

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS

S. Plumari, G.L. Guardo, A. Puglisi,

F. Scardina, M. Ruggieri, V. Greco

Outline

- QGP: nearly perfect fluid
- Transport approach at fixed n/s
- Initial state fluctuations:
 - η/s and generation of v_n(pT): from RHIC to LHC
 - Correlations between ε_n and ν_n
- Conclusions

Probing the QCD Phase Diagram

By systematically varying the beam energy, with heavy ion collisions it possible to probe different regions of the QCD phase diagram.

RHIC: T ~ 1.5 – 2
$$T_c$$
, T ~ 4 – 5 fm/c

LHC: T ~ 3 – 3.5 T_c , T ~ 8 – 10 fm/c

$\eta/s(T)$ around to a phase transition

Quantum mechanism

$$\Delta E \cdot \Delta t \ge 1 \rightarrow \eta / s \approx \frac{1}{15} \langle p \rangle \cdot \tau > \frac{1}{15}$$

 AdS/CFT suggest a lower bound η/s = 1/(4 π)~0.08

• From pQCD: $\eta/s \sim \frac{1}{g^4 \ln(1/g)} \Rightarrow \eta/s \sim 1$

P.Arnold et al., JHEP 0305 (2003) 051.

S. Plumari et al., J. Phys.: Conf. Ser. 420 012029 (2013). arXiv:1209.0601.

P. Kovtun et al., Phys.Rev.Lett. 94 (2005) 111601.
L. P. Csernai et al., Phys.Rev.Lett. 97 (2006) 152303.
R. A. Lacey et al., Phys.Rev.Lett. 98 (2007) 092301.

- LQCD some results for quenched approx. large error bars
- Quasi-Particle models seem to suggest a $\eta/s \sim T^{\alpha} \alpha \sim 1 1.5$.
- Chiral perturbation theory \rightarrow Meson Gas
- Intermediate Energies IE (μ_B>T)

Information from non-equilibrium: elliptic flow

The v_{2}/ϵ measures efficiency in $\mathcal{E}_{x} = \left\langle \frac{y^{2} - x^{2}}{y^{2} + x^{2}} \right\rangle \quad \text{Ine } v_{2}/\varepsilon \text{ measures efficiency in } \\ \text{converting the eccentricity from } v_{2} = \left\langle \cos 2\varphi \right\rangle = \left\langle \frac{p_{x}^{2} - p_{y}^{2}}{p_{x}^{2} + p_{y}^{2}} \right\rangle$

Can be seen also as Fourier expansion

$$\frac{dN}{dp_T d\phi} = \frac{dN}{dp_T} \left[1 + 2v_2 \cos(2\phi) + 2V_4 \cos(4\phi) + \dots \right]$$

by symmetry v_n with n odd expected to be zero ... (but event by event fluctuations)

Ideal Hydrodynamics: QGP an almost perfect fluid

 $\begin{cases} \partial_{\mu} T^{\mu\nu}(x) = 0 \\ \partial_{\mu} J^{\mu}_{B}(x) = 0 \end{cases}$

$$T^{\mu\nu}(\mathbf{X}) = \left[\varepsilon + p \right] \mathbf{U}^{\mu\nu} - p \mathbf{g}^{\mu\nu}$$

No microscopic description (λ ->0), no dissipation,...only conservation laws! Mass ordering of v2(pT) The experimental data close to ideal hydro Large v₂/ ϵ

Viscous Hydrodynamics

 $T^{\mu\nu} = T^{\mu\nu}_{ideal} + \Pi^{\mu\nu}_{dissip}$

$$T^{\mu\nu} = T^{\mu\nu}_{ideal} + \eta (\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \partial^{\alpha} u_{\alpha})$$

I^o order Navier Stokes violates causality.II^o order expansion needed (Israel-Stewart)

$$\tau_{\eta}, \tau_{\zeta}$$
 two parameters appears +
 $\delta f \sim f_{eq}$ reduce the p_T validity range

Viscosity η/s

Grad ansantz

- inplies η in Relaxation Time Approximation
 D. Teaney, Phys. Rev. C68 (2003) 034913
- Hydro is valid up to p_T~2 GeV

Information from non-equilibrium: $v_n(p_T)$

 $\lambda = (\sigma p)^{-1}$ or η/s viscosity $c_{s}^{2} = dP/d\epsilon$, EoS-IQCD

The v_2/ϵ measures efficiency in converting the eccentricity from Coordinate to Momentum space

Can be seen also as Fourier expansion

$$\frac{dN}{dp_{T}d\phi} = \frac{dN}{dp_{T}} \left[1 + 2v_{2}\cos(2\phi) + 2V_{4}\cos(4\phi) + \dots\right]$$

by symmetry v_n with n odd expected to be zero ... (but event by event fluctuations)

C. Gale et al., PRL 110, 012302 (2013).

Applying kinetic theory to A+A Collisions....

Impact of η/s(T) on the build-up of v_n(p_T) vs. beam energy.
 To include the Initial state fluctuations.

Motivation for a kinetic approach:

$$\{p^{\mu}\partial_{\mu} + [p_{\nu}F^{\mu\nu} + M\partial^{\mu}M]\partial^{p}_{\mu}\}f(x,p) = C_{22} + C_{23} + \dots$$

Free Field Interaction $\rightarrow \varepsilon \neq 3P$ Collisions $\rightarrow \eta \neq 0$

- Starting from 1-body distribution function and not from T^{µv}:
 possible to include f(x,p) out of equilibrium.
 - M. Ruggieri et.al, PLB 727 (2013) 177
 - extract information about the viscous correction δf to f(x,p)
- It is not a gradient expansion in η/s.
- Valid at intermediate p_{T} out of equilibrium.
- Valid at high η/s (cross over region): + self consistent kinetic freeze-out

Parton Cascade model

$$p^{\mu}\partial_{\mu}f(X,p) = C = C_{22} + C_{23} + \dots$$
 Collisions \longrightarrow
$$\{ \begin{array}{c} \varepsilon - 3p = 0, \\ \eta \neq 0 \end{array} \}$$

$$C_{22} = \frac{1}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3p'_1}{(2\pi)^3 2E'_1} \frac{d^3p'_2}{(2\pi)^3 2E'_1} f'_1 f'_2 |\mathbf{M}_{1'2' \to 12}|^2 (2\pi)^4 \delta^{(4)}(p'_1 + p'_2 - p_1 - p_2)$$

For the numerical implementation of the collision integral we use the stochastic algorithm. (Z. Xu and C. Greiner, PRC 71 064901 (2005))

Simulating a constant η/s

For the general case of anisotropic cross section and massless particles:

m_D [GeV]

m_D [GeV]

for small pT equivalent viscous hydro

Initial State Fluctuations

G-Y. Qin, H. Petersen, S.A. Bass and B. Muller, PRC82,064903 (2010). H.Holopainen, H. Niemi and K.J. Eskola, PRC83, 034901 (2011).

0.25

0.2

0.1 0.05

10

5

ر 0.15

Initial State Fluctuations: time evolution of $\langle v_n \rangle$ and ε_n

- The time evolution for ε_n is faster for large n. At very early times ε_n (t)= ε_n (t₀)- α_n tⁿ⁻².
- <v_n> shows an opposite behaviour: <v_n> develops later for large n. At very early times <v_n>∝tⁿ⁺¹.
- Different v_n can probes different value of η/s(T) during the expansion of the fireball.

Initial State Fluctuations: $v_n(p_T)$ and η/s

- $v_n(p_T)$ at RHIC is more sensitive to the value of the η /s at low temperature. $v_4(p_T)$ and $v_3(p_T)$ are more sensitive to the value of η /s than the $v_2(p_T)$.
- At LHC energies v_n(p_τ) is more sensitive to the value of η/s in the QGP phase (compare solid and dot-dashed lines).

Initial State Fluctuations: $v_n(p_T)$ and η/s

- $v_n(p_T)$ at RHIC is more sensitive to the value of the η /s at low temperature. $v_4(p_T)$ and $v_3(p_T)$ are more sensitive to the value of η /s than the $v_2(p_T)$.
- At LHC energies v_n(p_τ) is more sensitive to the value of η/s in the QGP phase (compare solid and dot-dashed lines).

Initial State Fluctuations: $v_n vs \epsilon_n$

$$C(n,m) = \left\langle \frac{(v_n - \langle v_n \rangle)(\epsilon_m - \langle \epsilon_m \rangle)}{\sigma_{v_n} \sigma_{\epsilon_m}} \right\rangle$$

B.H. Alver, C. Gombeaud, M. Luzum and J.-Y. Ollitrault, Phys.Rev. C82 (2010) 034913.

H. Petersen, G.-Y. Qin, S.A. Bass and B. Muller, Phys.Rev. C82 (2010) 041901.

Z. Qiu and U. W. Heinz, Phys.Rev. C84 (2011) 024911.

H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen, Phys.Rev. C87 (2013) 5, 054901.

- At LHC v_n are more correlated correlated to ε_n than at RHIC.
- v₂ and v₃ linearly correlated to the corresponding eccentricities ε₂ and ε₃ rispectively.
- C(4,4) < C(2,2) for all centralities. v₄ and ε₄ weak correlated similar to hydro calculations:

F.G. Gardim, F. Grassi, M. Luzum and J.Y. Ollitrault NPA904 (2013) 503. H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen PRC87(2013) 054901.

• For central collisions v_n are strongly correlated to ε_n : $v_n \propto \varepsilon_n$ for n=2,3,4.

Initial State Fluctuations: ν_n vs ε_n

- At LHC v_n are more correlated to ε_n than at RHIC.
- v₂ and v₃ linearly correlated to the corresponding eccentricities ε₂ and ε₃ rispectively.
- C(4,4) < C(2,2) for all centralities. v₄ and ε₄ weak correlated similar to hydro calculations:

F.G. Gardim, F. Grassi, M. Luzum and J.Y. Ollitrault NPA904 (2013) 503.

H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen PRC87(2013) 054901.

• For central collisions v_n are strongly correlated to ε_n : $v_n \propto \varepsilon_n$ for n=2,3,4.

Initial State Fluctuations: $v_n(p_{\tau})$ for central collisions

- At low $p_{\tau} v_n(p_{\tau}) \propto p_{\tau}^n \cdot v_2$ for higher p_{τ} saturates while v_n for n>3 increase linearly with p_{τ} .
- For central collisions viscous effect are more relevant. For n>2 the v_n(p_T) are more sensitive to the η/s ratio in the QGP phase.

Initial State Fluctuations: $v_n(p_{\tau})$ for central collisions

- At low $p_{T} v_n(p_T) \propto p_T^n \cdot v_2$ for higher p_T saturates while v_n for n>3 increase linearly with p_T .
- For central collisions viscous effect are more relevant. For n>2 the v_n(p_T) are more sensitivity to η/s in the QGP phase.

Conclusions

Transport at fixed \eta/s:

- Enhancement of n/s(T) in the cross-over region affect differently the expanding QGP from RHIC to LHC.
 LHC nearly all the v_n from the QGP phase.
- At LHC there is a stronger correlation between v_n and ε_n than at RHIC for all n.
- Ultra central collisions:
 - v_n∝ ε_n for n=2,3,4 strong correlation C(n,n)≈1
 - $v_n(p_T)$ much more sensitive to $\eta/s(T)$

Temperature dependent η/s(T)

Phase transition physic suggest a T dependence of η/s also in the QGP phase

- LQCD some results for quenched approx. large error bars
- Quasi-particle models seem to suggest a $\eta/s \sim T^{\alpha} \alpha \sim 1 1.5$.

S. Plumari et al., J. Phys.: Conf. Ser. 420 012029 (2013). arXiv:1209.0601.

Temperature dependent η/s(T)

- For $4\pi\eta/s=1$ during all the evolution of the fireball we get a discrepancy for the $v_2(p_T)$, in particular we observe a smaller $v_2(p_T)$ at LHC.
- Similar results for $\eta/s \propto T^2 \rightarrow a$ discrepancy about 20%.
- Notice only with RHIC \rightarrow scaling for $4\pi\eta/s=1$ LHC data play a key role

Temperature dependent η/s(T)

- Invariance of v₂(p_τ) in BES suggest that the system goes through a phase transition.
- Hope: v_n , n>3 with an event-by-event analysis will put even stronger consstraint
- Implementation of local fluctuation under development
- Similar results: R. A. Lacey et al., arXiv:1305.3341 [nucl-ex].

Extraction of the Shear Viscosity: Box calculation

$$\eta_{relax}^{IS} / s = \frac{1}{15} \langle p \rangle \tau_r = \frac{1}{15} \frac{\langle p \rangle}{\sigma_{tot} \langle f(a) v_{rel} \rangle \rho}$$
$$\sigma_{tr} = \int d\Omega \sin^2(\theta_{cm}) \frac{d\sigma}{d\Omega_{cm}} = \sigma_{tot} f(a) \leq \frac{2}{3} \sigma_{tot}$$

For the standard pQCD-like cross section

$$\frac{d\sigma}{d\Omega_{cm}} = \frac{9\pi\alpha_{s}^{2}}{2} \frac{1}{(q^{2} + m_{D}^{2})^{2}} (1 + \frac{m_{D}^{2}}{s})$$

Employed also for non-isotropic cross section:

G.Ferini, PLB(2009); D. Molnar, JPG35(2008); V.Greco, PPNP(2009);

m_b regulates the anisotropy of collision $m_{p} \rightarrow \infty$ we recover the isotropic limit

 $f(a) = 4a(1+a)[(2a+1)\ln(1+a^{-1})-2], a = m_D^2/s$

1st Chapman-Enskog approximation

$$[\eta]_{1st}/s = \frac{1}{15} \langle p \rangle \tau_{\eta} = \frac{1}{15} \frac{\langle p \rangle}{\sigma_{tot} g(a) \rho}$$
$$g(a) = \frac{1}{15} \int_{-\infty}^{\infty} dy \, y^{6} [(y^{2} + \frac{1}{2}) K_{3}(2y) - y K_{2}(2y)] f(a),$$

$$=\frac{1}{50}\int_{0}^{\infty} dy \, y^{6}[(y^{2}+\frac{1}{3})K_{3}(2y)-yK_{2}(2y)]f(a), \quad a=\frac{m_{D}}{2T}$$

CE and RTA can differ by a factor of 2 Green-Kubo agree with CE (< 5%)</p>

A. Wiranata, M. Prakash, PRC85 (2012) 054908. O. N. Moroz, arXiv:1112.0277 [hep-ph].

S. Plumari et al., PRC86 (2012) 054902.

η /s or detail of the corss section

$$\frac{\eta}{s} = \frac{1}{15} \langle p \rangle \tau_{\eta}$$
$$\tau_{\eta} = \frac{1}{\sigma_{tot} g(a) \rho}$$

- η /s is the physical parameter determining the v₂ at least up to $p_T 1.5 - 2$ GeV.
- microscopic details becomes important at higher p_{T} .

Initial State Fluctuations: $v_n(p_T)$ and η/s

- The initial state fluctuations reduce the $v_2(p_T)$.
- $v_4(p_T)$ increase by the initial state fluctuations and it becomes more sensitive to the viscosity of the QGP. Larger ε_4 gives larger v_4 .

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

$$f(x,p) = f^{(0)}(x,p) + \delta f(x,p)$$
$$T^{\mu\nu} = T^{(0)\mu\nu} + \delta T^{\mu\nu} \leftarrow f^{(0)} + \delta f^{(0)}$$

A common choice for δf – the Grad ansatz $\delta f \propto \Gamma_s f^{(0)} p^{\alpha} p^{\beta} \langle \nabla_{\alpha} u_{\beta} \rangle \propto p_T^2$

BUT it doesn't care about the microscopic dynamics

In general in the limit $\sigma \rightarrow \infty$, f(σ) can be expanded in power of 1/ σ .

$$f(\sigma)_{\sigma \to \infty} f^{(0)} + \frac{1}{\sigma} \delta f + O\left(\frac{1}{\sigma^2}\right) \longrightarrow v_n(p_T) \underset{\sigma \to \infty}{\approx} v_n^{(0)}(p_T) + \frac{1}{\sigma} \delta v_n + O\left(\frac{1}{\sigma^2}\right)$$

PURPOSE: evaluate the ideal hydrodynamics limit $f^{(0)}$, $v_n^{(0)}$ and the viscous corrections δf and δv_n solving the Relativistic Boltzmann eq for large values of the cross section σ

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

Coodinate space (x,y)

We start with an initial azimuthally symmetric profile (optical Glauber model).

• Then we deform the initial distribution ($\alpha <<1$)

 $z = x + iy \rightarrow z + \delta z \equiv z - \alpha \overline{z}^{n-1}$ Symmetry This $\sum (z + \delta z)^n = (z^2)^n$

 $\epsilon_n \equiv \frac{-\sum_j (z_j + \delta z_j)^n}{\sum_i |z_i + \delta z_j|^n} \simeq n \alpha \frac{\langle r^{2(n-1)} \rangle}{\langle r^n \rangle}$

Momentum space

• Thermal distribution: $dN/d^3 p \propto \exp(-p/T)$

• Constant distribution: $dN/d^3 p \propto \theta(p_0 - p)$ We assume initially the same local $T^{\mu\nu}(x)$

$$f(\sigma) \underset{\sigma \to \infty}{\approx} f^{(0)} + \frac{1}{\sigma} \delta f + O\left(\frac{1}{\sigma^2}\right)$$
$$v_n(p_T) \underset{\sigma \to \infty}{\approx} v_n^{(0)}(p_T) + \frac{1}{\sigma} \delta v_n + O\left(\frac{1}{\sigma^2}\right)$$

 $1/\sigma_{tot} (\text{fm}^{-2})$

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

For $\sigma \rightarrow \infty$ we find the ideal Hydro limit:

- f⁽⁰⁾ is an exponential decreasing function.
- f⁽⁰⁾ doesn't depends on microscopical details (i.e. mD).
- Universal behavior of v_n⁽⁰⁾(p_T)
- $v_n^{(0)}(p_T)/\epsilon_n$ is approximatively the same for all n and p_T .

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

In δf and δv_n it is encoded the information about the microscopical details

- $\delta f(p_T)/f^{(0)} \propto p_T^{\alpha}$ with $\alpha = 1. 2.$ and $\alpha(m_D)$. For isotropic σ similar to R.S. Bhalerao et al. PRC 89, 054903 (2014)
- Larger is n larger is the viscous correction to $v_n(p_T)$
- Scaling: for $p_T > 1.5 \text{ GeV} \rightarrow -\delta v_n(p_T)/v_n^{(0)} \propto n$