The study of nuclear structure far from stability

Pierre Capel

25 January 2015

Introduction

Stable nuclei are qualitatively described by "simple" models

- (semi-empirical) liquid-drop model
- (basic) shell model

New techniques enable ab-initio methods (A-body models)

What happens far from stability?

- Experimentally, Radioactive-Ion Beams (RIB) available since 80s
- \Rightarrow study of structure far from stability
- \Rightarrow discovery of exotic structures
 - halo nuclei
 - shell inversions

Nuclear Landscape

Basic features in nuclear structure

- Liquid-drop model
- Shell model
- 2 Ab-initio nuclear models
- Superheavy nuclei
 - 4 Radioactive-Ion Beams
 - 5 Oddities far from stability : halo nuclei
- 6 Experimental techniques
 - Active targets
 - Electron-ion collider

Electron scattering

Nuclear charge distributions can be studied by electron scattering At the Born approximation

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma_R}{d\Omega} |F(\boldsymbol{q})|^2,$$

with the nuclear form factor

$$F(\boldsymbol{q}) \propto \int \left\langle \Psi \left| \sum_{j=1}^{Z} \delta(\boldsymbol{r} - \boldsymbol{r}_{j}) \right| \Psi \right\rangle e^{i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

Charge distributions in (stable) nuclei

- constant density ρ_0 out to the surface (saturation)
- same skin thickness t

(Stable) nuclei look like liquid drops of radius $R \propto A^{1/3}$

Bethe-Weizsäcker semi-empirical mass formula

 $B(Z,N) = a_v A -$

Bethe-Weizsäcker semi-empirical mass formula

 $B(Z, N) = a_v A - a_s A^{2/3} -$

Bethe-Weizsäcker semi-empirical mass formula

Bethe-Weizsäcker semi-empirical mass formula

$$B(Z, N) = a_{v}A - a_{s}A^{2/3} - a_{c}\frac{Z(Z-1)}{A^{1/3}} - a_{A}\frac{(A-2Z)^{2}}{A} +$$

Bethe-Weizsäcker semi-empirical mass formula

$$B(Z, N) = a_{v}A - a_{s}A^{2/3} - a_{C}\frac{Z(Z-1)}{A^{1/3}} - a_{A}\frac{(A-2Z)^{2}}{A} + \delta(A, Z)$$

Bethe-Weizsäcker semi-empirical mass formula

$$B(Z,N) = a_v A - a_s A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(A,Z)$$

Exoenergetic reactions :

- fission of heavy nuclei (nuclear power plants, atomic bomb)
- fusion of light nuclei (stars, thermonuclear weapons)

Variation from the semi-empirical mass formula

More bound systems at Z or N = 2, 8, 28, 50, 82, 126magic numbers

 \Rightarrow shell structure in nuclei as in atoms?

Two-nucleon separation energy

Same magic numbers in S_{2p} and S_{2n}

 \Rightarrow more bound at shell closure cf. ionisation energies of atoms

Shell model

Developed in 1949 by M. Goeppert Mayer, H. Jensen and E. Wigner

As electrons in atoms, nucleons in nuclei feel a mean field and arrange into shells

Spin-orbit coupling is crucial to get right ordering of shells

Nowadays

Can we go beyond these models? Can we build ab-initio models? i.e. based on first principles

- nucleons as building blocks
- realistic N-N interaction

What happens away from stability?

- Is nuclear density similar for radioactive nuclei?
- Are magic numbers conserved?
- Is there an island of stability for heavy nuclei?

- Basic features in nuclear structure
 Liquid-drop model
 Shell model
- 2 Ab-initio nuclear models
- 3 Superheavy nuclei
- 4 Radioactive-Ion Beams
- Oddities far from stability : halo nuclei
- Experimental techniques
 - Active targets
 - Electron-ion collider

Summary

A-body Hamiltonian

Nuclear-structure calculations : A nucleons (Z protons+N neutrons) Relative motion described by the A-body Hamiltonian

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{i_j}$$

 \Rightarrow solve the A-body Schrödinger equation

$$H|\Psi_n\rangle = E_n|\Psi_n\rangle$$

 $\{E_n\}$ is the nucleus spectrum

Realistic *N*-*N* interactions

 V_{ij} not (yet) deduced from QCD \Rightarrow phenomenological potentials fitted on *N*-*N* observables : d binding energy, *N*-*N* phaseshifts

Realistic N-N interactions

 V_{ij} not (yet) deduced from QCD \Rightarrow phenomenological potentials fitted on *N*-*N* observables : d binding energy, *N*-*N* phaseshifts Ex. : Argonne V18, CD-Bonn,...

Light nuclei calculations

[R. Wiringa, Argonne]

Three-body force

Need three-body forces to get it right...

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} + \cdots$$

But there is no such thing as three-body force...

Three-body force

Need three-body forces to get it right...

$$H = \sum_{i=1}^{A} T_i + \sum_{j>i=1}^{A} V_{ij} + \sum_{k>j>i=1}^{A} V_{ijk} + \cdots$$

But there is no such thing as three-body force...

They simulate the non-elementary character of nucleons \Rightarrow include virtual Δ resonances, \bar{N} ...

$$\begin{array}{c|c} \hline \pi,\rho,\omega \\ \hline \Delta,N^* \\ \hline \pi,\rho,\omega \end{array} \qquad \hline \hline \pi,\rho,\omega \\ \hline \hline \hline \hline \hline \\ \pi,\rho,\omega \\ \hline \hline \end{array}$$

Phenomenological 3-body interaction fitted on A > 2 levels : IL2 Alternatively, derived from EFT

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries with resolution scale Λ that selects appropriate degrees of freedom : nuclear physics is not built on quarks and gluons, but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/Λ

• gives an estimate of theoretical uncertainty

Effective Field Theory

EFT is an effective quantum field theory based on QCD symmetries with resolution scale Λ that selects appropriate degrees of freedom : nuclear physics is not built on quarks and gluons, but on nucleons and mesons

EFT provides the nuclear force with a systematic expansion in Q/Λ

- gives an estimate of theoretical uncertainty
- naturally includes many-body forces

[see A. Schwenk's talk on Tuesday morning]

Expansion of the EFT force

Solving the Schrödinger equation

 $H |\Psi_n\rangle = E_n |\Psi_n\rangle$

 Ψ usually developed on a basis $\{|\Phi_{[\nu]}\rangle\}$:

$$|\Psi_n
angle = \sum_{[
u]} \langle \Phi_{[
u]} |\Psi_n
angle |\Phi_{[
u]}
angle$$

Solving the Schrödinger equation

 $H |\Psi_n\rangle = E_n |\Psi_n\rangle$

 Ψ usually developed on a basis $\{|\Phi_{[\nu]}\rangle\}$:

$$\Psi_n \rangle = \sum_{[\nu]} \langle \Phi_{[\nu]} | \Psi_n \rangle | \Phi_{[\nu]} \rangle$$

Solving the Schrödinger equation reduces to matrix diagonalisation

$$\langle \Phi_{[\mu]} | H | \Psi_n \rangle = \sum_{[\nu]} \langle \Phi_{[\mu]} | H | \Phi_{[\nu]} \rangle \langle \Phi_{[\nu]} | \Psi_n \rangle$$

= $E_n \langle \Phi_{[\mu]} | \Psi_n \rangle$

No-core shell model

Slater determinants of 1-body mean-field wave functions ϕ_{ν_i}

 $\langle \xi_1 \xi_2 \dots \xi_A | \Phi_{[\nu]} \rangle = \mathcal{A} \phi_{\nu_1}(\xi_1) \phi_{\nu_2}(\xi_2) \dots \phi_{\nu_A}(\xi_A)$

But short-range correlations couple low and high momenta

No-core shell model

Slater determinants of 1-body mean-field wave functions ϕ_{ν_i}

 $\langle \xi_1 \xi_2 \dots \xi_A | \Phi_{[\nu]} \rangle = \mathcal{A} \phi_{\nu_1}(\xi_1) \phi_{\nu_2}(\xi_2) \dots \phi_{\nu_A}(\xi_A)$ But short-range correlations couple low and high momenta

 \Rightarrow requires large basis $|\Phi_{\nu}\rangle$

Similarity Renormalisation Group

Idea : apply a unitary transformation

$$\begin{split} |\widetilde{\Phi}_{[\nu]}\rangle &= U |\Phi_{[\nu]}\rangle \\ \Leftrightarrow H_{\rm eff} &= U^{\dagger} H U \end{split}$$

- keeps the same spectrum (unitary)
- keeps the same on-shell properties (phaseshifts)
- removes the short-range correlations

This has a costs : induces "unphysical" three-body forces

SRG : example on ⁴He SRG lowers correlations

[see A. Schwenk's talk on Tuesday morning]

SRG : example on ⁴He

SRG lowers correlations \Rightarrow fastens convergence

[see A. Schwenk's talk on Tuesday morning]

What happens far from stability?

- Liquid-drop and shell models are fair models of stable nuclei What happens away from stability ?
- Are there superheavy nuclei? [see M. Bloch's talk on Tuesday]
- In 80s Radioactive-Ion Beams were developed Enable study of nuclear structure [see P. Egelhof's talk on Tuesday]
 - are radioactive nuclei compact?
 - are shells conserved far from stability?
- Study of reactions involving radioactive nuclei useful for astrophysics

- Basic features in nuclear structure
 - Liquid-drop model
 - Shell model
- 2 Ab-initio nuclear models
- Superheavy nuclei
- Adioactive-Ion Beams
- 5 Oddities far from stability : halo nuclei
- Experimental techniques
 - Active targets
 - Electron-ion collider

Summary

Superheavy nuclei

Does the stability end with U? Or is there an island of stability? Is $Z \sim 114 - 126$ a new magic number?

Search elements heavier than U has started in the 40's Pu produced by U+d and U+n (identified by Seaborg in 1941)

Nowadays, use ⁴⁸Ca fusion on actinide target Recently, element Z = 117 has been confirmed at GSI using ⁴⁸Ca+²⁴⁹Bk [PRL 112, 172501 (2014)] Element identified by α cascade

[see M. Bloch's talk on Tuesday morning]
Z = 117

Superheavy Elements – Current Status

- Basic features in nuclear structure
 - Liquid-drop model
 - Shell model
- 2 Ab-initio nuclear models
- 3 Superheavy nuclei
- 4 Radioactive-Ion Beams
- 5 Oddities far from stability : halo nuclei
- Experimental techniques
 - Active targets
 - Electron-ion collider

O Summary

How?

Idea : break a heavy nuclei into pieces to produce exotic isotopes

How?

Idea : break a heavy nuclei into pieces to produce exotic isotopes

• ISOL : Fire a proton at a heavy nucleus

How?

Idea : break a heavy nuclei into pieces to produce exotic isotopes

• ISOL : Fire a proton at a heavy nucleus

• In-flight : Smash a heavy nucleus on a target

Where?

high-energy/intensity primary beam of light nuclei (e.g. protons) on thick target of heavy elements (Ta or UC_x) \Rightarrow spallation/fragmentation produces exotic fragments

high-energy/intensity primary beam of light nuclei (e.g. protons) on thick target of heavy elements (Ta or UC_x) \Rightarrow spallation/fragmentation produces exotic fragments Diffuse in the target and effuse to an ion source

high-energy/intensity primary beam of light nuclei (e.g. protons) on thick target of heavy elements (Ta or UC_x) \Rightarrow spallation/fragmentation produces exotic fragments Diffuse in the target and effuse to an ion source Then selected using dipole magnet (A/Q)

high-energy/intensity primary beam of light nuclei (e.g. protons) on thick target of heavy elements (Ta or UC_x) \Rightarrow spallation/fragmentation produces exotic fragments Diffuse in the target and effuse to an ion source Then selected using dipole magnet (A/Q) Either used directly (mass measurement, radioactive decay...) or post-accelerated for reactions (e.g. astrophysical energy)

high-energy/intensity primary beam of light nuclei (e.g. protons) on thick target of heavy elements (Ta or UC_x) \Rightarrow spallation/fragmentation produces exotic fragments Diffuse in the target and effuse to an ion source Then selected using dipole magnet (A/Q) Either used directly (mass measurement, radioactive decay...) or post-accelerated for reactions (e.g. astrophysical energy) Examples : TRIUMF, ISOLDE (CERN), SPIRAL (GANIL)

ISAC@TRIUMF

World largest cyclotron

World largest cyclotron

high-energy primary beam of heavy ions (e.g. ¹⁸O, ⁴⁸Ca, U...) on thin target of light elements (Be or C) \Rightarrow fragmentation/fission produces many exotic fragments at $\approx v_{\text{beam}}$

high-energy primary beam of heavy ions (e.g. ¹⁸O, ⁴⁸Ca, U...) on thin target of light elements (Be or C) \Rightarrow fragmentation/fission produces many exotic fragments at $\approx v_{beam}$ Sorted in fragment separator

high-energy primary beam of heavy ions (e.g. 18 O, 48 Ca, U...) on thin target of light elements (Be or C)

 \Rightarrow fragmentation/fission produces many exotic fragments at $\approx v_{beam}$ Sorted in fragment separator

Used for high-energy reactions (KO, breakup...)

high-energy primary beam of heavy ions (e.g. ¹⁸O, ⁴⁸Ca, U...) on thin target of light elements (Be or C)

⇒ fragmentation/fission produces many exotic fragments at $\approx v_{beam}$ Sorted in fragment separator

Used for high-energy reactions (KO, breakup...)

Examples : NSCL (MSU), GSI, RIKEN, GANIL

Existing GSI

Future : FAIR

Properties

ISOL

- Low beam energy may require post-acceleration
- Low beam intensity
- Not all elements produced
 - Slow
 - Chemically limited
- Good beam quality : can use chemistry to select fragments

Properties

 Low beam energy may require post-acceleration

ISOL

- Low beam intensity
- Not all elements produced
 - Slow
 - Chemically limited
- Good beam quality : can use chemistry to select fragments

In-flight

High beam energy

 $v_{\rm fragments} \approx v_{\rm beam}$

- High beam intensity
- Efficient production
 - Fast
 - Chemically independent
- Many fragments in beam ⇒ need ion ID

Choose according what you want to measure

- Basic features in nuclear structure a Liquid drap model
 - Liquid-drop model
 - Shell model
- 2 Ab-initio nuclear models
- 3 Superheavy nuclei
- Adioactive-Ion Beams
- 5 Oddities far from stability : halo nuclei
- Experimental techniques
 - Active targets
 - Electron-ion collider

O Summary

Halo structure

Seen as core + one or two neutrons at large distance

[P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987)]

Peculiar structure of nuclei due to small S_n or S_{2n} \Rightarrow neutrons tunnel far from the core to form a halo

Halo only appears for low centrifugal barrier (low ℓ)

Halo nuclei

- Light, neutron-rich nuclei
- small S_n or S_{2n}
- Iow-ℓ orbital

One-neutron halo ${}^{11}\text{Be} \equiv {}^{10}\text{Be} + n$ ${}^{15}\text{C} \equiv {}^{14}\text{C} + n$

Two-neutron halo ${}^{6}\text{He} \equiv {}^{4}\text{He} + n + n$ ${}^{11}\text{Li} \equiv {}^{9}\text{Li} + n + n$

Proton halces are possible but less probable : ${}^{8}B$, ${}^{17}F$ Two-neutron halo nuclei are Borromean... c+n+n is bound but not two-body subsystems e.g. ${}^{6}He$ bound but not ${}^{5}He$ or ${}^{2}n$

Borromean nuclei

Named after the Borromean rings...

[M. V. Zhukov et al. Phys. Rep. 231, 151 (1993)]

- Basic features in nuclear structure
 - Liquid-drop model
 - Shell model
- 2 Ab-initio nuclear models
- 3 Superheavy nuclei
- 4 Radioactive-Ion Beams
- 5 Oddities far from stability : halo nuclei
- Experimental techniques
 - Active targets
 - Electron-ion collider

7 Summary

Active targets

Active target detectors

Intensity of RIB much lower than stable beams

- \Rightarrow difficult to study reactions
- \Rightarrow idea of active target \equiv target and detector

[see P. Egelhof's talk on Tuesday Morning]

Applications

Using active targets various reactions can be performed (inverse kinematics)

- elastic scattering \rightarrow mater distribution
- inelastic scattering \rightarrow giant resonances, $B(E2), \ldots$
- charge exchange \rightarrow GT strengths
- transfer \rightarrow single-particle structure, N correlations,...
- knock-out \rightarrow single-particle structure

[see P. Egelhof's talk on Tuesday Morning]

p(¹¹Li, ⁹Li)t @ 3AMeV measured at TRIUMF with MAYA

[I. Tanihata PRL 100, 192502 (2008)]

$$(p_{1/2})^2$$
 : pure $(0p_{1/2})^2$
P0 : 3% $(1s_{1/2})^2$
P1 : 31% $(1s_{1/2})^2$
P2 : 45% $(1s_{1/2})^2$

 \Rightarrow disentangle structure models

Electron scattering

Hadronic probes are not clean :

- V_{NN} not well known
- N are not elementary

Electron scattering is much better [see H. Simon's talk on Tuesday]

- Coulomb force is well known
- point-like particle \Rightarrow excellent spatial resolution
- elastic scattering → charge distribution
- inelastic scattering → spectrum, resonances,...
- knockout → nucleon correlations

But requires a nuclear target...

Electron scattering

Hadronic probes are not clean :

- V_{NN} not well known
- N are not elementary

Electron scattering is much better [see H. Simon's talk on Tuesday]

- Coulomb force is well known
- point-like particle \Rightarrow excellent spatial resolution
- elastic scattering → charge distribution
- inelastic scattering → spectrum, resonances,...
- knockout → nucleon correlations

... or an e-ion collider : ELectron-Ion Scattering experiment @ FAIR

[see H. Simon's talk on Tuesday]

[Antonov et al. NIMA 637, 60]

Summary

Liquid-drop and shell model describe qualitatively stable nuclei Nowadays <u>ab-initio</u> nuclear-structure models

RIB enable study nuclear structure far from stability Low intensities require new experimental techniques : active target, reactions,...

- discovery of halo nuclei diffuse halo around a compact core
- shell inversions or shell collapse

RIB can be used to study reactions of astrophysical interest

Combined with a gas stopper

- can use thin target in ISOL
- can study low-energy reaction with in-flight fragmentation