Simon’s talk on Tuesday] [Antonov et al. NIMA 637, 60]
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Summary
Liquid-drop and shell model describe qualitatively stable nuclei
Nowadays ab-initio nuclear-structure models

RIB enable study nuclear structure far from stability
Low intensities require new experimental techniques :
active target, reactions,. ..

e discovery of halo nuclei
diffuse halo around a compact core

@ shell inversions or shell collapse
RIB can be used to study reactions of astrophysical interest
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Combined with a gas stopper

ISOL | | frimenybeem In-flight |

Fragment
separator

Thick & ha

lon source

/

Post-accelerator
}

= .5 Radioactive
ion beam

Thin target

Radioactive

Isotope separator lon beam

@ can use thin target in ISOL
e can study low-energy reaction with in-flight fragmentation
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