

53° International Winter Meeting on Nuclear Physics 26-30 January 2015 Bormio (Italy)

The AMS-02 experiment on the International Space Station: Latest results

Maura Graziani Università & INFN Sez. Perugia

On behalf of the AMS-02 Collaboration

15 Countries, 44 Institutes and 600 Physicists

AMS-02: (part) of the Collaboration @ NASA-JSC

Outline:

- 1. Physics of AMS
- 2. AMS-02: Detector & Operations
- 3. AMS-02: Results
 - Positrons fraction
 - e⁺, e⁻ fluxes
 - (e+ + e) flux

1. Physics of AMS

2. AMS-02: Detector & Operations

3. AMS-02: Results

 \rightarrow measurements of *charged cosmic rays* (O(GV) - O(TV) and γ rays (E>1GeV)

Cosmic rays \rightarrow carry information about the universe

The Physics: Primordial Antimatter

- Fundamental physics & Antimatter :
 - Primordial origin (Signal: anti-nuclei)

Dirac's Nobel speech

"We must regard it rather as an accident that the Earth [...] contains a preponderance of negative electrons and positive protons. It is quite possible that for some stars it is the other way about."

The Physics: The quest for Dark Matter

The Physics: The quest for Dark Matter

The Physics: Anti-Matter & Dark Matter

WIMP as the responsible of Dark Matter (?)

Direct Searches

Direct Searches

Indirect DM search \rightarrow search for (RARE IN CR) products from their annhilation....

10

But you should know what you expect in the ISM !!

Precise measurement of the energy spectra of B, C ... provides information on Cosmic Ray Interactions and Propagation

Interactions with the Interstellar Medium: $C + (p,He) \rightarrow B + ...$

The Physics: DM/exotic sources

1. Physics of AMS

2. AMS-02: Detector & Operations

3. AMS-02: Results

Fundamental physics & Antimatter :

- Primordial Antimatter search with 10⁻⁹ sensitivity
- Indirect Dark Matter search (e^{+,} p, ...)

The Cosmic Ray composition and energy spectrum:

(how to understand the beam...)

- Sources & Acceleration : Proton and He
- Propagation in the ISM : Relative abundances of nuclei and isotopes in primary cosmic rays

What is needed?

→ Particle identification and E measurement up to TeV:

- e/p separation at the 10⁴ level by means of independent detectors
- Z : redundant measurements to evaluate fragmentation along the detector
- Charge sign: matter to anti-matter separation (magnetic field!)

→ Statistics

- Acceptance & efficiency: size
- Exposure time: space

AMS-02: The detector

May 16th 2011

May 19th 2011

AMS: A TeV precision, multipurpose spectrometer

600 GeV electron

20 layers of fiber fleece radiators interleaved with 80:20 Xe/Co₂ straw tubes.

TRD e/p separation

Time of Flight System

4 Layers of scintillation counter

Silicon Tracker

Silicon Tracker

- 9 layers of double-sided micro-strip silicon sensors
- Spatial accuracy in bending direction: ~10 μm

Purpose:

- Measurement of rigidity (R=p/q) (MDR~2 TV)
- Measurement of the sign of charge: **detection of anti-matter**

Charge measurement :

ECAL: e/p separation

A 600 GeV electron in AMS

-TRD:

identify the particle as e⁺/e⁻
rejecting the hadronic hypotesys

-TOF:

- main trigger
- down going relativistic particle
- Z=1

-TRACKER:

- identify negative charge (e⁻)
- Z=1

-ECAL:

- identify the particle as e⁺/e⁻/γ rejecting the hadronic hypotesys
- measurement of energy

AMS on orbit @ 400 Km

1 orbit ~93 min

Payload Operation Control Center (POCC) @ CERN

24/24 hours

Orbital DAQ parameters

Cutoff & Orbit \rightarrow Average life time fraction $T_{exp}/44$ months ~ 80 %

The Thermal environment

Thermal environment

Alignment accuracy of the 9 Tracker layers over the full period

Maura Graziani

1. Physics of AMS

2. AMS-02: Detector & Operations

3. AMS-02: Results

In 44 months, AMS has collected 60 billion cosmic rays.

This is much more than all the cosmic rays collected in the last 100 years.

- 1. Positron Fraction (0.5–500 GeV)
- 2. Electron (0.5--700~GeV) and Positron Fluxes (0.5--500~GeV)
- **3. All electrons Flux** (0.5 GeV 1 TeV)

Positron fraction (0.5 – 500 GeV)

AMS-02 (10.9x10⁶ e⁺, e⁻ events)

No fine structures are observed

Positron fraction @ high energies

Different energy behavior of the positron fraction:

- Pulsars predictions:
 - slow fall at high energies
 - anisotropic positron flux
- Dark Matter prediction:
 - steeper fall at high energies
 - isotropic positron flux

Describe electron and positron fluxes as a sum of a **diffuse component** and a **common source** with a cutoff energy :

$$\Phi_{e^+} = C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s}$$

$$\Phi_{e^-} = C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s}$$

 $\gamma_{e-} - \gamma_{e+} = -0.56 \pm 0.03$ $\gamma_{e-} - \gamma_{s} = 0.72 \pm 0.04$ $C_{e+} / C_{e-} = 0.091 \pm 0.001$ $C_{s} / C_{e-} = 0.0061 \pm 0.0009$ $1 / E_{s} = 1.84 \pm 0.58 \text{ TeV}^{-1}$

Positron (e+) flux

Electron (e⁻) flux

Electron (e⁻) flux

Observation on electrons and positrons fluxes

Observations:

- 1. Both the electron flux and the positron flux are significantly different in their magnitude and energy dependence.
- 2. Both spectra cannot be described by single power laws.
- 3. The **spectral indices** of electrons and positrons **are different**.
- 4. Both change their behavior at ~30GeV.
- 5. The **rise in the positron fraction** from 20 GeV **is due to an excess of positrons**, not the loss of electrons (the positron flux is harder).

All-electrons (e⁺+e⁻) flux

The flux is smooth and reveals new and distinct information.

No structures were observed.

It is consistent with a single power law above 30 GeV.

- AMS will continue its mission until ISS will be operated : a Cosmic Rays observatory of the next decade
- The observed positron excess may imply a heavy Dark Matter WIMP particle or a new mechanism of acceleration in the pulsars
 - Observation of anomalies in the anti-proton spectrum would be an evidence of the DM hypothesis
 - Accurate measurements of the "standard" CR components are being performed and will allow to tune the "background"
- AMS data have the potential to shed a light on the nature of the Dark Matter : More statistics...higher energies, more channels, more information !

Work in progress !!

