

Parity Violating Electron Scattering Experiments

(High Precision determination of the weak mixing angle)

Frank Maas (Helmholtz Institute Mainz, GSI Darmstadt and Johannes Gutenberg University Mainz)

53rd International Winter Meeting on Nuclear Physics 26-30 January 2015 Worms im Veltlin (Bormio, Italy)

High Precision Determination of $sin^2(\theta_W)$

Running of $sin^2(\theta_W)$

Sensitivity to new physics

Experimental Method

JGU

Institut für Kernphysik

"running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_W(\mu)$

JG U SFB 1044 Institut für Kernphysik

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_w$: a central parameter of the standard model

Summary: Measurements of sin² θ_{W(effective)}

Precision measurements and quantum corrections:

running α running $\sin^2 \theta_w(\mu)$ Universal quantum corrections: can be absorbed into a
scale dependent, "running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_w(\mu)$

SFB 1044 Institut für Kernphysik

SFB 1044 Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

JG U SFB 1044 Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction

New Fermions

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

Search for the O(GeV/c²) mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012)
- Could explain presently seen deviation of >3σ between (g-2)_μ Standard Model prediction and direct (g-2)_μ measurement Pospelov(2008)

BABAR Dark Photon Search (arXiv:1406.2980)

Running $\sin^2 \theta_w$ and Dark Parity Violation

SFB 1044 Institut für Kernphysik

JGU

SFB 1044 Institut für Kernphysik

Example: supersymmetric Standard Model extensions

Ramsey-Musolf and Su, Phys. Rep. 456 (2008)

JGU

Institut für Kernphysik

Complementary access by weak charges of proton and electron

JG U

SFB 1044 Institut für Kernphysik

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19%	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

SFB 1044 Institut für Kernphysik

Experimental Method

e

SFB 1044 Institut für Kernphysik

 $\sigma \sim \mathcal{M} \mathcal{M}^* \text{ Phasespace} \\ \sim (j_{\mu} \frac{1}{Q^2} J^{\mu}) (j_{\mu} \frac{1}{Q^2} J^{\mu})^* \\ j_{\mu} \sim \overline{e} \gamma_{\mu} e \text{ Vector Current}$

$$I_{\gamma}^{\mu} \sim \left\langle N | q^{\mu} \overline{u} \gamma_{\mu} u + q^{d} \overline{d} \gamma_{\mu} d + q^{s} \overline{s} \gamma_{\mu} s | N' \right\rangle \\
 = \overline{\mathcal{P}} \left[\gamma^{\mu} F_{1} - i \sigma^{\mu \nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} F_{2} \right] \mathcal{P}$$

SFB 1044 Institut für Kernphysik

$$\tilde{q}^d{}_V = \tau_3 - 2q^d \sin^2(\theta_W)$$

$$\begin{split} \tilde{J}_{Z}^{\mu} &\sim \left\langle N | \tilde{q}^{\mu} \overline{u} \, \gamma_{\mu} \, u + \tilde{q}^{d} \overline{d} \, \gamma_{\mu} d + \tilde{q}^{s} \overline{s} \, \gamma_{\mu} s | N' \right\rangle \\ &= \overline{\mathcal{P}} [\gamma^{\mu} \tilde{F}_{1} - i \sigma^{\mu\nu} q_{\nu} \frac{\kappa_{p}}{2M_{N}} \tilde{F}_{2}] \mathcal{P} \end{split}$$

JGU

Parity Violating Asymmetry in elastic electron proton scattering

JG U SFB 1044 Institut für Kernphysik

Parity violating cross section asymmetry

$$A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} - (1 - 4\sin^2\theta_w)\epsilon' G_M^{\gamma} G_A^{Z}}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$$

$$A_{\rm RL} = \underbrace{A_{\rm V} + A_{\rm A}}_{= A_0} + A_{\rm S} \begin{cases} A_{\rm V} = -a\rho_{eq}' \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] \\ A_{\rm A} = a \frac{(1 - 4\sin^2\theta_W)\sqrt{1 - \epsilon^2}\sqrt{\tau (1 + \tau)}G_M^p \tilde{G}_A^p}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \\ A_{\rm S} = a\rho_{eq}' \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \end{cases} e^{-\frac{1}{2}}$$

 $a = -G_F q^2 / 4\pi \alpha \sqrt{2}, \ \tau = -q^2 / 4M_p^2, \ \epsilon = [1 + 2(1 + \tau) \tan^2 \theta / 2]^{-1}$

Parity violating cross section asymmetry

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
hadron structure

$$F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$$

JG U

Institut für Kernphysik

Conceptually very simple experiments

A = $(N^{+}-N^{-})/(N^{+}+N^{-})$ $\Delta A = (N^{+}+N^{-})^{-1/2} = N^{-1/2}$ A = 20 x 10⁻⁹ 2% Measurement N = 6.25 x 10¹⁸ events

Highest rate, measure Q²: Large Solid Angle Spectrometers

Apparative (false) asymmetries:

 >10 years of experience of beam delivery to a parity violation experiment

Systematics of A4 @210MeV, extrapolated to 10000h of data taking:

Need to improve by factors of 10 ~ 100, in total max. 0.1ppb! dedicated simulations for P2 in preparation

PVeS Experiment Summary

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

JGU

Institut für Kernphysik

Qweak Apparatus

Quartz Cerenkov Bars

Apparatus (before all shielding)

Quartz Cerenkov Detectors

Azimuthal symmetry maximizes rate and decreases sensitivity to HC beam motion, transverse asymmetry.

Spectrosil 2000: Eight bars, each 2 m long, 1.25 cm thick

- Rad-hard
- Non-scintillating, low-luminescence

Quartz

Global Fit of Q²<0.63 (GeV/c)² PVES Data

Qweak Commissioning Run - PRL 111,141803 (2013)

Combined Analysis Extract: C_{1u}, C_{1d}, Qⁿ_W

Qweak + Higher Q² PVES Extract: Q^p_W, sin² θ_W

25x more production data still being analyzed, final result 2015

P2 Experiment at the new MESA accelerator in Mainz (low beam energy, very high precision)

Kathrin Gerz

 $\succ \gamma Z$ box graph contributions obtained by modelling hadronic effects:

Hadronic uncertainties suppressed at lower energies

Low beam energy experiment:
 P2 @ MESA

[Gorchstein, Horowitz & Ramsey-Musolf 2011]

Progress in Theory

- Theory uncertainties in box diagrams
- 2 loop corrections
- Hadronic contributions in loops
- Auxiliary measurements
- PV-asymmetry in Carbon

General Experiment Kinematics

Comparison: P2 with and without back angle measurement

E/MeV	θ/deg	∆θ/deg	$\Delta sin^2(\theta_w)/10^{-4}$	$\Delta sin^2(\theta_w)/sin^2(\theta_w)$
240	17	18	3.57	0.15 %
200	20	20	3.60	0.15 %
150	24	20	3.97	0.17 %
130	25	20	4.33	0.18 %

Without back angle measurement

With back angle measurement

E/Me∨	θ/deg	∆θ/deg	$\Delta sin^2(\theta_w)/10^{-4}$	$\Delta sin^2(\theta_w)/sin^2(\theta_w)$
240	24	18	2.41	0.10 %
200	28	16	2.52	0.11 %
150	33	18	2.73	0.11 %
130	37	18	2.87	0.12 %

• $\Delta sin^2(\theta_w)$ drops from 3.60·10⁻⁴ to 2.52·10⁻⁴ \rightarrow possible reduction of Δt

• $sin^{2}(\theta_{w})$ -measurement at larger scattering angles (more easy to measure)

• Contributions to $\Delta sin^2 \Theta_W$ for 35° central scattering angle, E=150 MeV, 10000 h of data taking

Field component along beam axis

Design with FOPI-like Solenoid

Rate distribution @ z = 3810.00 mm

Dominik Becker

ostitut für Kernnhysik

Detector module prototype tested at MAMI

P2 Experimental setup (second testbeam January 2014)

Reproducability Check

Comparison of experimental data with Simulation:

Dependence of signal amplitude on electron angle

AN AN

Quartz Heraeus

SFB 1044 Institut für Kernphysik

Development of PMT base with remotely switchable gain (high and low current mode)

Th. Jennewein

SFB 1044 Institut für Kernphysik

MESA-Accelerator

JG U MESA: Beam parameter SFB 1044 Institut für Kernphysik

Beam Energy ERL/EB [MeV]	105/155 (105/205)		
Operation mode	1300 MHz, c.w.		
Elektron-sources	 Polarised : NEA GaAsP/GaAs superlattice , 200keV (?) unpolarised KCsSb, 200keV 		
Bunch Charge EB/ERL [pC] 7.7pC= <mark>10mA</mark> @1300MHz	0.15/0.77 (0.15/7.7)		
Norm. Emittance EB/ERL [µm]	0.1/<0.5 (0.1/<1)		
Spin Polarisation (EB-mode only)	> 0.85		
Recirculations	2 (3)		
Beampower at Exp. ERL/EB [kW]	100/22.5 (1050/30)		
R.fPower installed [kW]	140 (180)		

SFB 1044 Institut für Kernphysik

Parity violating electron scattering: "Low energy frontier" comprises a sensitive test of the standard model complementary to LHC

Qweak has presented first results from 4% of their data. Target precision is 4% in Qweak i.e. 0.3% in $sin^2(\theta_w)$

P2-Experiment (proton weak charge) in Mainz under preparation New MESA energy recovering accelerator at 150 MeV Target precision is 1.7% in Qweak i.e. 0.1% in $sin^2(\theta_w)$ Sensitivity to new physics up to a scale of 6.4 TeV through Quantum corrections

Together with Moeller@Jlab (electron weak charge) and SOLID@Jlab (quark weak charge) possibility to narrow in on Standard Model Extension